1
|
Limaye S, Menon M, Singh S, Kataria P, Shreenivas AV, Datar R, Patil D, Kumar P, Shah N, Sheth H, Sneha S, Madre C, Deshpande R, Menon NK, Dandekar P, Haribhakti V. Novel Effective Therapeutic Regimen for Recurrent/Metastatic Head and Neck Squamous Cell Cancer: Concurrent Triple Oral Metronomic Chemotherapy and Immunotherapy. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:171-177. [PMID: 39220001 PMCID: PMC11361342 DOI: 10.36401/jipo-24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Sewanti Limaye
- Department of Precision Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Mohan Menon
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Shambhavi Singh
- Department of Precision Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Pritam Kataria
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Aditya V. Shreenivas
- Division of Hematology and Medical Oncology, Medical College of Wisconsin Cancer Centre, Milwaukee, Wisconsin, USA
| | | | | | | | - Niyati Shah
- Department of Precision Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Hardik Sheth
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Suku Sneha
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Chetan Madre
- Department of Precision Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Ruturaj Deshpande
- Department of Precision Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Narayan K. Menon
- Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Prasad Dandekar
- Department of Radiation Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Vijay Haribhakti
- Department of Surgical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| |
Collapse
|
2
|
Madabhavi I, Sarkar M, Kumar V, Sagar R. Combined Metronomic Chemo-immunotherapy (CMCI) in Head and Neck Cancers-An Experience from a Developing Country. Indian J Surg Oncol 2024; 15:321-331. [PMID: 38741631 PMCID: PMC11088580 DOI: 10.1007/s13193-024-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 05/16/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) have proven to be inherently resistant to systemic treatments as a result of histological, molecular, and etiological heterogeneity, with limited responses seen after second-line therapy and beyond. With limited treatment options after progression on systemic chemotherapy in HNSCCs, immunotherapy has a role to play with improved results. In this prospective, observational, non-randomized, open-label study, a total of 12 patients with advanced, relapsed, or metastatic HNSCC received Inj. Nivolumab weight-based dose of 3 mg per kg, intravenously every 2 weeks along with low-dose capecitabine 500 mg twice a day, was prospectively assessed. The patient's clinical, hematological, and staging characteristics were described and the clinical benefit rate (CBR) was calculated. A total of 12 patients received the combined metronomic chemo-immunotherapy (CMCI). The majority of patients were belonging to ECOG-PS 1(66%), with all patients being in stage IV disease. Six, four, and two patients received immunotherapy as the 5th, 3rd, and 4th line of therapy, respectively. Nivolumab and low-dose capecitabine were used in all 12 patients. CBR was seen in 66% (8/12) of patients, one patient died due to hepatitis and hepatic encephalopathy, another patient died due to pneumonia and respiratory complications, two patients had progressive disease, and two patients with stable disease discontinued treatment because of financial constraints and kept on capecitabine alone. The majority tolerated therapy well with no grade 3/4 immune-related adverse events (IRAEs). Two patients required supportive therapy with packed red cell transfusion and albumin infusions. Six-month overall survival (OS) and progression-free survival (PFS) in the study population were 83.3% and 66.6%, respectively. In conclusion, nivolumab along with metronomic chemotherapy with low-dose capecitabine was very well tolerated and exhibited anti-tumor activity with a CBR of 66%, 6-month OS of 83.3%, and 6-month PFS of 66.6%, in extensively pretreated patients with HNSCCs. Additional studies of nivolumab and metronomic chemotherapy and immuno-immuno combination therapy in these diseases are ongoing.
Collapse
Affiliation(s)
- Irappa Madabhavi
- Department of Medical and Pediatric Oncology and Hematology, J N Medical College and KLE Academy of Higher Education and Research, Belagavi, India
- Kerudi Cancer Hospital, Bagalkot, India
- Nanjappa Hospital, Davanagere, Karnataka India
| | - Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh India
| | - Vineet Kumar
- Department of Community Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh India
| | - Raghavendra Sagar
- Department of Radiation Oncology, J N Medical College, Belagavi, Karnataka India
| |
Collapse
|
3
|
Huang YJ, Ho KW, Cheng TL, Wang YT, Chao SW, Huang BC, Chao YS, Lin CY, Hsu YH, Chen FM, Chuang CH. Selective activation of IFNγ-ipilimumab enhances the therapeutic effect and safety of ipilimumab. Int J Biol Macromol 2024; 265:130945. [PMID: 38493818 DOI: 10.1016/j.ijbiomac.2024.130945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitor therapy is a highly promising strategy for clinical treatment of cancer. Among these inhibitors, ipilimumab stands out for its ability to induce cytotoxic T cell proliferation and activation by binding to CTLA-4. However, ipilimumab also gives rise to systemic immune-related adverse effects and tumor immune evasion, limiting its effectiveness. OBJECTIVES We developed IFNγ-ipilimumab and confirmed that the addition of INF-γ does not alter the fundamental properties of ipilimumab. RESULTS IFNγ-ipilimumab can be activated by matrix metalloproteinases, thereby promoting the IFNγ signaling pathway and enhancing the cytotoxicity of T cells. In vivo studies demonstrated that IFNγ-ipilimumab enhances the therapeutic effect of ipilimumab against colorectal cancer by increasing CD8+ and CD4+ lymphocyte infiltration into the tumor area and inducing MHC-I expression in tumor cells. Mice treated with IFNγ-ipilimumab showed higher survival rates and body weight, as well as lower CD4+ and CD8+ lymphocyte activation rates in the blood and reduced organ damage. CONCLUSION IFNγ-ipilimumab improved the effectiveness of ipilimumab while reducing its side effects. It is likely that future immunotherapies would rely on such antibodies to activate local cancer cells or immune cells, thereby increasing the therapeutic effectiveness of cancer treatments and ensuring their safety.
Collapse
Affiliation(s)
- Yi-Jung Huang
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Wen Ho
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yen-Tseng Wang
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shi-Wei Chao
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Shu Chao
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yu Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Han Hsu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Fang-Ming Chen
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Division of Breast Oncology & Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Chih-Hung Chuang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Jan N, Sofi S, Qayoom H, Shabir A, Haq BU, Macha MA, Almilaibary A, Mir MA. Metronomic chemotherapy and drug repurposing: A paradigm shift in oncology. Heliyon 2024; 10:e24670. [PMID: 38314272 PMCID: PMC10837507 DOI: 10.1016/j.heliyon.2024.e24670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/03/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer represents a significant global health and economic burden due to its high mortality rates. While effective in some instances, traditional chemotherapy often falls short of entirely eradicating various types of cancer. It can cause severe side effects due to harm to healthy cells. Two therapeutic approaches have risen to the forefront to address these limitations: metronomic chemotherapy (MCT) and drug repurposing. Metronomic chemotherapy is an innovative approach that breaks from traditional models. It involves the administration of chemotherapeutic regimens at lower doses, without long drug-free intervals that have previously been a hallmark of such treatments. This method offers a significant reduction in side effects and improved disease management. Simultaneously, drug repurposing has gained considerable attraction in cancer treatment. This approach involves utilizing existing drugs, initially developed for other therapeutic purposes, as potential cancer treatments. The application of known drugs in a new context accelerates the timeline from laboratory to patient due to pre-existing safety and dosage data. The intersection of these two strategies gives rise to a novel therapeutic approach named 'Metronomics.' This approach encapsulates the benefits of both MCT and drug repurposing, leading to reduced toxicity, potential for oral administration, improved patient quality of life, accelerated clinical implementation, and enhanced affordability. Numerous clinical studies have endorsed the efficacy of metronomic chemotherapy with tolerable side effects, underlining the potential of Metronomics in better cancer management, particularly in low- and middle-income countries. This review underscores the benefits and applications of metronomic chemotherapy and drug repurposing, specifically in the context of breast cancer, showcasing the promising results of pre-clinical and clinical studies. However, we acknowledge the necessity of additional clinical investigations to definitively establish the role of metronomic chemotherapy in conjunction with other treatments in comprehensive cancer management.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Aisha Shabir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Muzaffar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
5
|
Zhang H, Chen K, Guo K, Tao J, Song L, Ren S, Zhao Y, Teng Z, Qiu W, Wang Z. Multimodal Imaging-Guided Photoimmunotherapy of Pancreatic Cancer by Organosilica Nanomedicine. Adv Healthc Mater 2024; 13:e2302195. [PMID: 37792547 DOI: 10.1002/adhm.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Immune checkpoint blockade (ICB) treatments have contributed to substantial clinical progress. However, challenges persist, including inefficient drug delivery and penetration into deep tumor areas, inadequate response to ICB treatments, and potential risk of inflammation due to over-activation of immune cells and uncontrolled release of cytokines following immunotherapy. In response, this study, for the first time, presents a multimodal imaging-guided organosilica nanomedicine (DCCGP) for photoimmunotherapy of pancreatic cancer. The novel DCCGP nanoplatform integrates fluorescence, magnetic resonance, and real-time infrared photothermal imaging, thereby enhancing diagnostic precision and treatment efficacy for pancreatic cancer. In addition, the incorporated copper sulfide nanoparticles (CuS NPs) lead to improved tumor penetration and provide external regulation of immunotherapy via photothermal stimulation. The synergistic immunotherapy effect is realized through the photothermal behavior of CuS NPs, inducing immunogenic cell death and relieving the immunosuppressive tumor microenvironment. Coupling photothermal stimulation with αPD-L1-induced ICB, the platform amplifies the clearance efficiency of tumor cells, achieving an optimized synergistic photoimmunotherapy effect. This study offers a promising strategy for the clinical application of ICB-based combined immunotherapy and presents valuable insights for applications of organosilica in precise tumor immunotherapy and theranostics.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Kun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kai Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| |
Collapse
|
6
|
Gevertz JL, Kareva I. Guiding model-driven combination dose selection using multi-objective synergy optimization. CPT Pharmacometrics Syst Pharmacol 2023; 12:1698-1713. [PMID: 37415306 PMCID: PMC10681518 DOI: 10.1002/psp4.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/08/2023] Open
Abstract
Despite the growing appreciation that the future of cancer treatment lies in combination therapies, finding the right drugs to combine and the optimal way to combine them remains a nontrivial task. Herein, we introduce the Multi-Objective Optimization of Combination Synergy - Dose Selection (MOOCS-DS) method for using drug synergy as a tool for guiding dose selection for a combination of preselected compounds. This method decouples synergy of potency (SoP) and synergy of efficacy (SoE) and identifies Pareto optimal solutions in a multi-objective synergy space. Using a toy combination therapy model, we explore properties of the MOOCS-DS algorithm, including how optimal dose selection can be influenced by the metric used to define SoP and SoE. We also demonstrate the potential of our approach to guide dose and schedule selection using a model fit to preclinical data of the combination of the PD-1 checkpoint inhibitor pembrolizumab and the anti-angiogenic drug bevacizumab on two lung cancer cell lines. The identification of optimally synergistic combination doses has the potential to inform preclinical experimental design and improve the success rates of combination therapies. Jel classificationDose Finding in Oncology.
Collapse
Affiliation(s)
- Jana L. Gevertz
- Department of Mathematics and StatisticsThe College of New JerseyEwingNew JerseyUSA
| | - Irina Kareva
- Quantitative Pharmacology Department, EMD SeronoMerck KGaABillericaMassachusettsUSA
| |
Collapse
|
7
|
Khan SA, Chan KYK, Lee TKW. Global trajectory and future prospects of metronomic chemotherapy research: A scientometric analysis (2000-2022). Cancer Lett 2023; 576:216401. [PMID: 37774827 DOI: 10.1016/j.canlet.2023.216401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
This scientometric study aimed to provide a first comprehensive overview of the global research landscape of Metronomic Chemotherapy (MC) from 2000 to 2022 using a data-driven approach to identify key trends, collaborations, and potential opportunities. This study highlights the increasing prevalence of MC, with annual outputs increasing substantially over the same timeframe. The United States contributed the most to MC research, followed by Italy and China, while there was a lack of collaborative research efforts between countries and organizations. Through keyword co-occurrence analysis, we identified emerging interdisciplinary research areas, such as "nanoparticles," "immunotherapy," and "antitumor immunity." Our citation analysis identified the most influential authors, institutions, and journals, providing a comprehensive overview of the structure of knowledge and dissemination of MC research. Although the number of publications has decreased since 2019, the analysis indicates that this field has received substantial scholarly attention. These discoveries are extremely important for researchers, funding organizations, and policymakers because they highlight the need for more collaboration, interdisciplinary approaches, and resource allocation in underrepresented fields. This study concludes with recommendations for guiding future research and collaboration, resulting in a larger impact and fostering substantial advancements in MC research.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.
| | - Kelvin Yuen Kwong Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong.
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
8
|
Hong JH, Woo IS. Metronomic chemotherapy as a potential partner of immune checkpoint inhibitors for metastatic colorectal cancer treatment. Cancer Lett 2023; 565:216236. [PMID: 37209943 DOI: 10.1016/j.canlet.2023.216236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The use of immune checkpoint inhibitors (ICIs) in clinical practice for the treatment of metastatic colorectal cancer (mCRC) is currently limited to patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), which comprise less than 5% of all mCRC cases. Combining ICIs with anti-angiogenic inhibitors, which modulate the tumor microenvironment, may reinforce and synergize the anti-tumor immune responses of ICIs. In mCRCs, combinations of pembrolizumab and lenvatinib have shown good efficacy in early phase trials. These results suggest the potential utility of immune modulators as partners in combination treatment with ICIs in immunologically cold microsatellite stable, as well as hot dMMR/MSI-H tumors. Unlike conventional pulsatile maximum tolerated dose chemotherapy, low-dose metronomic (LDM) chemotherapy recruits immune cells and normalizes vascular-immune crosstalk, similar to anti-angiogenic drugs. LDM chemotherapy mostly modulates the tumor stroma rather than directly killing tumor cells. Here, we review the mechanism of LDM chemotherapy in terms of immune modulation and its potential as a combination partner with ICIs for the treatment of patients with mCRC tumors, most of which are immunologically cold.
Collapse
Affiliation(s)
- Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, Republic of Korea.
| |
Collapse
|
9
|
Muraro E, Vinante L, Fratta E, Bearz A, Höfler D, Steffan A, Baboci L. Metronomic Chemotherapy: Anti-Tumor Pathways and Combination with Immune Checkpoint Inhibitors. Cancers (Basel) 2023; 15:2471. [PMID: 37173937 PMCID: PMC10177461 DOI: 10.3390/cancers15092471] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Increasing evidence pinpoints metronomic chemotherapy, a frequent and low dose drug administration with no prolonged drug-free intervals, as a potential tool to fight certain types of cancers. The primary identified targets of metronomic chemotherapy were the tumor endothelial cells involved in angiogenesis. After this, metronomic chemotherapy has been shown to efficiently target the heterogeneous population of tumor cells and, more importantly, elicit the innate and adaptive immune system reverting the "cold" to "hot" tumor immunologic phenotype. Although metronomic chemotherapy is primarily used in the context of a palliative setting, with the development of new immunotherapeutic drugs, a synergistic therapeutic role of the combined metronomic chemotherapy and immune checkpoint inhibitors has emerged at both the preclinical and clinical levels. However, some aspects, such as the dose and the most effective scheduling, still remain unknown and need further investigation. Here, we summarize what is currently known of the underlying anti-tumor effects of the metronomic chemotherapy, the importance of the optimal therapeutic dose and time-exposure, and the potential therapeutic effect of the combined administration of metronomic chemotherapy with checkpoint inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| | - Lorenzo Vinante
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| | - Alessandra Bearz
- Medical Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Daniela Höfler
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| | - Lorena Baboci
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.M.); (E.F.); (A.S.)
| |
Collapse
|
10
|
Das S, Babu A, Medha T, Ramanathan G, Mukherjee AG, Wanjari UR, Murali R, Kannampuzha S, Gopalakrishnan AV, Renu K, Sinha D, George Priya Doss C. Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients. Med Oncol 2023; 40:149. [PMID: 37060468 PMCID: PMC10105157 DOI: 10.1007/s12032-023-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/16/2023]
Abstract
Cervical cancer (CC) is the fourth leading cause of cancer death (~ 324,000 deaths annually) among women internationally, with 85% of these deaths reported in developing regions, particularly sub-Saharan Africa and Southeast Asia. Human papillomavirus (HPV) is considered the major driver of CC, and with the availability of the prophylactic vaccine, HPV-associated CC is expected to be eliminated soon. However, female patients with advanced-stage cervical cancer demonstrated a high recurrence rate (50-70%) within two years of completing radiochemotherapy. Currently, 90% of failures in chemotherapy are during the invasion and metastasis of cancers related to drug resistance. Although molecular target therapies have shown promising results in the lab, they have had little success in patients due to the tumor heterogeneity fueling resistance to these therapies and bypass the targeted signaling pathway. The last two decades have seen the emergence of immunotherapy, especially immune checkpoint blockade (ICB) therapies, as an effective treatment against metastatic tumors. Unfortunately, only a small subgroup of patients (< 20%) have benefited from this approach, reflecting disease heterogeneity and manifestation with primary or acquired resistance over time. Thus, understanding the mechanisms driving drug resistance in CC could significantly improve the quality of medical care for cancer patients and steer them to accurate, individualized treatment. The rise of artificial intelligence and machine learning has also been a pivotal factor in cancer drug discovery. With the advancement in such technology, cervical cancer screening and diagnosis are expected to become easier. This review will systematically discuss the different tumor-intrinsic and extrinsic mechanisms CC cells to adapt to resist current treatments and scheme novel strategies to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Achsha Babu
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Tamma Medha
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandra Kannampuzha
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | | | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Debottam Sinha
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
He J, Hu Q. Progress in the clinical application of immune checkpoint inhibitors in small cell lung cancer. Front Immunol 2023; 14:1126582. [PMID: 37063927 PMCID: PMC10090448 DOI: 10.3389/fimmu.2023.1126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is a refractory cancer with poor prognosis due to its aggressive malignancy and high rates of metastasis, recurrence and drug resistance. These characteristics have also greatly impeded the identification of new treatment methods and drugs. The traditional model of SCLC treatment that has been reliant on platinum combined with etoposide for decades has been superseded by the emergence of immune checkpoint inhibitors (ICIs), which have shown significant therapeutic effects and broad application prospects as a monotherapy. This has led to the evaluation of ICIs with different mechanisms of action and their use in combination with radiotherapy or a variety of molecular targeted drugs to achieve synergy, complementary advantages, and reduce adverse reactions. Here, we review the progress in the use of ICIs as a monotherapy or in combination therapy for SCLC and consider the current limitations of these approaches as well as prospects for future developments.
Collapse
|
12
|
Liu J, He M, Wang Z, Li Q, Xu B. Current Research Status of Metronomic Chemotherapy in Combination Treatment of Breast Cancer. Oncol Res Treat 2022; 45:681-692. [PMID: 35988534 PMCID: PMC9677858 DOI: 10.1159/000526481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/02/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND Metronomic chemotherapy (MCT), termed sustained low-dose administration with minimal toxicity, is a new modality of conventional chemotherapy, a verified therapy alternative, and has acquired significant recognition and interest in oncology. Numerous clinical trials of MCT in combination with other treatments, including targeted therapies, biologics, and endocrine therapy, are in progress to obtain better results. SUMMARY We comprehensively described the clinical benefits of MCT in combination with other treatments in different molecular subtypes of breast cancer and assessed the feasibility of its adoption in varying phases of treatment. Due to the promising preclinical and clinical investigations, it is expected that MCT in combination with other treatments will enhance the advantages of this strategy and apply it to clinical practice. KEY MESSAGE MCT, in combination with other therapeutic interventions, will fully exploit the benefits of this strategy, ushering in a new paradigm in oncology treatment and driving the transformation of cancer into a more manageable chronic disease using newly developed treatment approaches.
Collapse
Affiliation(s)
| | | | | | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Zhou C, Shangguan C, Shi M, Xi W, Wu J, Yang H, Guo L, Cai Q, Shi Y, Liu J, Zhang J. Camrelizumab and metronomic capecitabine for patients with treatment-refractory solid tumors (McCREST trial). Future Oncol 2022; 18:2495-2503. [PMID: 35703115 DOI: 10.2217/fon-2021-1579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This is an open-label, single-center, multi-cohort phase Ib trial, which consists of three cohorts, including cohort 1 (HER2 negative gastric or gastric esophageal junction adenocarcinoma), cohort 2 (esophageal squamous cell carcinoma and head and neck squamous cell carcinoma) and cohort 3 (hepato-biliary-pancreatic and non-stomach non-esophagi gastrointestinal carcinoma). All eligible patients will be treated by camrelizumab (200 mg, every 2 weeks) and capecitabine (500 mg, twice a day, per os). The primary end point is the safety profiles of camrelizumab plus metronomic capecitabine according to CTCAE v5.0. The secondary end points are progression free survival, overall survival, objective response rate, disease control rate and duration of response. Planned enrollment is 20 subjects for each cohort. Total duration of this trial is expected to be 2 years.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Chengfang Shangguan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jing Liu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| |
Collapse
|
15
|
Yan Y, Wang X, Liu C, Jia J. Association of lymphocyte subsets with efficacy and prognosis of immune checkpoint inhibitor therapy in advanced non-small cell lung carcinoma: a retrospective study. BMC Pulm Med 2022; 22:166. [PMID: 35484541 PMCID: PMC9052648 DOI: 10.1186/s12890-022-01951-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 01/07/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have achieved promising effects in patients with non-small cell lung cancer (NSCLC). However, not all patients with NSCLC benefit from immunotherapy. There is an urgent need to explore biomarkers that could predict the survival outcomes and therapeutic efficacy in advanced NSCLC patients treated with immunotherapy. In this study, we aimed to assess the changes in peripheral blood lymphocyte subsets and their association with the therapeutic efficacy and clinical prognosis of advanced NSCLC patients treated with immunotherapy.
Methods A total of 276 patients with advanced NSCLC were enrolled. Peripheral blood lymphocyte subsets including CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio, NK cells, Tregs and B cells were collected before any treatment, before immunotherapy or chemotherapy, and after 4 cycles of immunotherapy or chemotherapy. T-test was used to analyze the factors influencing lymphocyte subsets and their changes before and after therapy. Logistic regression was used to plot ROC curves and analyze the relationship between lymphocyte subsets and therapeutic efficacy. Log-rank test and Cox regression model were used to evaluate the relationship between lymphocyte subsets and progression-free survival (PFS). Results Gender, distant metastasis, and EGFR mutation status are known to affect the proportion of peripheral blood lymphocyte subsets in patients with advanced NSCLC. The proportions of CD4+ T cells, CD8+ T cells, Tregs and B cells were found to decrease after chemotherapy as compared to the baseline. The proportion of CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio, NK cells and Tregs were higher after immunotherapy than after chemotherapy. Compared to the baseline, the effective group showed significant increase in the proportions of CD4+ T cells, CD4+/CD8+ ratio, NK cells and Tregs, and the number of CD8+ T cells was significantly lower in the peripheral blood after 4 cycles of immunotherapy. On the contrary, the ineffective group did not show any significant differences in the above parameters. Baseline CD4+ T cells and NK cells were independent predictors of immunotherapy efficacy and PFS. Baseline Tregs were independent predictor of immunotherapy efficacy. Conclusion Immune checkpoint inhibitors induced changes in the proportion of peripheral blood lymphocyte subsets in patients that responded well to immunotherapy. The levels of the different lymphocyte subsets could serve as valuable predictive biomarkers of efficacy and clinical prognosis for NSCLC patients treated with immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01951-x.
Collapse
Affiliation(s)
- Yi Yan
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyan Wang
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenan Liu
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
16
|
Cheng Z, Du Y, Yu L, Yuan Z, Tian J. Application of Noninvasive Imaging to Combined Immune Checkpoint Inhibitors for Breast Cancer: Facts and Future. Mol Imaging Biol 2022; 24:264-279. [PMID: 35102468 DOI: 10.1007/s11307-021-01688-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
With the application of mono-immunotherapy in cancer, particularly immune checkpoint inhibitors, improved outcomes have been achieved. However, there are several limitations to immunotherapy, such as a poor response to the drugs, immune resistance, and immune-related adverse events. In recent years, studies of preclinical animal models and clinical trials have demonstrated that immune checkpoint inhibitors for breast cancer can significantly prolong the overall survival and quality of patients' lives. Meanwhile, combined immune checkpoint inhibitor treatment has attracted researchers' attention and showed great potential in the comprehensive treatment of breast cancer patients. Additionally, noninvasive imaging enables physicians to predict response to combined immunotherapeutic drugs, achieve treatment efficacy, and lead to better clinical management. Herein, we review the background of combined immune checkpoint inhibitor therapy and summarize its targeted imaging as well as progress in noninvasive imaging aimed at evaluating therapeutic outcomes. Finally, we describe several factors that may influence the outcome of this combined immunotherapy, the future direction of medical imaging, and the potential application of artificial intelligence in breast cancer. With further development of noninvasive imaging for the guidance of combined immune checkpoint inhibitors, cures for this disease may be achieved.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex System, Institute of Automation, Chinese Academy of Sciences, BeijingBeijing, 100190, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex System, Institute of Automation, Chinese Academy of Sciences, BeijingBeijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex System, Institute of Automation, Chinese Academy of Sciences, BeijingBeijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
17
|
Chen L, Sun H, Zhao R, Huang R, Pan H, Zuo Y, Zhang L, Xue Y, Song H, Li X. Controlling Nutritional Status (CONUT) Predicts Survival in Gastric Cancer Patients With Immune Checkpoint Inhibitor (PD-1/PD-L1) Outcomes. Front Pharmacol 2022; 13:836958. [PMID: 35308215 PMCID: PMC8931544 DOI: 10.3389/fphar.2022.836958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Objective: The controlling nutritional status (CONUT), based on total lymphocyte count (TL), total cholesterol level (T-CHOL), and serum albumin (ALB), can provide a useful immunological prognostic biomarker for cancer patients. The present study aims to investigate the correlation between CONUT and prognosis in gastric cancer patients receiving immune checkpoint inhibitor (ICI) treatment. Methods: We retrospectively enrolled 146 patients with gastric cancer treated with ICIs (PD-1/PD-L1 inhibitors) from August 2016 to December 2020. The clinicopathologic characteristics were analyzed by Chi-square test or Fisher’s exact test. The Kaplan–Meier and log-rank test were used to calculate and compare progression-free survival (PFS) and overall survival (OS). The prognostic and predictive factors of PFS and OS were identified by univariate and multivariate analyses. A nomogram was developed to estimate 1-, 3-, and 5-year PFS and OS probability. Results: Through the CONUT score, there were 75 (51.37%) patients in the low CONUT group and 71 (48.63%) patients in the high CONUT group. There was a correlation between the CONUT score and age (p = 0.005), pathology (p = 0.043), ALB (p = 0.020), PALB (p = 0.032), and Hb (p = 0.001). The CA724, TNM stage, and treatment (ICIs vs. chemotherapy) were the independent prognostic factors for PFS and OS by multivariate analyses. Patients with high CONUT score had poorer PFS and OS (χ2 = 3.238, p = 0.072, and χ2 = 4.298, p = 0.038). In the subgroup analysis, the patients with high CONUT score were associated with shorter PFS and OS with ICIs or chemotherapy. With the PD-1/PD-L1 positive expression, the patients with high CONUT score had shorter PFS and OS than those with low CONUT score. Furthermore, the patients with high CA724 value were associated with shorter PFS and OS. The toxicity assessment in ICIs or chemotherapy was significantly associated with anemia. The nomograms were constructed to predict the probability of 1-, 3-, and 5-year PFS, and 1-, 3-, and 5-year OS with C-indices of 0.749 and 0.769, respectively. Conclusion: The CONUT, as a novel immuno-nutritional biomarker, may be useful in identifying gastric cancer patients who are unlikely to benefit from ICI treatment.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hao Sun
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ruihu Zhao
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Rong Huang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hongming Pan
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yanjiao Zuo
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Lele Zhang
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hongjiang Song
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
- *Correspondence: Hongjiang Song, ; Xingrui Li,
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongjiang Song, ; Xingrui Li,
| |
Collapse
|
18
|
Malla RR, Vasudevaraju P, Vempati RK, Rakshmitha M, Merchant N, Nagaraju GP. Regulatory T cells: Their role in triple-negative breast cancer progression and metastasis. Cancer 2022; 128:1171-1183. [PMID: 34990009 DOI: 10.1002/cncr.34084] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. This tumorigenicity is independent of hormonal or HER2 pathways because of a lack of respective receptor expression. TNBC is extremely prone to drug resistance and early recurrence because of T-regulatory cell (Treg) infiltration into the tumor microenvironment (TME) in addition to other mechanisms like genomic instability. Tumor-infiltrating Tregs interact with both tumor and stromal cells as well as extracellular matrix components in the TME and induce an immune-suppressive phenotype. Hence, treatment of TNBC with conventional therapies remains challenging. Understanding the protective mechanism of Tregs in shielding TNBC from antitumor immune responses in the TME will pave the way for developing novel, immune-based therapeutics. The current review focuses on the role of tumor-infiltrating Tregs in tumor progression and metabolic reprogramming of the TME. The authors have extended their focus to oncotargeting Treg-mediated immune suppression in breast cancer. Because of its potential role in the TME, modulating Treg activity may provide a novel strategic intervention to combat TNBC. Both under laboratory conditions and in clinical trials, currently available anticancer drugs and natural therapeutics as potential agents for targeting Tregs are explored.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India.,Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Padmaraju Vasudevaraju
- Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Rahul Kumar Vempati
- Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Marni Rakshmitha
- Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali University, Jaipur, India
| | | |
Collapse
|
19
|
Maharjan R, Choi JU, Kweon S, Pangeni R, Lee NK, Park SJ, Chang KY, Park JW, Byun Y. A novel oral metronomic chemotherapy provokes tumor specific immunity resulting in colon cancer eradication in combination with anti-PD-1 therapy. Biomaterials 2021; 281:121334. [PMID: 34974206 DOI: 10.1016/j.biomaterials.2021.121334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/04/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the immune-modulating effects of a novel metronomic chemotherapy (MCT) featuring combined oral oxaliplatin (OXA) and pemetrexed (PMX) for colon cancer. OXA and PMX were ionically complexed with lysine derivative of deoxycholic acid (DCK), and incorporated into nanoemulsions or colloidal dispersions, yielding OXA/DCK-NE and PMX/DCK-OP, respectively, to improve their oral bioavailabilities. MCT was not associated with significant lymphotoxicity whereas the maximum tolerated dose (MTD) afforded systemic immunosuppression. MCT was associated with more immunogenic cell death and tumor cell MHC-class I expression than was MTD. MCT improved the tumor antigen presentation of dendritic cells and increased the number of functional T cells in the tumor. MCT also helped to enhance antigen-specific memory responses both locally and systemically. By combining MCT with anti-programmed cell death protein-1 (αPD-1) therapy, the tumor volume was suppressed by 97.85 ± 84.88% compared to the control, resulting in a 95% complete response rate. Upon re-challenge, all tumor-free mice rejected secondary tumors, indicating the induction of a tumor specific memory response. Thus, MCT using an OXA and PMX combination, together with αPD-1, successfully treated colon cancer by activating both innate and adaptive immune cells and elicited tumor-specific long-term immune memory while avoiding toxicity caused by MTD treatment.
Collapse
Affiliation(s)
- Ruby Maharjan
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Uk Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Na Kyeong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5 Hwarang-ro 140gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Zouein J, Haddad FG, Eid R, Kourie HR. The combination of immune checkpoint inhibitors and chemotherapy in advanced non-small-cell lung cancer: the rational choice. Immunotherapy 2021; 14:155-167. [PMID: 34865502 DOI: 10.2217/imt-2021-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of death among cancers. The progressive approvals of immunotherapy as first-line treatment options have helped improve cancer prognosis. However, longer follow-up has confirmed the possibility of acquired resistance to immune checkpoint inhibitors (ICIs) which can lead to late relapses. Chemotherapy can act as a priming therapy to increase a tumor's response to immunotherapy. We aim through this review to explain the mechanism behind ICI resistance and the value of chemotherapy in escaping this resistance. Finally, all US FDA approvals regarding the management of metastatic non-small-cell lung cancer using a combination of ICIs and chemotherapy are summarized.
Collapse
Affiliation(s)
- Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| | - Fady G Haddad
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| | - Roland Eid
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| | - Hampig R Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Damas Street, P.O Box 17-5208, 1104 2020, Lebanon
| |
Collapse
|
21
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
22
|
Su NW, Chen YJ. Metronomic Therapy in Oral Squamous Cell Carcinoma. J Clin Med 2021; 10:jcm10132818. [PMID: 34206730 PMCID: PMC8269021 DOI: 10.3390/jcm10132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Metronomic therapy is characterized by drug administration in a low-dose, repeated, and regular manner without prolonged drug-free interval. The two main anticancer mechanisms of metronomic therapy are antiangiogenesis and immunomodulation, which have been demonstrated in several delicate in vitro and in vivo experiments. In contrast to the traditional maximum tolerated dose (MTD) dosing of chemotherapy, metronomic therapy possesses comparative efficacy but greatlydecreases the incidence and severity of treatment side-effects. Clinical trials of metronomic anticancer treatment have revealed promising results in a variety cancer types and specific patient populations such as the elderly and pediatric malignancies. Oral cavity squamous cell carcinoma (OCSCC) is an important health issue in many areas around the world. Long-term survival is about 50% in locally advanced disease despite having high-intensity treatment combined surgery, radiotherapy, and chemotherapy. In this article, we review and summarize the essence of metronomic therapy and focus on its applications in OCSCC treatment.
Collapse
Affiliation(s)
- Nai-Wen Su
- Department of Internal Medicine, Division of Hematology and Medical Oncology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City 10449, Taiwan;
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
| | - Yu-Jen Chen
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-2809-4661
| |
Collapse
|
23
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
24
|
Varayathu H, Sarathy V, Thomas BE, Mufti SS, Naik R. Combination Strategies to Augment Immune Check Point Inhibitors Efficacy - Implications for Translational Research. Front Oncol 2021; 11:559161. [PMID: 34123767 PMCID: PMC8193928 DOI: 10.3389/fonc.2021.559161] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitor therapy has revolutionized the field of cancer immunotherapy. Even though it has shown a durable response in some solid tumors, several patients do not respond to these agents, irrespective of predictive biomarker (PD-L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-cancer drugs for beneficial therapeutic interactions. In this review, we discuss the mechanistic basis behind the combination of immune checkpoint inhibitors with other drugs currently being studied in early phase clinical studies including conventional chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We also highlight how translational research strategies can help better understand the true therapeutic potential of such combinations.
Collapse
Affiliation(s)
- Hrishi Varayathu
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Vinu Sarathy
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Beulah Elsa Thomas
- Department of Clinical Pharmacology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Suhail Sayeed Mufti
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Radheshyam Naik
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| |
Collapse
|
25
|
Kina S, Kawabata-Iwakawa R, Miyamoto S, Arasaki A, Sunakawa H, Kinjo T. A molecular signature of well-differentiated oral squamous cell carcinoma reveals a resistance mechanism to metronomic chemotherapy and novel therapeutic candidates. J Drug Target 2021; 29:1118-1127. [PMID: 33979258 DOI: 10.1080/1061186x.2021.1929256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Well-differentiated head and neck squamous cell carcinoma (HNSCC), accounts for approximately 10% of all HNSCCs and, while these cases are associated with good prognosis after surgery, these are resistant to chemotherapy. Here we designed a retrospective study to evaluate the effects of histological differentiation on tongue squamous cell carcinoma (TSCC) patients undergoing surgery or metronomic neoadjuvant chemotherapy. The metronomic neoadjuvant chemotherapy significantly improved overall survival of patients with poorly or moderately differentiated tumour, but not those with well-differentiated tumour. Analysis of the Cancer Genome Atlas (TCGA) showed that FAT1 mutations were significantly enriched in more differentiated HNSCC while ASPM mutations were significantly enriched among the poorly differentiated HNSCC. Interestingly, Wnt/β-catenin pathway was activated in well-differentiated HNSCC. Active β-catenin is translocated to the nucleus in the well-differentiated oral squamous cell carcinoma cell lines. Wnt inhibitor, Wnt974, were synergistic with methotrexate in killing well-differentiated oral squamous cell carcinoma (OSCC) cell lines. TCGA data analyses reveal a signature in patients with well-differentiated HNSCC who have no benefits from metronomic neoadjuvant chemotherapy, suggesting that there might be novel nosology and therapeutic candidates for improving HNSCC patient survival. Well-differentiated OSCC is synergistically killed by combination chemotherapy with Wnt inhibitor, making it promising therapeutic candidates.
Collapse
Affiliation(s)
- Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Sho Miyamoto
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - Hajime Sunakawa
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Nakagami-gun, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, University of the Ryukyus, Nakagami-gun, Japan
| |
Collapse
|
26
|
Anti-Cancer Treatment Strategies in the Older Population: Time to Test More? Geriatrics (Basel) 2021; 6:geriatrics6020042. [PMID: 33921136 PMCID: PMC8167638 DOI: 10.3390/geriatrics6020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/29/2022] Open
Abstract
Aging is a well-recognized risk factor for the development of cancer. The incidence of new cancer diagnoses has increased globally given the rising senior population. Many hypotheses for this increased risk have been postulated over decades, including increased genetic and epigenetic mutations and the concept of immunosenescence. The optimal treatment strategies for this population with cancer are unclear. Older cancer patients are traditionally under-represented in clinical trials developed to set the standard of care, leading to undertreatment or increased toxicity. With this background, it is crucial to investigate new opportunities that belong to the most recent findings of an anti-cancer agent, such as immune-checkpoint inhibitors, to manage these daily clinical issues and eventually combine them with alternative administration strategies of antiblastic drugs such as metronomic chemotherapy.
Collapse
|
27
|
Zhong C, Li Y, Yang J, Jin S, Chen G, Li D, Fan X, Lin H. Immunotherapy for Hepatocellular Carcinoma: Current Limits and Prospects. Front Oncol 2021; 11:589680. [PMID: 33854960 PMCID: PMC8039369 DOI: 10.3389/fonc.2021.589680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Although many approaches have been used to treat hepatocellular carcinoma (HCC), the clinical benefits remain limited, particularly for late stage HCC. In recent years, studies have focused on immunotherapy for HCC. Immunotherapies have shown promising clinical outcomes in several types of cancers and potential therapeutic effects for advanced HCC. In this review, we summarize the immune tolerance and immunotherapeutic strategies for HCC as well as the main challenges of current therapeutic approaches. We also present alternative strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Yan LH, Liu XL, Mo SS, Zhang D, Mo XW, Tang WZ. OX40 as a novel target for the reversal of immune escape in colorectal cancer. Am J Transl Res 2021; 13:923-934. [PMID: 33841630 PMCID: PMC8014382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/11/2020] [Indexed: 06/12/2023]
Abstract
First-generation immunological checkpoint inhibitors, such as CTLA-4, PD-L1 and PD-1 exhibit significant advantages over conventional cytotoxic drugs, such as oxaliplatin and 5-FU, for the treatment of colorectal cancer. However, these inhibitors are not ideal due to their low objective response rate and the vulnerability of these treatment methods when faced with emerging drug resistant cancers. This study summarizes the immunological characteristics of colorectal cancer treatment, and analyzes the ways in which OX40 may improve the efficacy of these treatments. Activation of the OX40 signaling pathway can enhance the activity of CD4+/CD8+ T cells and inhibit the function of Treg. Simultaneously, OX40 can directly inhibit the expression of Foxp3, affect the inhibitory function of Treg, and inhibit the immunosuppressive factors in the tumor microenvironment so as to reverse immune escape and reverse drug resistance. Therefore, OX40 is an important target for treating colorectal cancer in "cold tumors" with less immunogenicity.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Liang Liu
- Department of Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
29
|
The Overall Efficacy and Outcomes of Metronomic Tegafur-Uracil Chemotherapy on Locally Advanced Head and Neck Squamous Cell Carcinoma: A Real-World Cohort Experience. BIOLOGY 2021; 10:biology10020168. [PMID: 33672266 PMCID: PMC7926982 DOI: 10.3390/biology10020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary In head and neck squamous cell carcinoma (HNSCC), more than 60% of patients presenting with locally advanced disease carries a high risk of recurrence and distant metastasis, with a poor prognosis (five-year overall survival (OS), <50%). Therefore, further prevention of recurrence and distant metastasis is crucial for survival improvement in advanced HNSCC patients. In this retrospective study, we investigated the outcomes of metronomic chemotherapy with tegafur–uracil in locally advanced HNSCC (LA HNSCC). Our data showed that adding tegafur–uracil after curative surgery with adjuvant chemoradiotherapy or definitive concurrent chemoradiotherapy significantly improved OS, DFS, and DMFS in patients with LA HNSCC. As a metronomic maintenance regimen, tegafur–uracil was well tolerated with minimal adverse effects. We suggested tegafur–uracil as a maintenance therapy of choice for patients with LA HNSCC. Abstract Metronomic chemotherapy inhibits tumor growth by continuous administration of lower-dose chemotherapy. Our study aimed to demonstrate the outcomes of metronomic chemotherapy with tegafur–uracil in locally advanced head and neck squamous cell carcinoma (LA HNSCC). This was a retrospective study including 240 patients with LA HNSCC. After standard treatment, 96 patients were further treated with metronomic tegafur-uracil, and 144 patients were not. No statistical differences were found between both groups with regard to sex, clinical stage, or primary treatment choice. There were more hypopharyngeal cancers and more patients with poor clinicopathological features, including lymphovascular invasion, extranodal extension, and positive margins in the tegafur–uracil group. The median follow-up duration was 31.16 months. Overall survival (OS) was not reached in the tegafur–uracil group and was 54.1 months in the control group (p = 0.008). The median disease-free survival (DFS) was 54.5 months in the tegafur–uracil group and 34.4 months in the control group (p = 0.03). Neither group reached distant metastasis-free survival (DMFS, p = 0.02). In patients with LA HNSCC, adding tegafur–uracil as metronomic chemotherapy after either curative surgery with adjuvant chemoradiotherapy or definitive concurrent chemoradiotherapy significantly improved the OS, DFS, and DMFS with tolerable adverse events.
Collapse
|
30
|
Bauer K, Berghoff AS, Preusser M, Heller G, Zielinski CC, Valent P, Grunt TW. Degradation of BRD4 - a promising treatment approach not only for hematologic but also for solid cancer. Am J Cancer Res 2021; 11:530-545. [PMID: 33575085 PMCID: PMC7868748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023] Open
Abstract
Bromodomain (BRD) and extra-terminal (BET) proteins are epigenetic readers that regulate gene expression and promote cancer evolution. Pharmacological inactivation of BRD4 has recently been introduced as a promising anti-neoplastic approach that targets MYC oncogene expression. However, resistance against BRD4-targeting drugs has been described. We compared the efficacy of the small-molecule-type BET BRD inhibitor JQ1 with the recently developed BET protein degraders dBET1 and dBET6 in colon, breast, melanoma, ovarian, lung and prostate cancer cell lines. As determined by qPCR, all BRD4 targeting drugs dose-dependently decreased MYC expression, with dBET6 introducing the strongest downregulation of MYC. This correlated with the anti-proliferative activity of these drugs, which was at least one order of magnitude higher for dBET6 (IC50 0.001-0.5 µM) than for dBET1 or JQ1 (IC50 0.5-5 µM). Interestingly, when combined with commonly used cytotoxic therapeutics, dBET6 was found to promote anti-neoplastic effects and to counteract chemoresistance in most cancer cell lines. Moreover, JQ1 and both BET degraders strongly downregulated baseline and interferon-gamma induced expression of the immune checkpoint molecule PD-L1 in all cancer cell lines. Together, our data suggest that dBET6 outperforms first-generation BRD4 targeting drugs like dBET1 and JQ1, and decreases chemoresistance and immune resistance of cancer.
Collapse
Affiliation(s)
- Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaAustria
| | - Anna S Berghoff
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Matthias Preusser
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Gerwin Heller
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Christoph C Zielinski
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaAustria
| | - Thomas W Grunt
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaAustria
- Comprehensive Cancer Center, Medical University of ViennaAustria
- Department of Medicine I, Division of Oncology, Medical University of ViennaAustria
| |
Collapse
|
31
|
Escalona RM, Bilandzic M, Western P, Kadife E, Kannourakis G, Findlay JK, Ahmed N. TIMP-2 regulates proliferation, invasion and STAT3-mediated cancer stem cell-dependent chemoresistance in ovarian cancer cells. BMC Cancer 2020; 20:960. [PMID: 33023532 PMCID: PMC7542139 DOI: 10.1186/s12885-020-07274-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The metzincin family of metalloproteinases and the tissue inhibitors of metalloproteinases (TIMPs) are essential proteins required for biological processes during cancer progression. This study aimed to determine the role of TIMP-2 in ovarian cancer progression and chemoresistance by reducing TIMP-2 expression in vitro in Fallopian tube secretory epithelial (FT282) and ovarian cancer (JHOS2 and OVCAR4) cell lines. METHODS FT282, JHOS2 and OVCAR4 cells were transiently transfected with either single or pooled TIMP-2 siRNAs. The expression of different genes after TIMP-2 knock down (T2-KD) or in response to chemotherapy was determined at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence. Sensitivity of the cell lines in response to chemotherapy after TIMP-2 knock down was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell invasion in response to TIMP-2 knockdown was determined by xCELLigence. RESULTS Sixty to 90 % knock down of TIMP-2 expression was confirmed in FT282, OVCAR4 and JHOS2 cell lines at the mRNA and protein levels. TIMP-2 knock down did not change the mRNA expression of TIMP-1 or TIMP-3. However, a significant downregulation of MMP-2 in T2-KD cells occurred at both the protein and activation levels, compared to Control (Cont; scrambled siRNA) and Parental cells (P, transfection reagent only). In contrast, membrane bound MT1-MMP protein levels were significantly upregulated in T2-KD compared to Cont and P cells. T2-KD cells exhibited enhanced proliferation and increased sensitivity to cisplatin and paclitaxel treatments. Enhanced invasion was observed in the T2-KD-JOSH2 and OVCAR4 cells but not in T2-KD-FT282 cells. Treatment with cisplatin or paclitaxel significantly elevated the expression of TIMP-2 in Cont cells but not in T2-KD cells, consistent with significantly elevated expression of chemoresistance and CSC markers and activation of STAT3. Furthermore, a potent inhibitor of STAT3 activation, Momelotinib, suppressed chemotherapy-induced activation of P-STAT3 in OVCAR4 cells with concomitant reductions in the expression of chemoresistance genes and CSC markers. CONCLUSIONS The above results suggest that TIMP-2 may have a novel role in ovarian cancer proliferation, invasion and chemoresistance.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3050, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia.,Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia
| | - Maree Bilandzic
- Centre for Cancer Research, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Patrick Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia.,Federation University Australia, Vic, Ballarat, 3010, Australia
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3050, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3050, Australia. .,Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia. .,Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia. .,Federation University Australia, Vic, Ballarat, 3010, Australia.
| |
Collapse
|
32
|
Correal ML, Camplesi AC, Anai LA, Bertolo PHL, Vasconcelos RDO, Santana ÁE. Toxicity of a methotrexate metronomic schedule in Wistar rats. Res Vet Sci 2020; 132:379-385. [PMID: 32755752 DOI: 10.1016/j.rvsc.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Metronomic chemotherapy is a relevant strategy that uses low doses of antineoplastic drugs for sustained periods to control tumor growth, an alternative frequently utilized in veterinary patients. This work aimed to evaluate the toxic effects of a metronomic oral dose of methotrexate (MTX) for 45 days in tumor-free Wistar rats when compared with control animals. Clinical alterations, body weight, food, and water intake were monitored daily, and bone marrow suppression, hematological, biochemical, and histopathological analyses were performed at three points (days 30, 45, and 60). MTX-treated animals did not demonstrate severe systemic involvement. At 30 days, compared with control animals, MTX-treated animals showed significant leukocytosis (11.9 ± 2.3 vs. 7.8 ± 0.2 106/μL; P < .05) and augmentation of immature myeloid populations from bone marrow (9.0 ± 0.8 vs. 6.5 ± 1.5%; P < .05), and at 60 days, treated animals showed significant neutrophilia (35.0 ± 11.0 vs. 23.00 ± 3.0%; P < .05), depletion of bone marrow lymphocytes (8.2 ± 0.7 vs. 11.5 ± 1.9%; P < .05), and immature myeloid populations (7.2 ± 0.7 vs. 8.3 ± 0.6%; P < .05). At a histopathological level, splenic hypoplasia and respiratory inflammatory lesions were significant when compared with control animals, presenting mild to moderate myelotoxicity, immune suppression, and associated clinical compromise that persisted beyond treatment withdrawal. This suggested that MTX metronomic toxicity should not be neglected owing to the observed residual side-effects and special care should be taken regarding myelosuppression.
Collapse
Affiliation(s)
- María Lucía Correal
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900 Jaboticabal/SP, Brazil.
| | - Annelise Carla Camplesi
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900 Jaboticabal/SP, Brazil.
| | - Letícia Abrahão Anai
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900 Jaboticabal/SP, Brazil.
| | - Paulo Henrique Leal Bertolo
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900 Jaboticabal/SP, Brazil.
| | - Rosemeri de Oliveira Vasconcelos
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900 Jaboticabal/SP, Brazil.
| | - Áureo Evangelista Santana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, CEP 14884-900 Jaboticabal/SP, Brazil.
| |
Collapse
|
33
|
Low-dose metronomic chemotherapy as an efficient treatment option in metastatic breast cancer-results of an exploratory case-control study. Breast Cancer Res Treat 2020; 182:389-399. [PMID: 32495001 PMCID: PMC7297707 DOI: 10.1007/s10549-020-05711-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Purpose There is growing interest in low-dose metronomic chemotherapy (LDMC) in metastatic breast cancer (MBC). In this retrospective case–control analysis, we compared the efficacy of LDMC and conventional chemotherapy (CCT) in MBC. Methods Each LDMC patient receiving oral cyclophosphamide (CTX) (50 mg daily) and methotrexate (MTX) (2.5 mg every other day) was matched with two controls who received CCT. Age, number of chemotherapy lines and metastatic sites as well as hormone receptor (HR) status were considered as matching criteria. Primary endpoint was disease control rate longer than 24 weeks (DCR). Secondary endpoints were progression-free survival (PFS), duration of response (DoR) and subgroup analyses using the matching criteria. Results 40 cases and 80 controls entered the study. 30.0% patients with LDMC and 22.5% patients with CCT showed DCR (p = 0.380). The median PFS was 12.0 weeks in both groups (p = 0.218) and the median DoR was 31.0 vs. 20.5 weeks (p = 0.383), respectively. Among younger patients, DCR was 40.0% in LDMC vs. 25.0% in the CCT group (p = 0.249). DCR was achieved in 33.3% vs. 26.2% non-heavily pretreated patients (p = 0.568) and in 36.0% vs. 18.0% patients without multiple metastases (p = 0.096), respectively. In the HR-positive group, 30.0% LDMC vs. 28.3% CCT patients showed DCR (p = 1.000). Among triple-negative patients, DCR was achieved in 30.0% LDMC and 5.0% CCT patients (p = 0.095). Conclusions We demonstrated a similar efficacy of LDMC compared to CCT in the treatment of MBC. Thus, LDMC may be a valuable treatment option in selected MBC patients.
Collapse
|
34
|
Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur J Med Chem 2020; 201:112446. [PMID: 32563811 DOI: 10.1016/j.ejmech.2020.112446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
B-cell lymphoma-2 (Bcl-2) proteins family is an essential checkpoint in apoptosis. Extensive evidences suggested that overexpression of anti-apoptotic Bcl-2 proteins can be observed in multiple cancer cell lines and primary tumor biopsy samples, which is an important reason for tumor cells to evade apoptosis and further acquire drug resistance for chemotherapy. Hence, down-regulation of anti-apoptotic Bcl-2 proteins is effective for the treatment of cancers. In view that Bcl-2 inhibitors and some other anti-tumor agents, such as HDAC inhibitors and Mdm2 inhibitors, exert synergy effects in tumor cells, it is pointed out that dual-targeting therapies based on these targets are regarded as rational strategies to enhance the effectiveness of single target agents for cancer treatment. This review briefly introduces the apoptosis, the structure of Bcl-2 family proteins, and focuses on the current status and recent advances of Bcl-2 inhibitors and the corresponding SARs of them. Moreover, we discuss the synergisms between Bcl-2 and other anti-tumor targets, and summarize the current dual-target agents.
Collapse
|
35
|
Zhao X, Kassaye B, Wangmo D, Lou E, Subramanian S. Chemotherapy but Not the Tumor Draining Lymph Nodes Determine the Immunotherapy Response in Secondary Tumors. iScience 2020; 23:101056. [PMID: 32344378 PMCID: PMC7186531 DOI: 10.1016/j.isci.2020.101056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Immunotherapies are used as adjuvant therapies for cancers. However, knowledge of how traditional cancer treatments affect immunotherapies is limited. Using mouse models, we demonstrate that tumor-draining lymph nodes (TdLNs) are critical for tumor antigen-specific T cell response. However, removing TdLNs concurrently with established primary tumors did not affect the immune checkpoint blockade (ICB) response on localized secondary tumor due to immunotolerance in TdLNs and distribution of antigen-specific T cells in peripheral lymphatic organs. Notably, treatment response improved with sequential administration of 5-fluorouracil (5-FU) and ICB compared with concurrent administration of ICB with 5-FU. Immune profiling revealed that using 5-FU as induction treatment increased tumor visibility to immune cells, decreased immunosuppressive cells in the tumor microenvironment, and limited chemotherapy-induced T cell depletion. We show that the effect of traditional cytotoxic treatment, not TdLNs, influences immunotherapy response in localized secondary tumors. We postulate essential considerations for successful immunotherapy strategies in clinical conditions.
Collapse
Affiliation(s)
- Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Beminet Kassaye
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Emil Lou
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, 11-212 Moos Tower, Mayo Mail Code 195, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E, Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84:106535. [PMID: 32361569 DOI: 10.1016/j.intimp.2020.106535] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
During the past recent years, various therapies emerged in the era of breast cancer. Breast cancer is a heterogeneous disease in which genetic and environmental factors are involved. Breast cancer stem cells (BCSCs) are the main player in the aggressiveness of different tumors and also, these cells are the main challenge in cancer treatment. Moreover, the major obstacle to achieve an effective treatment is resistance to therapies. There are various types of treatment for breast cancer (BC) patients. Therefore, in this review, we present the current treatments, novel approaches such as antibody-drug conjugation systems (ADCs), nanoparticles (albumin-, metal-, lipid-, polymer-, micelle-based nanoparticles), and BCSCs-based therapies. Furthermore, prognostic and predictive biomarkers will be discussed also biomarkers that have been applied by some tests such as Oncotype DX, Mamm αPrint, and uPA/PAI-1 are regarded as suitable prognostic and predictive factors in breast cancer.
Collapse
Affiliation(s)
- Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Zarei
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Student Research Committee, Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
37
|
Ovarian Cancer, Cancer Stem Cells and Current Treatment Strategies: A Potential Role of Magmas in the Current Treatment Methods. Cells 2020; 9:cells9030719. [PMID: 32183385 PMCID: PMC7140629 DOI: 10.3390/cells9030719] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) constitutes 90% of ovarian cancers (OC) and is the eighth most common cause of cancer-related death in women. The cancer histologically and genetically is very complex having a high degree of tumour heterogeneity. The pathogenic variability in OC causes significant impediments in effectively treating patients, resulting in a dismal prognosis. Disease progression is predominantly influenced by the peritoneal tumour microenvironment rather than properties of the tumor and is the major contributor to prognosis. Standard treatment of OC patients consists of debulking surgery, followed by chemotherapy, which in most cases end in recurrent chemoresistant disease. This review discusses the different origins of high-grade serous ovarian cancer (HGSOC), the major sub-type of EOC. Tumour heterogeneity, genetic/epigenetic changes, and cancer stem cells (CSC) in facilitating HGSOC progression and their contribution in the circumvention of therapy treatments are included. Several new treatment strategies are discussed including our preliminary proof of concept study describing the role of mitochondria-associated granulocyte macrophage colony-stimulating factor signaling protein (Magmas) in HGSOC and its unique potential role in chemotherapy-resistant disease.
Collapse
|
38
|
Choi JU, Maharjan R, Pangeni R, Jha SK, Lee NK, Kweon S, Lee HK, Chang KY, Choi YK, Park JW, Byun Y. Modulating tumor immunity by metronomic dosing of oxaliplatin incorporated in multiple oral nanoemulsion. J Control Release 2020; 322:13-30. [PMID: 32169534 DOI: 10.1016/j.jconrel.2020.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/17/2023]
Abstract
In this study, a system for oral delivery of oxaliplatin (OXA) was prepared for metronomic chemotherapy to enhance antitumor efficacy and modulate tumor immunity. OXA was complexed with Nα-deoxycholyl-l-lysyl-methylester (DCK) (OXA/DCK) and formulated as a nanoemulsion (OXA/DCK-NE). OXA/DCK-NE showed 3.35-fold increased permeability across a Caco-2 cell monolayer, resulting in 1.73-fold higher oral bioavailability than free OXA. In addition, treatment of the B16F10.OVA cell line with OXA/DCK-NE resulted in successful upregulation of immunogenic cell death (ICD) markers both in vitro and in vivo. In a B16F10.OVA tumor-bearing mouse model, treatment with OXA/DCK-NE substantially impeded tumor growth by 63.9 ± 13.3% compared to the control group, which was also greater than the intravenous (IV) OXA group. Moreover, treatment with a combination of oral OXA/DCK-NE and anti-programmed cell death protein-1 (αPD-1) antibody resulted in 78.3 ± 9.67% greater inhibition compared to controls. More important, OXA/DCK-NE alone had immunomodulatory effects, such as enhancement of tumor antigen uptake, activation of dendritic cells in tumor-draining lymph nodes, and augmentation of both the population and function of immune effector cells in tumor tissue as well as in the spleen; no such effects were seen in the OXA IV group. These observations provide a rationale for combining oral metronomic OXA with immunotherapy to elicit synergistic antitumor effects.
Collapse
Affiliation(s)
- Jeong Uk Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ruby Maharjan
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Saurav Kumar Jha
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Na Kyeong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ha Kyeong Lee
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea.
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol 2020; 11:167. [PMID: 32117298 PMCID: PMC7031489 DOI: 10.3389/fimmu.2020.00167] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, with an increasing number of therapeutic dimensions, is becoming an important mode of treatment for cancer patients. The inhibition of immune checkpoints, which are the source of immune escape for various cancers, is one such immunotherapeutic dimension. It has mainly been aimed at T cells in the past, but NK cells are a newly emerging target. Simultaneously, the number of checkpoints identified has been increasing in recent times. In addition to the classical NK cell receptors KIRs, LIRs, and NKG2A, several other immune checkpoints have also been shown to cause dysfunction of NK cells in various cancers and chronic infections. These checkpoints include the revolutionized CTLA-4, PD-1, and recently identified B7-H3, as well as LAG-3, TIGIT & CD96, TIM-3, and the most recently acknowledged checkpoint-members of the Siglecs family (Siglec-7/9), CD200 and CD47. An interesting dimension of immune checkpoints is their candidacy for dual-checkpoint inhibition, resulting in therapeutic synergism. Furthermore, the combination of immune checkpoint inhibition with other NK cell cytotoxicity restoration strategies could also strengthen its efficacy as an antitumor therapy. Here, we have undertaken a comprehensive review of the literature to date regarding NK cell-based immune checkpoints.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Xu Y, Wan B, Chen X, Zhan P, Zhao Y, Zhang T, Liu H, Afzal MZ, Dermime S, Hochwald SN, Hofman P, Borghaei H, Lin D, Lv T, Song Y. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl Lung Cancer Res 2019; 8:413-428. [PMID: 31555516 DOI: 10.21037/tlcr.2019.08.09] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background We conducted a meta-analysis to evaluate the efficacy of anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) monotherapy or immunotherapy combined with chemotherapy and further estimated the value of PD-L1 expression in predicting the response from anti-PD-1/PD-L1 treatments as monotherapy or in combination with chemotherapy. Methods Clinical trial data were searched from electronic databases, which evaluated PD-1/PD-L1 inhibitors in non-small cell lung cancer (NSCLC) and correlated with PD-L1 expression levels. Results Fifteen randomized-controlled trials involving 10,074 patients were identified. Comparing anti-PD-1/PD-L1 monotherapy to chemotherapy, the pooled HR for overall survival (OS) was 0.77 (95% CI: 0.69-0.85, P<0.00001). Subgroup analyses revealed that patients had longer OS at ≥1%, ≥5%, ≥10% and ≥50% PD-L1 expression levels. Patients with higher PD-L1 expression may get increased benefit from PD-1/PD-L1 inhibitors. Moreover, patients with PD-L1 ≥50% had an objective response rate (ORR) improvement from anti-PD-1/PD-L1 therapy (RR =1.87, 95% CI: 1.27-2.75, P=0.001), but no ORR benefits were observed in patients with PD-L1 expression <1% (RR =0.82, 95% CI: 0.56-1.22, P=0.33) or 1-49% (RR =0.80, 95% CI: 0.64-0.98, P=0.03). OS was significantly better in patients receiving second-or-third line treatments (P<0.00001) with PD-L1 ≥1%. The efficacy of PD-1 inhibitors was similar to that of PD-L1 inhibitors, with no significant difference (P=0.63, I2=0%). Furthermore, immunotherapy combined with chemotherapy had better OS (HR =0.64, 95% CI: 0.48-0.84, P=0.001) than chemotherapy alone. Subgroup analyses showed that patients benefited from the combined chemo-IO treatment in the first-line setting regardless of PD-L1 expression level. Conclusions PD-L1 expression may be a valuable predictor of the efficacy of anti-PD-1/PD-L1 monotherapy in certain NSCLC patients. However, the combination of chemotherapy plus immunotherapy significantly improved survival regardless of the PD-L1 expression level in the first-line treatment of NSCLC.
Collapse
Affiliation(s)
- Yangyang Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Medical School of Southeast University, Nanjing 210002, China
| | - Yuan Zhao
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tianli Zhang
- Department of Respiratory and Critical Care Medicine, Medical School of Southeast University, Nanjing 210002, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Medical School of Southeast University, Nanjing 210002, China
| | - Muhammad Zubair Afzal
- Hospital Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Dr., Lebanon, NH, USA
| | - Said Dermime
- Translational Cancer Research Facility; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Steven N Hochwald
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Hospital University Federation OncoAge, Université Côte d'Azur; Institute for Research on Cancer and Aging, University Côte d'Azur; Hospital-Integrated Biobank (BB-003-00025), Pasteur Hospital, University Côte d'Azur, Nice, France
| | - Hossein Borghaei
- Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Dang Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Medical School of Southeast University, Nanjing 210002, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.,Department of Respiratory and Critical Care Medicine, Medical School of Southeast University, Nanjing 210002, China
| | | |
Collapse
|
41
|
Tsao SY. The role of metronomic chemotherapy in the era of cancer immunotherapy: an oncologist's perspective. ACTA ACUST UNITED AC 2019; 26:e422-e424. [PMID: 31548809 DOI: 10.3747/co.26.4853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metronomic chemotherapy (MCTX) encompasses a set of chemotherapy (CTX) doses significantly below the conventional maximum tolerated dose (MTD) and delivered largely continually (without the prolonged drug-free breaks typical of MTD CTX). [...]
Collapse
Affiliation(s)
- S Y Tsao
- Hong Kong Special Administrative Region Cancer Centre, Hong Kong SAR, P.R.C
| |
Collapse
|
42
|
Kareva I. Metabolism and Gut Microbiota in Cancer Immunoediting, CD8/Treg Ratios, Immune Cell Homeostasis, and Cancer (Immuno)Therapy: Concise Review. Stem Cells 2019; 37:1273-1280. [PMID: 31260163 DOI: 10.1002/stem.3051] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
The concept of immunoediting, a process whereby the immune system eliminates immunogenic cancer cell clones, allowing the remaining cells to progress and form a tumor, has evolved with growing appreciation of the importance of cancer ecology on tumor progression. As cancer cells grow and modify their environment, they create spatial and nutrient constraints that may affect not only immune cell function but also differentiation, tipping the balance between cytotoxic and regulatory immunity to facilitate tumor growth. Here, we review how immunometabolism may contribute to cancer escape from the immune system, as well as highlight an emerging role of gut microbiota, its effects on the immune system and on response to immunotherapy. We conclude with a discussion of how these pieces can be integrated to devise better combination therapies and highlight the role of computational approaches as a potential tool to aid in combination therapy design. Stem Cells 2019;37:1273-1280.
Collapse
Affiliation(s)
- Irina Kareva
- Translational Medicine, EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| |
Collapse
|
43
|
Wu J, Waxman DJ. Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy. Cancer Lett 2019; 419:210-221. [PMID: 29414305 DOI: 10.1016/j.canlet.2018.01.050] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Conventional cytotoxic cancer chemotherapy is often immunosuppressive and associated with drug resistance and tumor regrowth after a short period of tumor shrinkage or growth stasis. However, certain cytotoxic cancer chemotherapeutic drugs, including doxorubicin, mitoxantrone, and cyclophosphamide, can kill tumor cells by an immunogenic cell death pathway, which activates robust innate and adaptive anti-tumor immune responses and has the potential to greatly increase the efficacy of chemotherapy. Here, we review studies on chemotherapeutic drug-induced immunogenic cell death, focusing on how the choice of a conventional cytotoxic agent and its dose and schedule impact anti-tumor immune responses. We propose a strategy for effective immunogenic chemotherapy that employs a modified metronomic schedule for drug delivery, which we term medium-dose intermittent chemotherapy (MEDIC). Striking responses have been seen in preclinical cancer models using MEDIC, where an immunogenic cancer chemotherapeutic agent is administered intermittently and at an intermediate dose, designed to impart strong and repeated cytotoxic damage to tumors, and on a schedule compatible with activation of a sustained anti-tumor immune response, thereby maximizing anti-cancer activity. We also discuss strategies for combination chemo-immunotherapy, and we outline approaches to identify new immunogenic chemotherapeutic agents for drug development.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Biology, Division of Cell and Molecular Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. BREAST CANCER-TARGETS AND THERAPY 2019; 11:53-69. [PMID: 30697064 PMCID: PMC6340364 DOI: 10.2147/bctt.s175360] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy has evolved dramatically with improved understanding of immune microenvironment and immunosurveillance. The immunogenicity of breast cancer is rather heterogeneous. Specific subtypes of breast cancer such as estrogen receptor (ER)-negative, human EGF receptor 2 (HER2)-positive, and triple-negative breast cancer (TNBC) have shown evidence of immunogenicity based on tumor–immune interactions. Several preclinical and clinical studies have explored the potential for immunotherapy to improve the clinical outcomes for different subtypes of breast cancer. This review describes the immune microenvironment of HER2-positive breast cancer and summarizes recent clinical advances of immunotherapeutic treatments in this breast cancer subtype. The review provides rationale and ongoing clinical evidence to the use of immune checkpoint inhibitors, therapeutic vaccines, and adoptive T cell immunotherapy in breast cancer. In addition, the present paper describes the most relevant clinical progress of strategies for the combination of immunotherapy with standard treatment modalities in HER2-positive breast cancer including chemotherapy, targeted therapy, and radiotherapy.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan,
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rami J Yaghan
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
45
|
Gusella M, Pasini F, Caruso D, Barile C, Modena Y, Fraccon AP, Bertolaso L, Menon D, Crepaldi G, Bononi A, Spezzano R, Telatin GA, Corona G, Padrini R. Clinical outcomes of oral metronomic vinorelbine in advanced non-small cell lung cancer: correlations with pharmacokinetics and MDR1 polymorphisms. Cancer Chemother Pharmacol 2018; 83:493-500. [DOI: 10.1007/s00280-018-3751-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/04/2018] [Indexed: 01/13/2023]
|
46
|
Rodallec A, Sicard G, Fanciullino R, Benzekry S, Lacarelle B, Milano G, Ciccolini J. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Expert Opin Drug Metab Toxicol 2018; 14:1139-1147. [PMID: 30354685 DOI: 10.1080/17425255.2018.1540588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors have considerably changed the landscape of oncology. However apart from world-acclaimed success stories limited to melanoma and lung cancer, many solid tumors failed to respond to immune checkpoint inhibitors due to limited immunogenicity, unfavorable tumor micro-environments (TME), lack of infiltrating T lymphocytes or increases in Tregs. Areas covered: Combinatorial strategies are foreseen as the future of immunotherapy and using cytotoxics or modulating agents is expected to boost the efficacy of immune checkpoint inhibitors. In this respect, nanoparticles displaying unique pharmacokinetic features such as tumor targeting properties, optimal payload delivery and long-lasting interferences with TME, are promising candidates for such combinations. This review covers the basis, expectancies, limits and pitfalls of future combination between nanoparticles and immune check point inhibitors. Expert opinion: Nanoparticles allow optimal delivery of variety of payloads in tumors while sparing healthy tissue, thus triggering immunogenic cell death. Depleting tumor stroma could further help immune cells and monoclonal antibodies to better circulate in the TME, plus immune-modulating properties of the charged cytotoxics. Finally, nanoparticles themselves present immunogenicity and antigenicity likely to boost immune response at the tumor level.
Collapse
Affiliation(s)
- Anne Rodallec
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | - Guillaume Sicard
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | - Raphaelle Fanciullino
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | | | - Bruno Lacarelle
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| | - Gerard Milano
- c EA666 Oncopharmacology Unit , Centre Antoine Lacassagne , Nice , France
| | - Joseph Ciccolini
- a SMARTc Unit, Centre de Recherche en Cancérologie de Marseille UMR Inserm U1068 , Aix Marseille University , Marseille , France
| |
Collapse
|
47
|
Biological Basis of Tumor Angiogenesis and Therapeutic Intervention: Past, Present, and Future. Int J Mol Sci 2018; 19:ijms19061655. [PMID: 29866994 PMCID: PMC6032330 DOI: 10.3390/ijms19061655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/09/2023] Open
|
48
|
Isono-Nakata R, Tsubamoto H, Ueda T, Inoue K, Shibahara H. Bevacizumab with metronomic chemotherapy of low-dose oral cyclophosphamide in recurrent cervical cancer: Four cases. Gynecol Oncol Rep 2018; 24:57-60. [PMID: 29682600 PMCID: PMC5909023 DOI: 10.1016/j.gore.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023] Open
Abstract
Standard chemotherapy for women with advanced or recurrent cervical cancer involves a combination of paclitaxel, platinum, and bevacizumab. However, for patients who experience anaphylaxis in response to paclitaxel or platinum, have permanent peripheral neuropathy, or develop early recurrence or progressive disease during first-line chemotherapy, the development of a non-taxane non-platinum regimen is mandatory. Clinical trials using anti-angiogenic treatment demonstrated favorable outcomes in cases of highly vascularized cervical cancer. Metronomic chemotherapy has been considered an anti-angiogenic treatment, although its use in combination with bevacizumab has not been studied in cervical cancer. We treated four patients with recurrent cervical cancer with 50 mg of oral cyclophosphamide daily and 15 mg/kg of intravenous bevacizumab every 3 weeks (CFA-BEV). One patient experienced disease progression after 4 months, whereas the other three patients continued the regimen until their last follow-up at 13, 14, and 15 months, respectively. One patient suffered from grade 3 neutropenia; however, no grade 2 or higher non-hematological toxicities were observed. These cases demonstrate the use of CFA-BEV with minimal toxicity and expected anti-cancer activity and indicate that this regimen should be considered for second-line chemotherapy in advanced recurrent cervical cancer. Development of non-taxane, non-platinum regimen is warranted in the second line treatment of recurrent cervical cancer. Clinical trials using anti-angiogenetic drugs showed better outcomes in cases of highly vascularized cervical cancer. Metronomic chemotherapy has been shown to inhibit angiogenesis. This is the first case report of metronomic chemotherapy with bevacizumab in cervical cancer.
Collapse
Affiliation(s)
- Rose Isono-Nakata
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Hiroshi Tsubamoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Tomoko Ueda
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Kayo Inoue
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| |
Collapse
|
49
|
Nagarajan D, McArdle SEB. Immune Landscape of Breast Cancers. Biomedicines 2018; 6:biomedicines6010020. [PMID: 29439457 PMCID: PMC5874677 DOI: 10.3390/biomedicines6010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, both at a molecular and a histological level. Five intrinsic subtypes were initially identified-Luminal-A, Luminal-B, HER2⁺, Triple negative/basal like (TNBC) and normal like-subsequently expanded to seven (Basal-like-1 and 2, mesenchymal, mesenchymal stem-like, luminal androgen receptor, immuno-modulatory and unstable). Although genetic and epigenetic changes are key pathogenic events, the immune system plays a substantial role in promoting progression and metastasis. This review will discuss the extent to which immune cells can be detected within the tumor microenvironment, as well as their prognostic role and relationship with the microbiome, with an emphasis on TNBC.
Collapse
|
50
|
Benguigui M, Alishekevitz D, Timaner M, Shechter D, Raviv Z, Benzekry S, Shaked Y. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach. Oncotarget 2018; 9:2574-2590. [PMID: 29416793 PMCID: PMC5788661 DOI: 10.18632/oncotarget.23514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022] Open
Abstract
It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro. A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.
Collapse
Affiliation(s)
- Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dror Alishekevitz
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Michael Timaner
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dvir Shechter
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sebastien Benzekry
- MONC Team, Inria Bordeaux Sud-Ouest and Institut de Mathématiques de Bordeaux, Talence, France
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|