1
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Malla R, Jyosthsna K, Rani G, Purnachandra Nagaraju G. CD44/PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol 2024; 138:112613. [PMID: 38959542 DOI: 10.1016/j.intimp.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Kattula Jyosthsna
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - G Rani
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Scarano A, Qorri E, Sbarbati A, Gehrke SA, Frisone A, Amuso D, Tari SR. The efficacy of hyaluronic acid fragments with amino acid in combating facial skin aging: an ultrasound and histological study. J Ultrasound 2024; 27:689-697. [PMID: 38913131 PMCID: PMC11333785 DOI: 10.1007/s40477-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Various techniques have been employed in aesthetic medicine to combat skin aging, in particular that of the facial region. Hyaluronic acid is utilized to enhance moisture levels and extracellular matrix molecules. This study aims to histologically assess the effects of low molecular weight hyaluronic acid fragments combined with amino acids (HAAM) on facial skin rejuvenation through intradermal microinjections. METHODS A total of twenty women, with an average age of 45 and ranging from 35 to 64 years old, participated in the study, including 8 in menopause and 12 in the childbearing age group. Mesotherapy was used to administer HAAM to the patients. Prior to and three months after the treatment, each patient underwent small circular punch biopsies. Ultrasound examinations were conducted using B-mode, capturing 2D images in longitudinal or transverse orientations with frequencies ranging from 5 to 13 Mega-hertz (MY LAB X8, ESAOTE, Genova, Italy). A total of 60 ultrasound examinations were taken, with 30 collected before treatment and 30 after treatment. RESULTS The histological analysis demonstrates an increase in fibroblast activity resulting in the production of Type III reticular collagen, as well as an increased number of blood vessels and epidermal thickness. However, the analysis of ultrasound data before and after treatment showed no statistical difference in skin thickness in malar area, chin and mandibular angle. CONCLUSIONS Histological assessments indicate that subcutaneous infiltration of HAAM has a substantial impact on the dermis of facial skin.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy.
| | - E Qorri
- Department of Dentistry, Faculty of Medical Sciences, Albanian University, 1001, Tirana, Albania
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - S A Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay
| | - Alessio Frisone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| | - D Amuso
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Sergio Rexhep Tari
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| |
Collapse
|
5
|
Díaz MA, Fusco M, Benítez CA, Gayet F, García L, Victoria L, Jaramillo S, Bayo J, Zubieta MR, Rizzo MM, Piccioni F, Malvicini M. Targeting hyaluronan metabolism-related molecules associated with resistant tumor-initiating cells potentiates chemotherapy efficacy in lung cancer. Sci Rep 2024; 14:16803. [PMID: 39039104 PMCID: PMC11263553 DOI: 10.1038/s41598-024-66914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The success of chemotherapy regimens in patients with non-small cell lung cancer (NSCLC) could be restricted at least in part by cancer stem cells (CSC) niches within the tumor microenvironment (TME). CSC express CD133, CD44, CD47, and SOX2, among other markers and factors. Analysis of public data revealed that high expression of hyaluronan (HA), the main glycosaminoglycan of TME, correlated positively with CSC phenotype and decreased disease-free interval in NSCLC patients. We aimed to cross-validate these findings on human and murine lung cancer cells and observed that CD133 + CSC differentially expressed higher levels of HA, HAS3, ABCC5, SOX2, and CD47 (p < 0.01). We modulated HA expression with 4-methylumbelliferone (4Mu) and detected an increase in sensitivity to paclitaxel (Pa). We evaluated the effect of 4Mu + chemotherapy on survival, HA metabolism, and CSC profile. The combination of 4Mu with Pa reduced the clonogenic and tumor-forming ability of CSC. Pa-induced HAS3, ABCC5, SOX2, and CD47 expression was mitigated by 4Mu. Pa + 4Mu combination significantly reduced in vivo tumor growth, enhancing animal survival and restoring the CSC profile in the TME to basal levels. Our results suggest that HA is involved in lung CSC phenotype and chemosensitivity, and its modulation by 4Mu improves treatment efficacy to inhibit tumor progression.
Collapse
Affiliation(s)
- Marco Aurelio Díaz
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Mariel Fusco
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Constanza Arriola Benítez
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Fernando Gayet
- Servicio de Oncología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Ludmila García
- Laboratorio Central, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Lucia Victoria
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Sebastián Jaramillo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Juan Bayo
- Programa de Hepatología Experimental y Terapia Génica, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Tecnicas, Pilar, Argentina
| | | | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
- Servicio de Oncología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Flavia Piccioni
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina.
| | - Mariana Malvicini
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina.
| |
Collapse
|
6
|
Vitale DL, Parnigoni A, Viola M, Karousou E, Sevic I, Moretto P, Passi A, Alaniz L, Vigetti D. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. Int J Mol Sci 2024; 25:7607. [PMID: 39062846 PMCID: PMC11276752 DOI: 10.3390/ijms25147607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Arianna Parnigoni
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Manuela Viola
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Evgenia Karousou
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Paola Moretto
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| |
Collapse
|
7
|
Liang KY, Su NY, Yang HP, Hsieh PL, Fang CY, Tsai LL, Liao YW, Liu CM, Yu CC. Gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC) promotes oral cancer stemness by acting as a molecular sponge of miR331-3p. J Dent Sci 2024; 19:1389-1395. [PMID: 39035323 PMCID: PMC11259681 DOI: 10.1016/j.jds.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Accumulating evidence has suggested that treatment failure of cancer therapy can be attributed to cancer stem cells (CSCs). Among numerous regulators of cancer stemness, non-coding RNAs (ncRNAs) have gained significant attention recently. In this study, we examined the role of gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC) in oral CSCs (OCSCs). Materials and methods RNA Sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the expression of GAPLINC. Flow cytometry and sphere-forming assay were exploited to isolate OCSCs. Measurement of aldehyde dehydrogenase 1 (ALDH1) activity, CD44 expressing cells, and various phenotypic assays, such as self-renewal, migration, invasion, and colony-forming abilities, were conducted in CSCs of two types of oral cancer cells (SAS and GNM) following the knockdown of GAPLINC. A luciferase reporter was also carried out to validate the direct interaction between GAPLINC and microRNA (miR)-331-3p. Results Our results showed that GAPLINC was overexpressed in OCSCs from patient-derived and oral cancer cell lines. We demonstrated that silencing of GAPLINC in OCSCs downregulated various CSC hallmarks, such as ALDH1 activity, percentage of CD44-expressing cells, self-renewal capacity, and colony-forming ability. Moreover, our results revealed that the effect of GAPLINC on cancer stemness was mediated by direct repression of miR-331-3p. Conclusion These data have potential clinical implications in that we unraveled the aberrant upregulation of GAPLINC and demonstrated that suppression of GAPLINC may reduce cancer stemness via sequestering miR-331-3p.
Collapse
Affiliation(s)
- Kuang-Yuan Liang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, Taiwan
| | - Ni-Yu Su
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Pin Yang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Yi-Wen Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
10
|
Luo X, Wang J, Chen Y, Zhou X, Shao Z, Liu K, Shang Z. Melatonin inhibits the stemness of head and neck squamous cell carcinoma by modulating HA synthesis via the FOSL1/HAS3 axis. J Pineal Res 2024; 76:e12940. [PMID: 38402581 DOI: 10.1111/jpi.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan and the main component of the extracellular matrix (ECM), which has been reported to interact with its receptor CD44 to play critical roles in the self-renewal and maintenance of cancer stem cells (CSCs) of multiple malignancies. Melatonin is a neuroendocrine hormone with pleiotropic antitumor properties. However, whether melatonin could regulate HA accumulation in the ECM to modulate the stemness of head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, we found that melatonin suppressed CSC-related markers, such as CD44, of HNSCC cells and decreased the tumor-initiating frequency of CSCs in vivo. In addition, melatonin modulated HA synthesis of HNSCC cells by downregulating the expression of hyaluronan synthase 3 (HAS3). Further study showed that the Fos-like 1 (FOSL1)/HAS3 axis mediated the inhibitory effects of melatonin on HA accumulation and stemness of HNSCC in a receptor-independent manner. Taken together, melatonin modulated HA synthesis through the FOSL1/HAS3 axis to inhibit the stemness of HNSCC cells, which elucidates the effect of melatonin on the ECM and provides a novel perspective on melatonin in HNSCC treatment.
Collapse
Affiliation(s)
- Xinyue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocheng Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ke Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Liu Q, Guo Z, Li G, Zhang Y, Liu X, Li B, Wang J, Li X. Cancer stem cells and their niche in cancer progression and therapy. Cancer Cell Int 2023; 23:305. [PMID: 38041196 PMCID: PMC10693166 DOI: 10.1186/s12935-023-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
High recurrence and metastasis rates and poor prognoses are the major challenges of current cancer therapy. Mounting evidence suggests that cancer stem cells (CSCs) play an important role in cancer development, chemoradiotherapy resistance, recurrence, and metastasis. Therefore, targeted CSC therapy has become a new strategy for solving the problems of cancer metastasis and recurrence. Since the properties of CSCs are regulated by the specific tumour microenvironment, the so-called CSC niche, which targets crosstalk between CSCs and their niches, is vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. In this review, we aim to highlight the factors within the CSC niche that have important roles in regulating CSC properties, including the extracellular matrix (ECM), stromal cells (e.g., associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs)), and physiological changes (e.g., inflammation, hypoxia, and angiogenesis). We also discuss recent progress regarding therapies targeting CSCs and their niche to elucidate developments of more effective therapeutic strategies to eliminate cancer.
Collapse
Affiliation(s)
- Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Province People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoyan Li
- Department of blood transfusion, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
- Department of central laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
12
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of Microenvironmental Components in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:1616. [PMID: 38003931 PMCID: PMC10672525 DOI: 10.3390/jpm13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
13
|
Sun Q, Chen X, Luo H, Meng C, Zhu D. Cancer stem cells of head and neck squamous cell carcinoma; distance towards clinical application; a systematic review of literature. Am J Cancer Res 2023; 13:4315-4345. [PMID: 37818051 PMCID: PMC10560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major pathological type of head and neck cancer (HNC). The disease ranks sixth among the most common malignancies worldwide, with an increasing incidence rate yearly. Despite the development of therapy, the prognosis of HNSCC remains unsatisfactory, which may be attributed to the resistance to traditional radio-chemotherapy, relapse, and metastasis. To improve the diagnosis and treatment, the targeted therapy for HNSCC may be successful as that for some other tumors. Nanocarriers are the most effective system to deliver the anti-cancerous agent at the site of interest using passive or active targeting approaches. The system enhances the drug concentration in HCN target cells, increases retention, and reduces toxicity to normal cells. Among the different techniques in nanotechnology, quantum dots (QDs) possess multiple fluorescent colors emissions under single-source excitation and size-tunable light emission. Dendrimers are the most attractive nanocarriers, which possess the desired properties of drug retention, release, unaffecting by the immune system, blood circulation time enhancing, and cells or organs specific targeting properties. In this review, we have discussed the up-to-date knowledge of the Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma. Although a lot of data is available, still much more efforts remain to be made to improve the treatment of HNSCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Hong Luo
- Department of Hematology, The First Hospital of QiqiharQiqihar 161005, Heilongjiang, China
| | - Cuida Meng
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| |
Collapse
|
14
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
15
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
16
|
Zhang H, Cao H, Luo H, Zhang N, Wang Z, Dai Z, Wu W, Liu G, Xie Z, Cheng Q, Cheng Y. RUNX1/CD44 axis regulates the proliferation, migration, and immunotherapy of gliomas: A single-cell sequencing analysis. Front Immunol 2023; 14:1086280. [PMID: 36776876 PMCID: PMC9909339 DOI: 10.3389/fimmu.2023.1086280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Glioma is one of the most common, primary, and lethal adult brain tumors because of its extreme aggressiveness and poor prognosis. Several recent studies relevant to the immune function of CD44, a transmembrane glycoprotein as a significant hyaluronic acid receptor, have achieved great success, revealing the critical role of CD44 in immune infiltration in gliomas. The overexpression of CD44 has been verified to correlate with cancer aggressiveness and migration, while the clinical and immune features of CD44 expression have not yet been thoroughly characterized in gliomas. Methods Molecular and clinical data of glioma collected from publicly available genomic databases were analyzed. Results CD44 was up-expressed in malignant gliomas, notably in the 1p/19q non-codeletion cases, isocitrate dehydrogenase (IDH) wild-type, and mesenchymal subtypes in GBM samples. CD44 expression level strongly correlates with stromal and immune cells, mainly infiltrating the glioma microenvironment by single-cell sequencing analysis. Meanwhile, CD44 can be a promising biomarker in predicting immunotherapy responses and mediating the expression of PD-L1. Finally, RUNX1/CD44 axis could promote the proliferation and migration of gliomas. Conclusions Therefore, CD44 was responsible for glioma growth and progression. It could potentially lead to a novel target for glioma immunotherapy or a prognostic biomarker.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Vestibular hyaluronic acid injection in provoked vestibulodynia patients and its effect on pain and sexual function: A preliminary report. Eur J Obstet Gynecol Reprod Biol 2023; 280:64-67. [PMID: 36410243 DOI: 10.1016/j.ejogrb.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Provoked vestibulodynia (PVD) is a challenging and distressing problem for women. The aim of this study was to examine the effect of hyaluronic acid (HA) in the management of this condition. METHOD This is a retrospective review of 12 women diagnosed with PVD and treated with HA (19 mg/mL) applied, point-by-point, to the vestibular region at 2 mm intervals and at a depth of 0.5 mm. Women completed a pain VAS and a Female Sexual Function Index (FSFI) before and 45 days after treatment. RESULTS An improvement was observed both in mean FSFI scores (17.8 to 23.3; p = 0.003) and mean VAS scores (7.2 to 4.1; p = 0.002) after HA application respectively. However, on a telephone interview 3 months post treatment, five women (41.7 %) complained of recurrence of their dyspareunia. CONCLUSION HA is a promising management option in provoked vestibulodynia. However, further larger studies with possible alternative regimens and longer follow-up are required.
Collapse
|
18
|
MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells 2022; 12:cells12010036. [PMID: 36611829 PMCID: PMC9818234 DOI: 10.3390/cells12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to human corneal endothelial cells (hCECs) leads to bullous keratopathy because these cells cannot be regenerated in vivo. In this study, we investigated the protective role of microRNA (miR)-302a against interferon-γ (IFN-γ)-induced senescence and cell death of hCECs. Cultured hCECs were transfected with miR-302a and treated with IFN-γ (20 ng/mL) to evaluate the protective effect of miR-302a on IFN-γ-induced cell death. Senescence was evaluated by the senescence-associated β-galactosidase (SA-β-gal) assay, and the secretion of senescence-associated secretory phenotype (SASP) factors was analyzed. Mitochondrial function and endoplasmic reticulum (ER) stress were assessed. We revealed that miR-302a enhanced the cell viability and proliferation of hCECs and that IFN-γ increased the cell size, the number of SA-β-gal-positive cells, and SASP factors, and arrested the cell cycle, which was eliminated by miR-302a. miR-302a ameliorated mitochondrial oxidative stress and ER stress levels which were induced by IFN-γ. IFN-γ decreased the mitochondrial membrane potential and promoted autophagy, which was eliminated by miR-302a. The in vivo study showed that regeneration of rat CECs was promoted in the miR-302a group by inhibiting IFN-γ and enhancing mitochondrial function. In conclusion, miR-302a eliminated IFN-γ-induced senescence and cellular damage by regulating the oxidative and ER stress, and promoting the proliferation of CECs. Therefore, miR-302a may be a therapeutic option to protect hCECs against IFN-γ-induced stress.
Collapse
|
19
|
Patel S, Patel A, Nair A, Shah K, Shah K, Tanavde V, Rawal R. Salinomycin mediated therapeutic targeting of circulating stem like cell population in oral cancer. J Biomol Struct Dyn 2022; 40:11141-11153. [PMID: 34308783 DOI: 10.1080/07391102.2021.1957018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD44+ circulating tumor stem cells (CTSCs) have been significantly associated with aggressiveness, resistance and poor prognosis of oral cancer patients. Thus, targeted elimination of these CTSCs could be a new conceptual framework for enhancing the therapeutic outcome of patients. Docking of potential investigational molecules and simulation results identified Salinomycin as a potential lead compound that could effectively inhibit CD44 receptor. To assess the cytotoxic effect, immuno-magnetically sorted circulatory CD44+ cells were subjected to increasing concentrations of 5FU, Cisplatin and Salinomycin. Salinomycin demonstrated significant cytotoxic effect towards the CD44+ subpopulation in a dose and time dependent manner. Further the effect of these compounds was investigated on apoptosis, cell cycle, signaling pathways and gene expression profiles using MuseTM flow cytometer and Real-Time PCR. It was observed that mRNA expression patterns of CD44v6, Nanog, AKT1, CDKN2A and β-catenin of Salinomycin treated CD44+ cells. Moreover, Salinomycin significantly induced programmed cell death by inducing G2/M cell cycle arrest and inhibiting MAPK/PI3K pathways in this chemo-resistant population. Thus, this study demonstrated the potential of Salinomycin to target the chemo-resistant circulating CD44 population by attenuating its proliferation and survival.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shanaya Patel
- Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Aditi Patel
- Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Aishwarya Nair
- Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Kavan Shah
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kanisha Shah
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Vivek Tanavde
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rakesh Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
20
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
21
|
CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14153672. [PMID: 35954339 PMCID: PMC9367592 DOI: 10.3390/cancers14153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Squamous cell carcinoma (SCC) is one of the leading causes of cancer-related deaths worldwide. CD109 is overexpressed in many cancers including SCC. Although a pro-tumorigenic role for CD109 has been shown in non-SCC cancers, and in one type of SCC, the mechanisms and signaling pathways reported are discrepant. (2) Methods: The CD109-EGFR interaction and CD109-mediated regulation of EGFR expression, signaling, and stemness were studied using microarray, immunoblot, immunoprecipitation, qPCR, immunofluorescence, and/or spheroid formation assays. The role of CD109 in tumor progression and metastasis was studied using xenograft tumor growth and metastatic models. (3) Results: We establish the in vivo tumorigenicity of CD109 in vulvar SCC cells and demonstrate that CD109 is an essential regulator of EGFR expression at the mRNA and protein levels and of EGFR/AKT signaling in vulvar and hypopharyngeal SCC cells. Furthermore, we show that the mechanism involves EGFR-CD109 heteromerization and colocalization, leading to the stabilization of EGFR levels. Additionally, we demonstrate that the maintenance of epithelial morphology and in vitro tumorigenicity of SCC cells require CD109 localization to the cell surface. (4) Conclusions: Our study identifies an essential role for CD109 in vulvar SCC progression. We demonstrate that CD109 regulates SCC cellular stemness and epithelial morphology via a cell-surface CD109-EGFR interaction, stabilization of EGFR levels and EGFR/AKT signaling.
Collapse
|
22
|
Catulin reporter marks a heterogeneous population of invasive breast cancer cells with some demonstrating plasticity and participating in vascular mimicry. Sci Rep 2022; 12:12673. [PMID: 35879327 PMCID: PMC9314412 DOI: 10.1038/s41598-022-16802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide. The activation of partial or more complete epithelial–mesenchymal transition in cancer cells enhances acquisition of invasive behaviors and expands their generation of cancer stem cells. Increased by EMT plasticity of tumor cells could promote vascular mimicry, a newly defined pattern of tumor microvascularization by which aggressive tumor cells can form vessel-like structures themselves. VM is strongly associated with a poor prognosis, but biological features of tumor cells that form VM remains unknown. Here we show that catulin is expressed in human BC samples and its expression correlates with the tumor progression. Ablation of catulin in hBC cell lines decreases their invasive potential in the 3D assays. Using a novel catulin promoter based reporter we tracked and characterized the small population of invasive BC cells in xenograft model. RNAseq analysis revealed enrichment in genes important for cellular movement, invasion and interestingly for tumor-vasculature interactions. Analysis of tumors unveiled that catulin reporter marks not only invasive cancer cells but also rare population of plastic, MCAM positive cancer cells that participate in vascular mimicry. Ablation of catulin in the xenograft model revealed deregulation of genes involved in cellular movement, and adhesive properties with striking decrease in CD44 which may impact stemness potential, and plasticity of breast cancer cells. These findings show directly that some plastic tumor cells can change the fate into endothelial-like, expressing MCAM and emphasize the importance of catulin in this process and breast cancer progression.
Collapse
|
23
|
Scuruchi M, D'Ascola A, Avenoso A, Zappone A, Mandraffino G, Campo S, Campo GM. miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Arch Biochem Biophys 2022; 718:109139. [PMID: 35114139 DOI: 10.1016/j.abb.2022.109139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the expression of miR9 and its correlation with cytokines, proteolytic enzymes and apoptosis in an experimental model of 6-mer HA induced inflammation in human chondrocytes. Human articular chondrocytes, transfected with a miR-9 mimic and miR-9 inhibitor, were stimulated with 6-mer HA in presence/absence of a specific NF-kB inhibitor. 6-mer HA induced a significant increase of TLR-4, CD44, IL-8, IL-18, MMP-9, ADAMTS-5, BAX and BCL-2 mRNAs expression and the related proteins, as well as NF-kB activation, associated with a significant up regulation of miR-9. In chondrocytes transfected with the miR-9 mimic before 6-mer HA treatment we found a decrease of such inflammatory cytokines, metalloproteases and pro-apoptotic molecules, while we found them increased in chondrocytes transfected with the miR9 inhibitor before 6-mer HA stimulation. The activities of TLR-4 and CD44, up regulated by 6-mer HA, were not modified by miR9 mimic/inhibitor, while the NF-kB activation was significantly affected. We suggested that the up regulation of miR9, induced by 6-mer HA, could be a cellular attempt to limit cell damage during inflammation.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Annie Zappone
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| |
Collapse
|
24
|
Sato F, Bhawal UK, Osaki S, Sugiyama N, Oikawa K, Muragaki Y. Differential immunohistochemical expression of DEC1, CK‑1ε, and CD44 in oral atypical squamous epithelium and carcinoma in situ. Mol Med Rep 2022; 25:159. [PMID: 35266015 PMCID: PMC8941534 DOI: 10.3892/mmr.2022.12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Presence of nuclear atypia during histological investigation is often a cause of concern for pathologists while identifying tumor and non-tumor cells in a biopsy sample of oral mucosa. Nuclear atypia is observed in severe inflammation, ulcers and reactive changes. Therefore, additional methods, such as immunohistochemistry, may help precise diagnosis. When the atypia is suggestive of tumorous or reactive origin, the lesion is diagnosed as atypical squamous epithelium (ASE). When there is severe nuclear atypia in the mucosa, such as in disorders of nuclear polarity, large nuclei, and clear nucleolus, the lesion is diagnosed as carcinoma in situ (CIS). However, it is not easy to distinguish ASE and CIS using hematoxylin and eosin staining. The present study aimed to distinguish ASE from CIS using immunohistochemistry. A total of 32 biopsy samples of either ASE or CIS cases were selected and the level of casein kinase 1ε (CK-1ε), differentiated embryonic chondrocyte gene 1 (DEC1), proliferating cell nuclear antigen (PCNA) and CD44, which are four protein markers which have been previously linked to cancer progression, were analyzed. CK-1ε and CD44 expression was higher in CIS samples than in ASE samples. However, DEC1 expression was lower in CIS samples than in ASE samples. PCNA expression was not markedly different between the two groups. Additionally, it was found that DEC1-overexpressing cells had decreased levels of CK-1ε and CD44 compared with control cells, while CK-1ε-overexpressing cells had relatively unchanged levels of CD44, DEC1 and PCNA. These results suggested that DEC1 negatively regulates the expression of CK-1ε and CD44. Thus, DEC1, CK-1ε, and CD44 were identified as mechanistically linked and clinically relevant protein biomarkers, which could help distinguish ASE and CIS.
Collapse
Affiliation(s)
- Fuyuki Sato
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Sunto‑gun, Shizuoka 411‑8777, Japan
| | - Ujjal K Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271‑8587, Japan
| | - Shoko Osaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Nao Sugiyama
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University School of Medicine, Wakayama 641‑8509, Japan
| |
Collapse
|
25
|
Placencio-Hickok VR, Lauzon M, Moshayedi N, Guan M, Kim S, Nissen N, Lo S, Pandol S, Larson BK, Gong J, Hendifar AE, Osipov A. Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: Primary tumors compared to sites of metastasis. Pancreatology 2022; 22:92-97. [PMID: 34657790 PMCID: PMC8903049 DOI: 10.1016/j.pan.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with poor survival. The dense desmoplastic stroma in PDAC contributes to treatment resistance. Among the components comprising the tumor stroma, hyaluronan (HA) has been demonstrated to play a critical role in tumor progression and survival. Previous preliminary studies have suggested differences in HA expression in primary and metastatic foci of PDAC. However, the effects of treatment and location of HA expression as a biomarker signature remain unknown; this study sought to compare HA expression in primary and metastatic sites of PDAC. METHODS Tissue from primary and metastatic PDACs were obtained from Cedars-Sinai Medical Center along with associated clinical data. Tissue slides were stained for H&E, HA, and CD44. Associations between HA levels and the evaluated variables were examined including progression free survival and overall survival. RESULTS HA score was significantly higher in primary PDACs compared to sites of metastases (p = 0.0148). Within the metastases, HA score was significantly higher in liver metastases compared to metastases at other sites (p = 0.0478). In the treatment-naive liver metastasis cohort, patients with HA high status had decreased progression free survival and overall survival compared to patients with HA low status (p = 0.0032 and p = 0.0478, respectively). CONCLUSIONS HA score is variable between primary PDAC, PDAC metastatic to the liver, and PDAC metastatic to other sites. Within liver metastases, patients with HA high status had decreased progression free survival and overall survival compared to patients with HA low status. HA levels can serve as a potential biomarker to guide pancreatic cancer treatments and trial design for agents targeting the stroma.
Collapse
Affiliation(s)
- Veronica R Placencio-Hickok
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Marie Lauzon
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Natalie Moshayedi
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Michelle Guan
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Nicholas Nissen
- Liver Transplantation and Hepatopancreatobiliary Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Simon Lo
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Stephen Pandol
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Brent K Larson
- Department of Pathology and Laboratory Medicine, 8700 Beverly Blvd., Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jun Gong
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Andrew E Hendifar
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Arsen Osipov
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
26
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
27
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
28
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
29
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
30
|
TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation. Cancers (Basel) 2021; 13:cancers13051021. [PMID: 33804427 PMCID: PMC7957764 DOI: 10.3390/cancers13051021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
The hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGFβ) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis. Mechanistically, TRAF4 activated the small GTPase RAC1. CD44-dependent migration of A549 cells was inhibited by siRNA-mediated knockdown of TRAF4, which was rescued by the transfection of a constitutively active RAC1 mutant. Our findings support the notion that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients.
Collapse
|
31
|
Liao C, An J, Tan Z, Xu F, Liu J, Wang Q. Changes in Protein Glycosylation in Head and Neck Squamous Cell Carcinoma. J Cancer 2021; 12:1455-1466. [PMID: 33531990 PMCID: PMC7847636 DOI: 10.7150/jca.51604] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is an important posttranslational modification of proteins, and it has a profound influence on diverse life processes. An abnormal polysaccharide structure and mutation of the glycosylation pathway are closely correlated with human cancer progression. Glycoproteins such as EGFR, E-cadherin, CD44, PD-1/PD-L1, B7-H3 and Muc1 play important roles in the progression of head and neck squamous cell carcinoma (HNSCC), and their levels of glycosylation and changes in glycosyl structure are closely linked to HNSCC progression and malignant transformation. The regulation of protein glycosylation in HNSCC provides potential strategies to control cancer stem cell (CSC) subgroup expansion, epithelial-mesenchymal transition (EMT), tumor-related immunity escape and autophagy. Glycoproteins with altered glycosylation can be used as biomarkers for the early diagnosis, monitoring and prognostication of HNSCC. However, the glycobiology of cancer is still a new field that needs to be deeply studied, especially in HNSCC.
Collapse
Affiliation(s)
- Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Fangping Xu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
32
|
Sun Z, Li D, Wu H, Hou B. Tumour stem cell markers CD133 and CD44 are useful prognostic factors after surgical resection of pancreatic neuroendocrine tumours. Oncol Lett 2020; 20:341. [PMID: 33123252 PMCID: PMC7583850 DOI: 10.3892/ol.2020.12204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate the expression profiles and prognostic values of CD133 and CD44 in a cohort of patients with pancreatic neuroendocrine tumours (PNETs). PNET data from patients who underwent radical resection at the Guangdong Provincial People's Hospital were retrospectively analysed. Immunohistochemistry was performed on PNET samples, and CD133 and CD44 expression was examined. Survival analysis was performed using the Kaplan-Meier method and the log-rank test. A total of 71 cases were included in the study. The mean age of the patients was 45.2 years, and the mean tumour size was 3.3 cm. CD44 expression was positively associated with poor tumour differentiation (P=0.007), high Ki-67 index (P=0.001), added mitotic count (P=0.003), high histological grade (P=0.001) and advanced stage (P=0.025). Similarly, CD133 expression was positively associated with high Ki-67 index (P=0.014) and added mitotic count (P=0.012). However, CD133 expression was not associated with tumour differentiation (P=0.118), histological grade (P=0.126) and stage (P=0.203). Survival analysis revealed that both CD44 and CD133 were prognostic factors for overall survival (OS) and/or disease-free survival (DFS), and that increased co-expression of CD44 and CD133 indicated poor OS and DFS rates in patients with PNET. In patients with no expression or low expression of either CD44 or CD133, a DFS rate of 100% was observed, indicating a low recurrence risk. The present findings suggested that high CD44 and CD133 expression was associated with a poor prognosis in patients with PNET. CD44 and CD133 may be used as prognostic indicators of OS and/or DFS in patients with PNETs.
Collapse
Affiliation(s)
- Zhonghai Sun
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Postgraduate School, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Dezhi Li
- Department of General Surgery, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde, Shunde, Guangdong 528300, P.R. China
| | - Hongmei Wu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080 P.R. China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
- Correspondence to: Professor Baohua Hou, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong 510080, P.R. China, E-mail:
| |
Collapse
|
33
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020; 13:312-325. [PMID: 32840233 PMCID: PMC7691851 DOI: 10.15283/ijsc20097] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
35
|
Su D. Up-regulation of MiR-145-5p promotes the growth and migration in LPS-treated HUVECs through inducing macrophage polarization to M2. J Recept Signal Transduct Res 2020; 41:434-441. [PMID: 32998623 DOI: 10.1080/10799893.2020.1818095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MiR-145-5p is high-expressed in human vascular endothelial cells (HUVECs) and alternatively activated macrophages (M2). However, whether miR-145-5p can reduce HUVEC damage by regulating macrophage immunophenotype is less reported. THP-1 was stimulated by Phorbolate-12-myristate-13-acetate, LPS and IFN-γ, and IL-4 to differentiate into macrophages (M0, M1 and M2). The expressions of macrophage markers were detected by Western blotting, and the expressions of miR-145-5p and kruppel-like factor-14 (KLF14) were detected by qRT-PCR. Dual-luciferase reporter assay was used to analyze the targeted relationship of miR-145-5p and KLF14. HUVEC injury was induced by LPS and then co-cultured with M1 transfected by miR-145-5p mimic. The effect of miR-145-3p on proliferation and metastasis of LPS-induced HUVECs was detected by MTT, clone formation, scratch assay and Transwell. We found that the expression of miR-145-5p was higher in M2 than that in M1. MiR-145-5p expression was down-regulated during M2-to-M1, but up-regulated during M1-to-M2. The expressions of IL-1β and iNOS were down-regulated, while the protein expressions of CCL17 and Arg-1 were up-regulated by miR-145-5p mimic in M0. The viability, proliferation, migration and invasion of HUVECs were promoted, however, LDH activity of the HUVECs was inhibited by mimics. In addition, KLF14 was predicted as the target gene for miR-145-5p in HUVECs. Collectively, our results demonstrate that miR-145-5p inhibited cell proliferation of LPS-treated HUVECs possibly through regulating macrophage polarization to M2.
Collapse
Affiliation(s)
- Dongna Su
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
37
|
D'Angelo E, Lindoso RS, Sensi F, Pucciarelli S, Bussolati B, Agostini M, Collino F. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Front Oncol 2020; 10:1122. [PMID: 32793478 PMCID: PMC7393251 DOI: 10.3389/fonc.2020.01122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine–REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Sensi
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marco Agostini
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda, IRCCS Policlinico di Milano, Milan, Italy
| |
Collapse
|
38
|
Wang X, Cheng K, Zhang G, Jia Z, Yu Y, Guo J, Hua Y, Guo F, Li X, Zou W, Sun H, Dong J, Yang Z. Enrichment of CD44 in Exosomes From Breast Cancer Cells Treated With Doxorubicin Promotes Chemoresistance. Front Oncol 2020; 10:960. [PMID: 32760666 PMCID: PMC7373100 DOI: 10.3389/fonc.2020.00960] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes secreted from tumor cells can remodel the tumor environment by promoting tumor metastasis and multidrug resistance. The aim of this study was to analyze the proteome profile of the breast cancer line resistant to doxorubicin resistance (MCF-7/ADR) by liquid chromatography linked to tandem mass spectrometry assay (LC-MS/MS). Our results revealed that DOX increases the exosomes release from MCF-7/ADR cells and the exosome-mediated proteins intercellular transfer in breast cancer chemoresistance regulation. The expression of the candidate target exosomic CD44 in DOX-resistant cells (A/Exo) was higher than in parental breast cancer cells (S/Exo), and the increasing levels of exosomic CD44 (21.65-fold) were higher than those of cellular CD44 (6.55-fold) (all p < 0.05). Similar results were obtained in clinical samples; exosomal CD44 in the serum of nonresponders was significantly higher than that in the chemotherapy-responsive group (p < 0.05). Also, we modified the MCF-7-derived exosomes loaded with siRNA against CD44 to observe the effects of targeting reduced CD44 expression in luminal A breast cancer cells. Exosome-siRNA targeted CD44 (Exos-siCD44) could efficiently silence its expression. When cocultured on Exos-siCD44, breast cancer cells exhibited reduced cell proliferation and enhanced susceptibility to DOX. The same phenomenon was observed in mice. In conclusion, breast cancer cells could spread resistance capacity by the intercellular transfer of proteins, especially CD44, via exosomes.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Kai Cheng
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Guoqiang Zhang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhongming Jia
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yue Yu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Jiwei Guo
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fengli Guo
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaoqiang Li
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Weiwei Zou
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Hongguang Sun
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Jianli Dong
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
39
|
Tolg C, Liu M, Cousteils K, Telmer P, Alam K, Ma J, Mendina L, McCarthy JB, Morris VL, Turley EA. Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization. J Biol Chem 2020; 295:5427-5448. [PMID: 32165498 PMCID: PMC7170511 DOI: 10.1074/jbc.ra119.010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context-dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor-regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Muhan Liu
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Katelyn Cousteils
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick Telmer
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Khandakar Alam
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Jenny Ma
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Leslie Mendina
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Vincent L Morris
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 3K7, Canada
| | - Eva A Turley
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada; Departments of Oncology, Biochemistry, and Surgery, Schulich School of Medicine, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
40
|
Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, Ganguly K, Lakshmanan I, Cox JL, Mallya K, Kaur S, Batra SK. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer 2020; 19:37. [PMID: 32098629 PMCID: PMC7041280 DOI: 10.1186/s12943-020-01156-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Differential expression of mucins has been associated with several cancers including colorectal cancer (CRC). In normal physiological conditions, secretory mucin MUC5AC is not expressed in the colonic mucosa, whereas its aberrant expression is observed during development of colon cancer and its precursor lesions. To date, the molecular mechanism of MUC5AC in CRC progression and drug resistance remains obscure. METHODS MUC5AC expression was determined in colon tissue microarray by immunohistochemistry. A RNA interference and CRISPR/Cas9-mediated system was used to knockdown/knockout the MUC5AC in CRC cell lines to delineate its role in CRC tumorigenesis using in vitro functional assays and in vivo (sub-cutaneous and colon orthotopic) mouse models. Finally, CRC cell lines and xenograft models were used to identify the mechanism of action of MUC5AC. RESULTS Overexpression of MUC5AC is observed in CRC patient tissues and cell lines. MUC5AC expression resulted in enhanced cell invasion and migration, and decreased apoptosis of CRC cells. MUC5AC interacted with CD44 physically, which was accompanied by the activation of Src signaling. Further, the presence of MUC5AC resulted in enhanced tumorigenesis and appearance of metastatic lesions in orthotopic mouse model. Additionally, up-regulation of MUC5AC resulted in resistance to 5-fluorouracil (5-FU) and oxaliplatin, and its knockout increased sensitivity to these drugs. Finally, we observed that up-regulation of MUC5AC conferred resistance to 5-FU through down-regulation of p53 and its target gene p21 and up-regulation of β-catenin and its target genes CD44 and Lgr5. CONCLUSION Our findings suggest that differential expression of secretory mucin MUC5AC results in enhanced tumorigenesis and also confers chemoresistance via CD44/β-catenin/p53/p21 signaling.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
41
|
Aldehyde dehydrogenase-positive melanoma stem cells in tumorigenesis, drug resistance and anti-neoplastic immunotherapy. Mol Biol Rep 2019; 47:1435-1443. [PMID: 31838656 DOI: 10.1007/s11033-019-05227-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), a rare subset of cancer cells, are well known for their self-renewing capacity. CSCs play a critical role in therapeutic failure and are responsible for poor prognosis in leukemia and various solid tumors. However, it is still unclear how CSCs initiate carcinogenesis and evade the immune response. In humans, the melanoma initiating cells (MICs) are recognized as the CSCs in melanomas, and were verified to possess CSC potentials. The enzymatic system, aldehyde dehydrogenase (ALDH) is considered to be a specific marker for CSCs in several tumors. The expression of ALDH in MICs may be closely correlated with phenotypic heterogeneity, melanoma-genesis, metastasis, and drug resistance. The ALDH+ CSCs/MICs not only serve as an indicator for therapeutic efficacy, but have also become a target for the treat of melanoma. In this review, we initially introduce the multiple capacities of MICs in melanoma. Then, we summarize in vivo and in vitro studies that illustrate the relationship between ALDH and MICs. Furthermore, understanding of chemotherapy resistance in melanoma relies on ALDH+ MICs. Finally, we review studies that focus on melanoma immunotherapies, rendering ALDH a potential marker to evaluate the efficacy of anti-neoplastic therapies or an adjuvant anti-melanoma target.
Collapse
|
42
|
A Shifty Target: Tumor-Initiating Cells and Their Metabolism. Int J Mol Sci 2019; 20:ijms20215370. [PMID: 31661927 PMCID: PMC6862122 DOI: 10.3390/ijms20215370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-initiating cells (TICs), or cancer stem cells, constitute highly chemoresistant, asymmetrically dividing, and tumor-initiating populations in cancer and are thought to play a key role in metastatic and chemoresistant disease. Tumor-initiating cells are isolated from cell lines and clinical samples based on features such as sphere formation in stem cell medium and expression of TIC markers, typically a set of outer membrane proteins and certain transcription factors. Although both bulk tumor cells and TICs show an adaptive metabolic plasticity, TIC metabolism is thought to differ and likely in a tumor-specific and growth condition-dependent pattern. In the context of some common solid tumor diseases, we here review reports on how TIC isolation methods and markers associate with metabolic features, with some focus on oxidative metabolism, including fatty acid and lipid metabolism. These have emerged as significant factors in TIC phenotypes, and in tumor biology as a whole. Other sections address mitochondrial biogenesis and dynamics in TICs, and the influence of the tumor microenvironment. Further elucidation of the complex biology of TICs and their metabolism will require advanced methodologies.
Collapse
|
43
|
Fan FS, Yang CF. Synchronous peritoneal carcinomatosis from a buccal squamous cell carcinoma: a case report focusing on possible metastatic mechanisms and novel therapeutic modalities. Ecancermedicalscience 2019; 13:954. [PMID: 31645882 PMCID: PMC6759322 DOI: 10.3332/ecancer.2019.954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 11/27/2022] Open
Abstract
A 53-year-old male patient was diagnosed with squamous cell carcinoma of buccal mucosa with synchronous diffuse peritoneal carcinomatosis, a very rare presentation for oral cancer. His disease was highly resistant to intensive systemic chemotherapy and progressed rapidly. So far as we know, there were only five cases with peritoneal involvement by metastatic head and neck cancer reported prior to this patient in the English literature. Immunohistochemistry study revealed that tumour specimens from both oral cavity and peritoneum were negative for tumour necrosis factor alpha and CD24 but positive for CD44 and CD36. These four molecules have been disclosed to be involved in the process of peritoneal metastasis from ovarian cancer. Their roles in the metastatic pathway and possible therapeutic policy targeting at them will be thoroughly discussed.
Collapse
Affiliation(s)
- Frank S Fan
- Section of Haematology and Oncology, Department of Medicine, Ministry of Health and Welfare Changhua Hospital, 80, Sec. 2, Chung-Jeng Rd, Pu-Shin Township, Chang-Hua County, 51341, Taiwan.,https://orcid.org/0000-0002-8123-6941
| | - Chung-Fan Yang
- Department of Pathology, Ministry of Health and Welfare Changhua Hospital, 80, Sec. 2, Chung-Jeng Rd, Pu-Shin Township, Chang-Hua County, 51341, Taiwan.,https://orcid.org/0000-0002-7366-4380
| |
Collapse
|
44
|
Chokchaitaweesuk C, Kobayashi T, Izumikawa T, Itano N. Enhanced hexosamine metabolism drives metabolic and signaling networks involving hyaluronan production and O-GlcNAcylation to exacerbate breast cancer. Cell Death Dis 2019; 10:803. [PMID: 31645543 PMCID: PMC6811536 DOI: 10.1038/s41419-019-2034-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
The hexosamine biosynthetic pathway (HBP) metabolically regulates dynamic cellular events by linking nutrient availability to numerous signaling networks. Significant alterations in the HBP are often associated with cancer pathogenesis. In this study, we investigated the molecular events underlying cancer pathogenesis associated with enhanced HBP flux. Multidimensional analysis of microarray datasets demonstrated up-regulation of genes encoding HBP enzymes in clinical breast cancers and revealed that co-expression of hyaluronan synthase 2 (HAS2) and glutamine:fructose-6-phosphate amidotransferase (GFAT), a rate-limiting enzyme of the HBP, was strongly correlated with a poor prognosis in advanced cancer patients. Consistently with the clinical data, comparative analyses of distinct breast cancer mouse models demonstrated enhancement of the HBP gene expression in primary carcinoma cells, with elevation of Has2 expression and hyaluronan production in aggressive breast cancer cells. The silencing of GFAT reduced CD44high/CD24low cancer stem cell (CSC)-like subpopulations, aldehyde dehydrogenase-positive cell populations, and mammosphere size, which were further diminished by gene targeting of Has2. Has2 gene disruption reduced the in vivo growth of aggressive cancer cells and attenuated pro-tumorigenic Akt/GSK3β/β-catenin signaling and cisplatin resistance. Overall protein O-GlcNAcylation was also elevated in association with HBP enhancement in aggressive cancer cells, and the modification exhibited overlapping but distinct roles from the hyaluronan signal in the regulation of CSC-like features. The current data therefore demonstrate that enhanced hexosamine metabolism drives pro-tumorigenic signaling pathways involving hyaluronan and O-GlcNAcylation in aggressive breast cancer.
Collapse
Affiliation(s)
| | - Takashi Kobayashi
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Tomomi Izumikawa
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- College of Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Naoki Itano
- Division of Life Sciences, Kyoto Sangyo University Graduate School, Kyoto, 603-8555, Japan.
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
45
|
Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol 2019; 35:407-421. [PMID: 30680600 PMCID: PMC6881418 DOI: 10.1007/s10565-019-09461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
The goal of cancer eradication has been overshadowed despite the continuous improvement in research and generation of novel cancer therapeutic drugs. One of the undeniable existing problems is drug resistance due to which the paradigm of killing all cancer cells is ineffective. Tumor microenvironment plays a crucial role in inducing drug resistance besides cancer development and progression. Recently, many efforts have been devoted to understand the role of tumor microenvironment in cancer drug resistance as it provides the shelter, nutrition, and paracrine niche for cancer cells. Cancer-associated fibroblasts (CAFs), one major component of tumor microenvironment, reside in symbiotic relationship with cancer cells, supporting them to survive from cancer drugs. The present review summarizes the recent understandings in the role of CAFs in drug resistance in various tumors. Acknowledging the fact that drug resistance depends not only upon cancer cells but also upon the microenvironment niche could guide us to formulate novel cancer drugs and provide the optimal cancer treatment.
Collapse
Affiliation(s)
- Dhruba Kadel
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Hao-Ran Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yue Zhao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
46
|
Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X. CD44-Targeted Magnetic Nanoparticles Kill Head And Neck Squamous Cell Carcinoma Stem Cells In An Alternating Magnetic Field. Int J Nanomedicine 2019; 14:7549-7560. [PMID: 31571863 PMCID: PMC6754337 DOI: 10.2147/ijn.s215087] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor in the world. Studies in recent years have demonstrated that cancer stem cells (CSCs) are present in many tumor tissues, including HNSCC, and CSCs are the root cause of tumor recurrence and metastasis. Thus, taking new treatment measures to target the killing of CSCs that are resistant to chemotherapy and radiotherapy is key to the success of cancer treatment. Methods We explored a method for preparing anti-CD44 antibody-modified superparamagnetic iron oxide nanoparticles (SPIONPs). Biocompatibility was evaluated by a CCK-8 assay. The CSCs were obtained by a 3D cell culture technique from Cal-27 (human oral squamous cell carcinoma) cells, and then the CSCs were identified by quantitative real-time polymerase chain reaction (qRT-PCR). The targeting efficiency of the CD44-SPIONPs to CSCs was confirmed by Prussian blue staining and visualized by laser scanning confocal microscopy (LSCM). Flow cytometry was used to detect the apoptosis of CSCs after alternating magnetic field (AMF) treatment. The efficacy of tumor growth inhibition by CD44-SPIONP-mediated magnetic hyperthermia therapy was evaluated with tumor xenografts in nude mice. Results The CD44-SPIONPs exhibited no negative effect on CSCs, indicating good biocompatibility. After SPIONPs were cocultured with stem cells, the majority of CD44-SPIONPs labeled with FITC penetrated the cell membrane into the cytoplasm. After AMF treatment, CD44-SPIONPs induced CSCs to undergo programmed death. The inhibitory ratio of the treated group was 33.43%, and necrotic areas in the tumor tissue were mainly distributed around the magnetic fluid. Conclusion These results demonstrate that it is possible to kill CSCs using targeted magnetic nanoparticles and an AMF and that magnetic fluid hyperthermia significantly inhibited the growth of grafted Cal-27 tumors in mice.
Collapse
Affiliation(s)
- Zhan Su
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Duanqin Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Liying Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lu Ru
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Zhiyu Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Zhennan Gao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xuxia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
47
|
Moon JH, Rho YS, Lee SH, Koo BS, Lee HJ, Do SI, Cho JH, Eun YG, Park MW, Shin HA, Lim YC. Role of integrin β1 as a biomarker of stemness in head and neck squamous cell carcinoma. Oral Oncol 2019; 96:34-41. [DOI: 10.1016/j.oraloncology.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
|
48
|
Khegay II. Noncanonical effects of vasopressin in angiogenesis. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
The molecular action of vasopressin depends on the localization of hormonal receptors. The basic physiological effects of vasopressin are manifested in the blood vasculature, renal inner medulla and brain. To date, new information concerning the tissue-specific spreading of vasopressin receptors has been accumulated, and it needs to be summarized. Platelets and endotheliocytes expressing V1a and V2 receptor types, respectively, are related to less investigated targets of the hormone. Vasopressin induces the initial reversible stage of platelet activation, required for interaction with intercellular matrix proteins. Platelet adhesion on endothelium activates cellular secretion of growth factors and enzymes for intercellular matrix glucosamine metabolism. Platelet hyaluronidase HYAL2 hydrolyses high-molecular hyaluronic acid to shorter fragments. Unlike intact hyaluronic acid with a molecular weight of several megadaltons, generally showing distinctive antiangiogenic properties, intermediate fractions of hyaluronan hydrolysis in a range from 2.5 to 200 kilodaltons have a stimulating effect on angiogenesis. Intercellular contacts between platelets and endotheliocytes are stabilized due to adhesive transmembrane glycoprotein PECAM-1 interaction. Resulting PECAM-1 heterodimers acquire conformation with high affinity to integrins αvβ3. Integrin activation forms contact links between endothelium and fibrillar proteins. Activated endotheliocytes secrete von Willebrand factor and P-selectin. These proteins are accumulated in Weibel–Palade bodies. Vasopressin stimulates cAMP-dependent ACAP-regulated exocytosis of Weibel–Palade bodies. von Willebrand factor possesses adhesive properties and additionally accelerates interaction of cells with the intercellular matrix. Adhesion on fibrillar collagen and membrane glycoproteins in cooperation with effects of PECAM-1–αvβ3 integrin complexes fixes cell aggregates in the surrounding interstitium and promotes proliferating endotheliocyte migration in according to the direction of local growth factor gradients during angiogenesis. Neurohormonal regulation of platelet and endotheliocyte secretory activity functionally link proliferation and migration of endotheliocytes during angiogenesis and integrate it according to the adaptive capacity of the entire organism.
Collapse
|
49
|
Chen XL, Hong LL, Wang KL, Liu X, Wang JL, Lei L, Xu ZY, Cheng XD, Ling ZQ. Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-κB pathway. Int J Biol Sci 2019; 15:2075-2086. [PMID: 31592231 PMCID: PMC6775299 DOI: 10.7150/ijbs.23802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Aim: This study aimed to investigate the oncogenic activity of microRNA-10b by targeting CUB and sushi multiple domains protein 1 (CSMD1) in human gastric cancer (GC) and the underlying mechanisms. Methods: The expression of CSMD1 in human GC tissues was evaluated by real-time reverse transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemical analysis. The expressive abundance of microRNA-10b was detected by stem-loop RT-PCR. Molecular and cellular techniques, including lentiviral vector-mediated knockdown or overexpression, were used to elucidate the effect of microRNA-10b on the expression of CSMD1. Results: CSMD1 was targeted and downregulated by microRNA-10b in human GC tissues and cells, and the down-regulated expression of CSMD1 contributed to poor survival. The knockdown of microRNA-10b expression inhibited cell proliferation in GC cells in vitro and tumor growth in vivo. The inhibition of microRNA-10b expression repressed invasion and migration of HGC27 cells and retarded GC cells metastasis to the liver in Balb/c nude mice. The up-regulated expression of microRNA-10b promoted the proliferation and metastasis of MKN74 cell in vitro. Intratumoral injection of microRNA-10b mimic also promoted the growth and metastasis of tumor xenografts in Balb/c nude mice. Mechanistically, microRNA-10b promoted the invasion and metastasis of human GC cells through inhibiting the expression of CSMD1, leading to the activation of the nuclear factor-κB (NF-κB) pathway that links inflammation to carcinogenesis, subsequently resulting in the upregulation of c-Myc, cyclin D1 (CCND1), and epithelial-mesenchymal transition (EMT) markers. Conclusions: The findings established that microRNA-10b is an oncomiR that drives metastasis. Moreover, a set of critical tumor suppressor mechanisms was defined that microRNA-10b overcame to drive human GC progression.
Collapse
Affiliation(s)
- Xiang-Liu Chen
- Department of Digestive Oncology, the First Affiliated Hospital of Wenzhou Medical University; the First Provincial Wenzhou Hospital of Zhejiang, Wenzhou 325000
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Kai-Lai Wang
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiang Liu
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiu-Li Wang
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Lan Lei
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhi-Yuan Xu
- Department of Digestive Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Xiang-Dong Cheng
- Department of Digestive Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Zhi-Qiang Ling
- Department of Digestive Oncology, the First Affiliated Hospital of Wenzhou Medical University; the First Provincial Wenzhou Hospital of Zhejiang, Wenzhou 325000
- Zhejiang Cancer Institute, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
50
|
Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019; 8:cells8080840. [PMID: 31530793 PMCID: PMC6721829 DOI: 10.3390/cells8080840] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Recent biomedical discoveries have revolutionized the concept and understanding of carcinogenesis, a complex and multistep phenomenon which involves accretion of genetic, epigenetic, biochemical, and histological changes, with special reference to MicroRNAs (miRNAs) and cancer stem cells (CSCs). miRNAs are small noncoding molecules known to regulate expression of more than 60% of the human genes, and their aberrant expression has been associated with the pathogenesis of human cancers and the regulation of stemness features of CSCs. CSCs are the small population of cells present in human malignancies well-known for cancer resistance, relapse, tumorigenesis, and poor clinical outcome which compels the development of novel and effective therapeutic protocols for better clinical outcome. Interestingly, the role of miRNAs in maintaining and regulating the functioning of CSCs through targeting various oncogenic signaling pathways, such as Notch, wingless (WNT)/β-Catenin, janus kinases/ signal transducer and activator of transcription (JAK/STAT), phosphatidylinositol 3-kinase/ protein kinase B (PI3/AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-kB), is critical and poses a huge challenge to cancer treatment. Based on recent findings, here, we have documented the regulatory action or the underlying mechanisms of how miRNAs affect the signaling pathways attributed to stemness features of CSCs, such as self-renewal, differentiation, epithelial to mesenchymal transition (EMT), metastasis, resistance and recurrence etc., associated with the pathogenesis of various types of human malignancies including colorectal cancer, lung cancer, breast cancer, head and neck cancer, prostate cancer, liver cancer, etc. We also shed light on the fact that the targeted attenuation of deregulated functioning of miRNA related to stemness in human carcinogenesis could be a viable approach for cancer treatment.
Collapse
|