1
|
Li Q, Zhou Q, Li S, Li S, Liao W, Yu L, Liu C, Li M, Xia H. Target analysis and identification of curcumin against vascular calcification. Sci Rep 2024; 14:17344. [PMID: 39069521 PMCID: PMC11284211 DOI: 10.1038/s41598-024-67776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
To investigate the mechanism of curcumin (CUR) on vascular calcification (VC), we screen for common targets of CUR and atherosclerosis and verify the targets genes in vivo and in vitro experiments. The common targets of CUR and AS were screened and obtained using different databases. These target genes were analyzed by GO and KEGG pathway enrichment analysis. PPI network analysis was performed and to analyze the key targets. A rat VC model was constructed and CUR was fed for three weeks. The changes of vascular structure and calcium salt deposition were observed in H&E and Von Kossa staining. Further, the expression of these target proteins was detected in the primary VSMCs of VC. The 31 common targets were obtained. GO functional enrichment analysis obtained 1284 terms and KEGG pathway enriched 66 pathways. The key genes were identified in the cytoHubba plugin. The molecular docking analysis showed that CUR bound strongly to EGFR, STAT3 and BCL2. The animal experiments showed the deposition calcium salt reduced by the CUR administration. These proteins BMP2, RUNX2, EGFR, STAT3 and BAX expression were upregulated in VC group and CUR attenuated the upregulated expression. The signal protein Akt and p65 expression increased in VC group and decreased in CUR group. We identified some common target genes of CUR and AS and identified these key genes. The anti-VC effect of CUR was associated with the inhibition of upregulation of EGFR, STAT3 and RUNX2 expression in VSMCs.
Collapse
Affiliation(s)
- Qingjie Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- The Central Hospital of Zhoukou, Zhoukou, 466001, People's Republic of China
| | - Qiaofeng Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Shihuan Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Suqin Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Wenli Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Liangzhu Yu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Mincai Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Hongli Xia
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
- The Central Hospital of Xianning, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
2
|
Baba I, Matoba T, Katsuki S, Koga JI, Kawahara T, Kimura M, Akita H, Tsutsui H. EVs-miR-17-5p attenuates the osteogenic differentiation of vascular smooth muscle cells potentially via inhibition of TGF-β signaling under high glucose conditions. Sci Rep 2024; 14:16323. [PMID: 39009669 PMCID: PMC11251274 DOI: 10.1038/s41598-024-67006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Vascular calcification, which is a major complication of diabetes mellitus, is an independent risk factor for cardiovascular disease. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is one of the key mechanisms underlying vascular calcification. Emerging evidence suggests that macrophage-derived extracellular vesicles (EVs) may be involved in calcification within atherosclerotic plaques in patients with diabetes mellitus. However, the role of macrophage-derived EVs in the progression of vascular calcification is largely unknown. In this study, we investigated whether macrophage-derived EVs contribute to the osteogenic differentiation of VSMCs under high glucose conditions. We isolated EVs that were secreted by murine peritoneal macrophages under normal glucose (EVs-NG) or high glucose (EVs-HG) conditions. miRNA array analysis in EVs from murine macrophages showed that miR-17-5p was significantly increased in EVs-HG compared with EVs-NG. Prediction analysis with miRbase identified transforming growth factor β receptor type II (TGF-β RII) as a potential target of miR-17-5p. EVs-HG as well as miR-17-5p overexpression with lipid nanoparticles inhibited the gene expression of Runx2, and TGF-β RII. Furthermore, we demonstrated that VSMCs transfected with miR-17-5p mimic inhibited calcium deposition. Our findings reveal a novel role of macrophage-derived EVs in the negative regulation of osteogenic differentiation in VSMCs under high glucose conditions.
Collapse
Affiliation(s)
- Isashi Baba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichiro Koga
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takuro Kawahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsukuni Kimura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Akita
- Laboratory of Drug Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D, Zhou G. Relationship between arginine methylation and vascular calcification. Cell Signal 2024; 119:111189. [PMID: 38670475 DOI: 10.1016/j.cellsig.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-‑phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chen Chen
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital, China Medical University, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China.
| |
Collapse
|
4
|
Lee EO, Joo HK, Lee YR, Kim S, Lee KH, Lee SD, Jeon BH. APE1/Ref-1 Inhibits Adipogenic Transcription Factors during Adipocyte Differentiation in 3T3-L1 Cells. Int J Mol Sci 2023; 24:ijms24043251. [PMID: 36834665 PMCID: PMC9961804 DOI: 10.3390/ijms24043251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox regulation. The redox activity of APE1/Ref-1 is involved in inflammatory responses and regulation of DNA binding of transcription factors related to cell survival pathways. However, the effect of APE1/Ref-1 on adipogenic transcription factor regulation remains unknown. In this study, we investigated the effect of APE1/Ref-1 on the regulation of adipocyte differentiation in 3T3-L1 cells. During adipocyte differentiation, APE1/Ref-1 expression significantly decreased with the increased expression of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBP)-α and peroxisome proliferator-activated receptor (PPAR)-γ, and the adipocyte differentiation marker adipocyte protein 2 (aP2) in a time-dependent manner. However, APE1/Ref-1 overexpression inhibited C/EBP-α, PPAR-γ, and aP2 expression, which was upregulated during adipocyte differentiation. In contrast, silencing APE1/Ref-1 or redox inhibition of APE1/Ref-1 using E3330 increased the mRNA and protein levels of C/EBP-α, PPAR-γ, and aP2 during adipocyte differentiation. These results suggest that APE1/Ref-1 inhibits adipocyte differentiation by regulating adipogenic transcription factors, suggesting that APE1/Ref-1 is a potential therapeutic target for regulating adipocyte differentiation.
Collapse
Affiliation(s)
- Eun-Ok Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Hee-Kyoung Joo
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Yu-Ran Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Sungmin Kim
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Kwon-Ho Lee
- Department of Physical Therapy, Joongbu University, 201 Daehak-ro, Geumsan-gun 32713, Chungcheongnam-do, Republic of Korea
| | - Sang-Do Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
| | - Byeong-Hwa Jeon
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Jung-gu, Republic of Korea
- Correspondence: ; Tel.: +82-42-580-8214
| |
Collapse
|
5
|
Xu H, Tan L, Qu Q, Zhang W. NEDD4 attenuates oxidized low‑density lipoprotein‑induced inflammation and dysfunction in vascular endothelial cells via regulating APEX1 expression. Exp Ther Med 2023; 25:88. [PMID: 36684652 PMCID: PMC9849851 DOI: 10.3892/etm.2023.11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis chiefly results from inflammation as well as vascular endothelial cell dysfunction. Methylation levels of neuronally expressed developmentally downregulated 4 (NEDD4) were found to be fortified in atherosclerosis patients and NEDD4 deficiency enhanced vascular calcification. However, the exact function of NEDD4 in inflammation and vascular endothelial dysfunction remains to be elucidated. In the present study, CCK-8 assay was used to estimate cell viability. Reverse transcription-quantitative PCR was adopted to examine the expression of NEDD4, inflammation-associated enzymes and apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1). Western blotting was used to test NEDD4, endothelial nitric oxide synthase, inducible nitric oxide synthase and APEX1 protein levels. Cytotoxicity was detected by a lactate dehydrogenase (LDH) kit. Reactive oxygen species level was tested by a corresponding kit. Vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 contents were examined with ELISA. Cell adhesion assays evaluated the adhesion of endothelial cells. Co-immunoprecipitation assay was used to test the relationship between NEDD4 and APEX1. The data revealed that NEDD4 expression rapidly declined in oxidized low density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs). Following NEDD4 overexpression, the active damage, inflammatory release and endothelial cell dysfunction in ox-LDL-induced HUVECs were attenuated. After co-transfection of APEX1 interference plasmids and NEDD4 overexpression plasmids, cell damage, inflammatory release and endothelial cell dysfunction in ox-LDL-induced HUVECs were improved again. Taken together, NEDD4 attenuated ox-LDL-induced inflammation and endothelial dysfunction by regulating APEX1 expression.
Collapse
Affiliation(s)
- Huiyu Xu
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Lijuan Tan
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Qiaofang Qu
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Wutang Zhang
- Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China,Correspondence to: Dr Wutang Zhang, Department of Critical Care Medicine, Shanxi Cardiovascular Hospital, 18 Yifen Road, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
6
|
Liu YZ, Li ZX, Zhang LL, Wang D, Liu YP. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria. Front Cardiovasc Med 2022; 9:972836. [PMID: 36312244 PMCID: PMC9597684 DOI: 10.3389/fcvm.2022.972836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC) is an important hallmark of cardiovascular disease, the osteo-/chondrocyte phenotype differentiation of vascular smooth muscle cells (VSMCs) is the main cause of vascular calcification. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the VSMCs calcification. Mitochondrial participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular calcium homeostasis, apoptosis, and signal transduction. Mitochondrial dysfunction under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and metabolic disorders, which further lead to abnormal phenotypic differentiation of VSMCs. In this review, we summarize existing studies targeting mitochondria as a treatment for VC, and focus on VSMCs, highlighting recent progress in determining the roles of mitochondrial processes in regulating the phenotype transition of VSMCs, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial energy metabolism, and mitochondria/ER interactions. Along these lines, the impact of mitochondrial homeostasis on VC is discussed.
Collapse
|
7
|
Pongsuwan K, Kusirisin P, Narongkiattikhun P, Chattipakorn SC, Chattipakorn N. Mitochondria and vascular calcification in chronic kidney disease: Lessons learned from the past to improve future therapy. J Cell Physiol 2022; 237:4369-4396. [PMID: 36183389 DOI: 10.1002/jcp.30891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease-mineral and bone disorders (CKD-MBD) is a common complication of CKD Stages 3-5. Hyperphosphatemia is one of the major metabolic components of CKD-MBD, frequently resulting in vascular calcification (VC) in advanced-stage patients. Also, a long duration of renal replacement therapy can cause the worsening of VC, leading to increased cardiovascular morbidity and mortality. Vascular smooth muscle cells play an important role in the development of VC through osteochondrogenic transformation and the apoptotic process. It has been shown that mitochondrial dysfunction is involved with CKD progression, and excessive oxidative stress can aggravate osteoblastic transformation and VC. Currently, novel interventions targeting mitochondrial function and dynamics, in addition to mitochondrial antioxidants, have been studied with the aim of attenuating VC. This review aims to comprehensively summarize and discuss the experimental and clinical reports concerning mitochondrial studies, along with the purpose of interventions that can improve the outcomes of VC among CKD patients.
Collapse
Affiliation(s)
- Karn Pongsuwan
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Phoom Narongkiattikhun
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Chen W, Wang S, Xing D. New Horizons for the Roles and Association of APE1/Ref-1 and ABCA1 in Atherosclerosis. J Inflamm Res 2021; 14:5251-5271. [PMID: 34703267 PMCID: PMC8526300 DOI: 10.2147/jir.s330147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide. APE1/Ref-1 and ABCA1 play key roles in the progression of atherosclerosis. APE1/Ref-1 suppresses atherosclerosis via multiple mechanisms, including reducing the IL-6-, TNF-α-, and IL-1β-mediated proinflammatory responses, suppressing ROS-mediated oxidant activity and Bax/Bcl-2-mediated vascular calcification and apoptosis, and reducing LOX-1-mediated cholesterol uptake. However, APE1/Ref-1 also promotes atherosclerosis by increasing the activity of the NK-κB and S1PR1 pathways. APE1/Ref-1 localizes to the nucleus, cytoplasm, and mitochondria and can be secreted from the cell. APE1/Ref-1 localization is dynamically regulated by the disease state and may be responsible for its proatherogenic and antiatherogenic effects. ABCA1 promotes cholesterol efflux and anti-inflammatory responses by binding to apoA-I and regulates apoptotic cell clearance and HSPC proliferation to protect against inflammatory responses. Interestingly, in addition to mediating these functions, ABCA1 promotes the secretion of acetylated APE1/Ref-1 (AcAPE1/Ref-1), a therapeutic target, which protects against atherosclerosis development. The APE1/Ref-1 inhibitor APX3330 is being evaluated in a phase II clinical trial. The LXR agonist LXR-623 (WAY-252623) is an agonist of ABCA1 and the first LXR-targeting compound to be evaluated in clinical trials. In this article, we review the roles of ABCA1 and APE1/Ref-1 in atherosclerosis and focus on new insights into the ABCA1-APE1/Ref-1 axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
9
|
Li K, Yu G, Xu Y, Chu H, Zhong Y, Zhan H. Phenotypic and Functional Transformation in Smooth Muscle Cells Derived from a Superficial Thrombophlebitis-affected Vein Wall. Ann Vasc Surg 2021; 79:335-347. [PMID: 34648856 DOI: 10.1016/j.avsg.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Superficial thrombophlebitis (ST) is a frequent pathology, but its exact incidence remains to be determined. This study tested the hypothesis whether relationships exist among smooth muscle cells (SMCs) derived from ST, varicose great saphenous veins (VGSVs), and normal great saphenous veins (GSVs). METHODS Forty-one samples of ST, VGSVs, and GSVs were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, and senescence in SMCs from the three vein walls were compared by various methods. Bax, Bcl-2, caspase-3, matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 messenger RNA (mRNA) and protein expressions were detected by fluorescence quantitative PCR and Western blot. RESULTS An obvious decrease in cytoskeletal filaments was observed in thrombophlebitic vascular smooth muscle cells (TVSMCs). The quantity of proliferation, migration, adhesion, and senescence in TVSMCs was significantly higher than in varicose vascular smooth muscle cells and normal vascular smooth muscle cells (NVSMCs) (all P < 0.05). Bax and caspase-3 mRNA and protein expression were decreased, while Bcl-2 mRNA and protein expression were increased in the TVSMCs compared with the varicose vascular smooth muscle cells and the NVSMCs (all P < 0.05). MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA and protein expression were significantly increased in the TVSMCs compared with the VVGSVs and the NVSMCs (all P < 0.05). CONCLUSION SMCs derived from ST are more dedifferentiated and demonstrate increased cell proliferation, migration, adhesion, and senescence, as well as obviously decreased cytoskeletal filaments. These results suggest that the phenotypic and functional differences could be related to the presence of atrophic and hypertrophic vein segments during the disease course among SMCs derived from ST, VGSVs, and GSVs.
Collapse
Affiliation(s)
- Kun Li
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guoting Yu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongbo Xu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Haibo Chu
- Center of General Surgery, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China..
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China..
| | | |
Collapse
|
10
|
Zhu Y, Han XQ, Sun XJ, Yang R, Ma WQ, Liu NF. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis 2021; 25:321-340. [PMID: 31993850 DOI: 10.1007/s10495-020-01592-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arterial media calcification is related to mitochondrial dysfunction. Protective mitophagy delays the progression of vascular calcification. We previously reported that lactate accelerates osteoblastic phenotype transition of VSMC through BNIP3-mediated mitophagy suppression. In this study, we investigated the specific links between lactate, mitochondrial homeostasis, and vascular calcification. Ex vivo, alizarin S red and von Kossa staining in addition to measurement of calcium content, RUNX2, and BMP-2 protein levels revealed that lactate accelerated arterial media calcification. We demonstrated that lactate induced mitochondrial fission and apoptosis in aortas, whereas mitophagy was suppressed. In VSMCs, lactate increased NR4A1 expression, leading to activation of DNA-PKcs and p53. Lactate induced Drp1 migration to the mitochondria and enhanced mitochondrial fission through NR4A1. Western blot analysis of LC3-II and p62 and mRFP-GFP-LC3 adenovirus detection showed that NR4A1 knockdown was involved in enhanced autophagy flux. Furthermore, NR4A1 inhibited BNIP3-related mitophagy, which was confirmed by TOMM20 and BNIP3 protein levels, and LC3-II co-localization with TOMM20. The excessive fission and deficient mitophagy damaged mitochondrial structure and impaired respiratory function, determined by mPTP opening rate, mitochondrial membrane potential, mitochondrial morphology under TEM, ATP production, and OCR, which was reversed by NR4A1 silencing. Mechanistically, lactate enhanced fission but halted mitophagy via activation of the NR4A1/DNA-PKcs/p53 pathway, evoking apoptosis, finally accelerating osteoblastic phenotype transition of VSMC and calcium deposition. This study suggests that the NR4A1/DNA-PKcs/p53 pathway is involved in the mechanism by which lactate accelerates vascular calcification, partly through excessive Drp-mediated mitochondrial fission and BNIP3-related mitophagy deficiency.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xi-Qiong Han
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xue-Jiao Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Rui Yang
- Pharmaceutical Department, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, People's Republic of China
| | - Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Chen Y, Huang C, Zhu SY, Zou HC, Xu CY, Chen YX. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/β-catenin through regulating miR-126/Klotho/SIRT1 axis. Mol Cell Biochem 2021; 476:3551-3561. [PMID: 34014438 DOI: 10.1007/s11010-021-04164-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Vascular calcification is one of the most common effects of macrovascular complications in patients in aging with chronic kidney disease and diabetes. Previous studies showed that HOTAIR attenuated vascular calcification via the Wnt/β-catenin-signaling pathway, yet the molecular mechanism has not been fully elucidated. This study aimed to identify the explicit molecular mechanism underlying HOTAIR regulated vascular calcification. In the phosphate (Pi)-induced calcification model of human aortic smooth muscle cells (HASMCs), we investigated whether HOTAIR was involved in the regulation of miR-126. The luciferase reporter was used to examine the effect of HOTAIR on miR-126 and miR-126 on Klotho 3'-UTR. Furthermore, we overexpressed Klotho to verify the regulation of Klotho on SIRT1, as well as their roles in mediating Pi-induced calcification in HASMCs via the Wnt/β-catenin signaling pathway. Finally, the results were verified in an in vivo mice calcification model. Overexpression of HOTAIR reduced the expression of miR-126 in Pi-induced HASMCs. Additionally, knockdown of miR-126 increased SIRT1 expression by regulating Klotho expression. An increased level of Klotho inhibited Wnt/β-catenin signaling pathway, which eventually attenuated Pi-induced HASMCs calcification. Luciferase reporter assay revealed that HOTAIR targeted miR-126 and miR-126 could directly target Klotho. Eventually, HOTAIR overexpression reversed Pi-induced calcium calcification in vivo mouse models. This study demonstrated that HOTAIR overexpression attenuated Pi-induced calcification by regulating the miR-126/Klotho/SIRT1 axis, thereby inhibiting the Wnt/β-catenin signaling pathway. It provides new potential target genes for the clinical treatment of vascular calcification.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Shu-Ying Zhu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Hong-Chang Zou
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China.
| |
Collapse
|
12
|
Hu CT, Shao YD, Liu YZ, Xiao X, Cheng ZB, Qu SL, Huang L, Zhang C. Oxidative stress in vascular calcification. Clin Chim Acta 2021; 519:101-110. [PMID: 33887264 DOI: 10.1016/j.cca.2021.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Vascular calcification (VC), which is closely associated with significant mortality in cardiovascular disease, chronic kidney disease (CKD), and/or diabetes mellitus, is characterized by abnormal deposits of hydroxyapatite minerals in the arterial wall. The impact of oxidative stress (OS) on the onset and progression of VC has not been well described. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, myeloperoxidase (MPO), nitric oxide synthases (NOSs), superoxide dismutase (SOD) and paraoxonases (PONs) are relevant factors that influence the production of reactive oxygen species (ROS). Furthermore, excess ROS-induced OS has emerged as a critical mediator promoting VC through several mechanisms, including phosphate balance, differentiation of vascular smooth muscle cells (VSMCs), inflammation, DNA damage, and extracellular matrix remodeling. Because OS is a significant regulator of VC, antioxidants may be considered as novel treatment options.
Collapse
Affiliation(s)
- Chu-Ting Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Medical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
13
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
14
|
Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci 2020; 21:ijms21082685. [PMID: 32294899 PMCID: PMC7216228 DOI: 10.3390/ijms21082685] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC), which is categorized by intimal and medial calcification, depending on the site(s) involved within the vessel, is closely related to cardiovascular disease. Specifically, medial calcification is prevalent in certain medical situations, including chronic kidney disease and diabetes. The past few decades have seen extensive research into VC, revealing that the mechanism of VC is not merely a consequence of a high-phosphorous and -calcium milieu, but also occurs via delicate and well-organized biologic processes, including an imbalance between osteochondrogenic signaling and anticalcific events. In addition to traditionally established osteogenic signaling, dysfunctional calcium homeostasis is prerequisite in the development of VC. Moreover, loss of defensive mechanisms, by microorganelle dysfunction, including hyper-fragmented mitochondria, mitochondrial oxidative stress, defective autophagy or mitophagy, and endoplasmic reticulum (ER) stress, may all contribute to VC. To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, we provide this review of a detailed updated molecular mechanism of VC. This encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.
Collapse
Affiliation(s)
- Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
15
|
The Biological Role of Apurinic/Apyrimidinic Endonuclease1/Redox Factor-1 as a Therapeutic Target for Vascular Inflammation and as a Serologic Biomarker. Biomedicines 2020; 8:biomedicines8030057. [PMID: 32164272 PMCID: PMC7148461 DOI: 10.3390/biomedicines8030057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction promotes vascular inflammation by inducing the production of reactive oxygen species and adhesion molecules. Vascular inflammation plays a key role in the pathogenesis of vascular diseases and atherosclerotic disorders. However, whether there is an endogenous system that can participate in circulating immune surveillance or managing a balance in homeostasis is unclear. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (henceforth referred to as APE1/Ref-1) is a multifunctional protein that can be secreted from cells. It functions as an apurinic/apyrimidinic endonuclease in the DNA base repair pathway and modulates redox status and several types of transcriptional factors, in addition to its anti-inflammatory activity. Recently, it was reported that the secretion of APE1/Ref-1 into the extracellular medium of cultured cells or its presence in the plasma can act as a serological biomarker for certain disorders. In this review, we summarize the possible biological functions of APE1/Ref-1 according to its subcellular localization or its extracellular secretions, as therapeutic targets for vascular inflammation and as a serologic biomarker.
Collapse
|
16
|
Han L, Zhang Y, Zhang M, Guo L, Wang J, Zeng F, Xu D, Yin Z, Xu Y, Wang D, Zhou H. Interleukin-1β-Induced Senescence Promotes Osteoblastic Transition of Vascular Smooth Muscle Cells. Kidney Blood Press Res 2020; 45:314-330. [PMID: 32126555 DOI: 10.1159/000504298] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Interleukin (IL)-1β, as a key biomarker and mediator of vascular calcification in patients with end-stage renal disease (ESRD), may be involved in the process of premature senescence of vascular smooth muscle cells (VSMCs). This work sought to investigate whether IL-1β-induced premature senescence contributes to the process of osteoblastic transition and vascular calcification in VSMCs. METHODS Eighty-eight patients with ESRD (aged 25-81 years), 11 healthy individuals, and 15 cases of lesion-free distal radial arteries from dialysis ESRD patients with angiostomy were collected in this study. Immunohistochemical analysis was performed to detect expression of IL-1β, p21, and bone morphogenetic protein-2 (BMP2) in the distal radial arteries. Primary human VSMCs from healthy neonatal umbilical cords were incubated with test agents for 1-3 days. Intracellular levels of reactive oxygen species (ROS) and senescence-associated-β-galactosidase (SA-β-gal) staining were used to detect senescent cells. Alizarin red staining and the calcium content of the cell layer were used to detect mineral deposition in VSMCs. RESULTS Coincident with positive staining of IL-1β, p21, and BMP2 in the lesion-free distal radial arteries, 66.67% patients showed mineral deposition. Serum IL-1β was 0.24 ± 0.57, 1.20 ± 2.95, and 9.41 ± 40.52 pg/mL in 11 healthy individuals, 20 patients without calcification, and 53 patients with calcification, respectively. Analysis of the cross-table chi-square test showed cardiovascular calcification is not correlated with levels of serum IL-1β in patients with ESRD (p = 0.533). In response to IL-1β, VSMCs showed a senescence-like phenotype, such as flat and enlarged morphology, increased expression of p21, an increased activity of SA-β-gal, and increased levels of ROS. IL-1β-induced senescence of VSMCs was required for the activation of IL-1β/NF-κB/p53/p21 signaling pathway. IL-1β-induced senescent VSMCs underwent calcification due to osteoblastic transition mainly depending upon the upregulation of BMP2. Resveratrol, an activator of sirtuin-1, postponed the IL-1β-induced senescence through blocking the NF-κB/p53/p21 pathway and attenuated the osteoblastic transition and calcification in VSMCs. CONCLUSIONS High levels of IL-1β in medial smooth muscles of arteries may play roles in inducing senescence-associated calcification. IL-1β-induced senescence depending on the activation of the NF-κB/p53/p21 signaling pathway and contributing to osteoblastic transition of VSMCs.
Collapse
Affiliation(s)
- Linzi Han
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.,Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuying Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.,Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingming Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liyu Guo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Jun Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fanjun Zeng
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Deping Xu
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China,
| | - Haisheng Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China.,The Center for Scientific Research of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
ATP Binding Cassette Transporter A1 is Involved in Extracellular Secretion of Acetylated APE1/Ref-1. Int J Mol Sci 2019; 20:ijms20133178. [PMID: 31261750 PMCID: PMC6651529 DOI: 10.3390/ijms20133178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation of nuclear apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is associated with its extracellular secretion, despite the lack of an N-terminal protein secretion signal. In this study, we investigated plasma membrane targeting and translocation of APE1/Ref-1 in HEK293T cells with enhanced acetylation. While APE1/Ref-1 targeting was not affected by inhibition of the endoplasmic reticulum/Golgi-dependent secretion, its secretion was reduced by inhibitors of ATP-binding cassette (ABC) transporters, and siRNA-mediated down-regulation of ABC transporter A1. The association between APE1/Ref-1 and ABCA1 transporter was confirmed by proximal ligation assay and immunoprecipitation experiments. An APE1/Ref-1 construct with mutated acetylation sites (K6/K7R) showed reduced co-localization with ABC transporter A1. Exposure of trichostatin A (TSA) induced the acetylation of APE1/Ref-1, which translocated into membrane fraction. Taken together, acetylation of APE1/Ref-1 is considered to be necessary for its extracellular targeting via non-classical secretory pathway using the ABCA1 transporter.
Collapse
|
18
|
Zhu Y, Ma WQ, Han XQ, Wang Y, Wang X, Liu NF. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Sci Rep 2018; 8:13730. [PMID: 30213959 PMCID: PMC6137084 DOI: 10.1038/s41598-018-31877-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023] Open
Abstract
Arterial media calcification is associated with diabetes mellitus. Previous studies have shown that advanced glycation end products (AGEs) are responsible for vascular smooth muscle cell (VSMC) calcification, but the underlying mechanisms remain unclear. Hypoxia-inducible factor-1α (HIF-1α), one of the major factors during hypoxia, and pyruvate dehydrogenase kinase 4 (PDK4), an important mitochondrial matrix enzyme in cellular metabolism shift, have been reported in VSMC calcification. The potential link among HIF-1α, PDK4, and AGEs-induced vascular calcification was investigated in this study. We observed that AGEs elevated HIF-1α and PDK4 expression levels in a dose-dependent manner and that maximal stimulation was attained at 24 h. Two important HIF-1α-regulated genes, vascular endothelial growth factor A (VEGFA) and glucose transporter 1 (GLUT-1), were significantly increased after AGEs exposure. Stabilization or nuclear translocation of HIF-1α increased PDK4 expression. PDK4 inhibition attenuated AGEs-induced VSMC calcification, which was evaluated by measuring the calcium content, alkaline phosphatase (ALP) activity and runt-related transcription factor 2 (RUNX2) expression levels and by Alizarin red S staining. In addition, the glucose consumption, lactate production, key enzymes of glucose metabolism and oxygen consumption rate (OCR) were decreased during AGEs-induced VSMC calcification. In conclusion, this study suggests that AGEs accelerate vascular calcification partly through the HIF-1α/PDK4 pathway and suppress glucose metabolism.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P.R. China
| | - Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P.R. China
| | - Xi-Qiong Han
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P.R. China
| | - Ying Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P.R. China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P.R. China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P.R. China.
| |
Collapse
|
19
|
Lang F, Leibrock C, Pelzl L, Gawaz M, Pieske B, Alesutan I, Voelkl J. Therapeutic Interference With Vascular Calcification-Lessons From Klotho-Hypomorphic Mice and Beyond. Front Endocrinol (Lausanne) 2018; 9:207. [PMID: 29780355 PMCID: PMC5945862 DOI: 10.3389/fendo.2018.00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Medial vascular calcification, a major pathophysiological process associated with cardiovascular disease and mortality, involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). In chronic kidney disease (CKD), osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification is mainly driven by hyperphosphatemia, resulting from impaired elimination of phosphate by the diseased kidneys. Hyperphosphatemia with subsequent vascular calcification is a hallmark of klotho-hypomorphic mice, which are characterized by rapid development of multiple age-related disorders and early death. In those animals, hyperphosphatemia results from unrestrained formation of 1,25(OH)2D3 with subsequent retention of calcium and phosphate. Analysis of klotho-hypomorphic mice and mice with vitamin D3 overload uncovered several pathophysiological mechanisms participating in the orchestration of vascular calcification and several therapeutic opportunities to delay or even halt vascular calcification. The present brief review addresses the beneficial effects of bicarbonate, carbonic anhydrase inhibition, magnesium supplementation, mineralocorticoid receptor (MR) blockage, and ammonium salts. The case is made that bicarbonate is mainly effective by decreasing intestinal phosphate absorption, and that carbonic anhydrase inhibition leads to metabolic acidosis, which counteracts calcium-phosphate precipitation and VSMC transdifferentiation. Magnesium supplementation, MR blockage and ammonium salts are mainly effective by interference with osteo-/chondrogenic signaling in VSMCs. It should be pointed out that the, by far, most efficient substances are ammonium salts, which may virtually prevent vascular calcification. Future research will probably uncover further therapeutic options and, most importantly, reveal whether these observations in mice can be translated into treatment of patients suffering from vascular calcification, such as patients with CKD.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, Eberhard Karls-University, Tübingen, Germany
- *Correspondence: Florian Lang,
| | - Christina Leibrock
- Department of Physiology I, Eberhard Karls-University, Tübingen, Germany
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Lisann Pelzl
- Department of Physiology I, Eberhard Karls-University, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Eberhard Karls-University, Tübingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universität Medizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité-Universität Medizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité-Universität Medizin Berlin, Berlin, Germany
- Partner Site Berlin, German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
20
|
Elevation of Serum APE1/Ref-1 in Experimental Murine Myocarditis. Int J Mol Sci 2017; 18:ijms18122664. [PMID: 29292734 PMCID: PMC5751266 DOI: 10.3390/ijms18122664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium that causes cardiogenic shock and death. However, endomyocardial biopsy that is, the gold standard for a diagnosis is limited. Apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/Ref-1) is a multifunctional protein, which is involved in DNA-based excision repair pathway, and in redox signaling, its changes are observed in various cardiovascular diseases including hypertension and coronary artery disease. We analyzed serum APE1/Ref-1 in experimental murine myocarditis. To induce myocarditis, coxsackievirus B3 was injected intraperitoneally to BALB/c mice. The serum APE1/Ref-1, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and troponin I were measured. The histology and virus titers measurements were performed. The troponin I and inflammation were significantly elevated at day 3, peaked to day 7 and decreased at day 10. The NT-proBNP and virus titers were significantly peaked at day 3, and dropped at day 7 and 10. The serum APE1/Ref-1 was gradually raised and its elevation is still maintained until a later time, namely day 10. Also, its level was positively correlated with myocardial inflammation, reflecting severity of myocardial injury. We suggest that serum APE1/Ref-1 can be used to assess for myocardial injury in viral myocarditis without endomyocardial biopsy.
Collapse
|