1
|
Park MY, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Park KI, Kim GS. Antioxidant and Anti-Inflammatory Properties of Conceivable Compounds from Glehnia littoralis Leaf Extract on RAW264.7 Cells. Nutrients 2024; 16:3656. [PMID: 39519489 PMCID: PMC11547663 DOI: 10.3390/nu16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Glehnia littoralis is a medicinal plant, but the scientific basis is still unclear. This study thoroughly investigated phenols from Glehnia littoralis extract (GLE) to determine their potential as anti-inflammatory and antioxidant agents. METHODS High-performance liquid chromatography (HPLC) and mass spectrometry (MS) were used to analyze the compounds in GLE. In addition, we performed GLE in vitro in macrophages after lipopolysaccharide (LPS)-induced inflammation. RESULTS The extract contained eight peaks representing phenolic compounds and one peak representing riboflavin, with the corresponding mass spectrometry data documented. These biologically active compounds were purified by ultrafiltration using LC to determine their ability to target cyclooxygenase-2 (COX-2) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results showed that significant compounds were identified, demonstrating a binding affinity for both COX-2 and DPPH. This suggests that the compounds showing excellent binding affinity for COX-2 and DPPH may be the main active ingredients. Vital inflammatory cytokines, including COX-2, inducible nitric oxide synthase (iNOS), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), were found to be down-regulated during the treatment. In addition, we revealed that the selected drugs exhibited potent binding capacity to inflammatory factors through molecular docking studies. In addition, we confirmed the presence of phenolic components in GLE extract and verified their possible anti-inflammatory and antioxidant properties. CONCLUSIONS This study provided evidence for an efficient strategy to identify critical active ingredients from various medicinal plants. These data may serve as a baseline for further investigations of applying GLE in the pharmaceutical industry.
Collapse
Affiliation(s)
- Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea;
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea; (M.Y.P.); (H.H.K.); (S.H.J.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
2
|
An JY, Kim SY, Kim HJ, Bae HJ, Lee HD, Choi YY, Cho YE, Cho SY, Lee SJ, Lee S, Park SJ. Geraniin from the methanol extract of Pilea mongolica suppresses LPS-induced inflammatory responses by inhibiting IRAK4/MAPKs/NF-κB/AP-1 pathway in HaCaT cells. Int Immunopharmacol 2024; 140:112767. [PMID: 39083922 DOI: 10.1016/j.intimp.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The skin acts as a vital barrier, shielding the body from external threats that can trigger dryness, itching, and inflammation. Pilea mongolica, a traditional Chinese medicinal herb, holds promise for various ailments, yet its anti-inflammatory properties remain understudied. This study aimed to explore the potential anti-inflammatory effects of the methanol extract of P. mongolica (MEPM) and its underlying molecular mechanisms and active compounds in LPS-stimulated human keratinocytes. MEPM treatment, at concentrations without cytotoxicity, significantly decreased NO productions and the iNOS, IL-6, IL-1β, and TNF-α levels in LPS-induced HaCaT cells. Moreover, MEPM suppressed IRAK4 expression and phosphorylation of JNK, ERK, p38, p65, and c-Jun, suggesting that the anti-inflammatory effects of MEPM result from the inhibition of IRAK4/MAPK/NF-κB/AP-1 signaling pathway. Through LC/MS/MS analysis, 30 compounds and 24 compounds were estimated in negative and positive modes, respectively, including various anti-inflammatory compounds, such as corilagin and geraniin. Through HPLC analysis, geraniin was found to be present in MEPM at a concentration of 18.87 mg/g. Similar to MEPM, geraniin reduced iNOS mRNA expression and inhibited NO synthesis. It also decreased mRNA and protein levels of inflammatory cytokines, including IL-6 and TNF-α, and inhibited IRAK4 expression and the phosphorylation of MAPKs, NF-κB, and AP-1 pathways. Therefore, it can be inferred that the anti-inflammatory effects of MEPM are attributable to geraniin. Thus, MEPM and its active compound geraniin are potential candidates for use in natural functional cosmetics.
Collapse
Affiliation(s)
- Ju-Yeon An
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hyun-Jeong Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Yu-Yeong Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Ye Eun Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - So-Young Cho
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Su-Jung Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Ozcelik F, Ersahan S, Sirin DA, Ozçelik IK, Hepsenoglu YE, Karip B. The importance of mechanosensitive cell mediated prostaglandin and nitric oxide synthesis in the pathogenesis of apical periodontitis: comparative with chronic periodontitis. Clin Oral Investig 2024; 28:337. [PMID: 38795217 PMCID: PMC11127815 DOI: 10.1007/s00784-024-05721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/12/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVES Mechano-sensitive odontoblast cells, which sense mechanical loading and various stresses in the tooth structure, synthesize early signaling molecules such as prostaglandin E2 (PGE2) and nitric oxide (NO) as an adaptive response. It is thought that these synthesized molecules can be used for the diagnosis and treatment of periodontal and periapical diseases. The aim of this study was to investigate the relationship between the severity of apical periodontitis (AP) and chronic periodontitis (CP) and serum (s) TNF-α, IL-10, PGE2 and NO levels, as well as PGE2 and NO levels in gingival crevicular fluid (GCF) samples. MATERIALS & METHODS A total of 185 subjects were divided into three categories: AP group (n = 85), CP group (n = 50) and healthy control group (n = 50). The AP group was divided into 3 subgroups according to abscess scoring (AS-PAI 1, 2 and 3) based on the periapical index. The CP group was divided into 4 subgroups according to the periodontitis staging system (PSS1, 2,3 and 4). After recording the demographic and clinical characteristics of all participants, serum (s) and gingival crevicular fluid (GCF) samples were taken. TNF-α, IL-10, PGE2 and NO levels were measured in these samples. RESULTS Unlike serum measurements (sTNF-α, sIL-10, sNO and sPGE2), GCF-NO and GCF-PGE levels of the AP group were significantly higher than the control group in relation to abscess formation (54.4 ± 56.3 vs. 22.5 ± 12.6 µmol/mL, p < 0.001 and 100 ± 98 vs. 41 ± 28 ng/L, p < 0.001, respectively). Confirming this, the GCF-NO and GCF-PGE levels of the AS-PAI 1 group, in which abscesses have not yet formed, were found to be lower than those in AS-PAI 2 and 3, which are characterized by abscess formation [(16.7(3.7-117.8), 32.9(11.8-212.8) and 36.9(4.3-251.6) µmol/mL, p = 0,0131; 46.0(31.4-120.0), 69.6(40.3-424.2) and 74.4(32.1-471.0) ng/L, p = 0,0020, respectively]. Consistent with the increase in PSS, the levels of sTNF [29.8 (8.2-105.5) vs. 16.7(6.3-37.9) pg/mL, p < 0.001], sIL-10 [542(106-1326) vs. 190(69-411) pg/mL, p < 0.001], sNO [182.1(36.3-437) vs. 57.0(15.9-196) µmol/mL, p < 0.001], sPGE2 [344(82-1298) vs. 100(35-1178) ng/L, p < 0.001], GCF-NO [58.9 ± 33.6 vs. 22.5 ± 12.6 ng/L, p < 0.001] and GCF-PGE2 [ 99(37-365) vs. 30(13-119), p < 0.001] in the CP group were higher than the control group. Comparison ROC analysis revealed that the GCF-PGE2 test had the best diagnostic value for both AP and CP (sensitivity: 94.1 and 88.0; specificity: 64.0 and 78.0, respectively; p < 0.001). CONCLUSIONS GCF-PE2 and GCF-NO have high diagnostic value in the determination of AP and CP, and can be selected as targets to guide treatment. In addition, the measurements of PGE2 and NO in GCF can be used as an important predictor of pulpal necrosis leading to abscess in patients with AP. CLINICAL RELEVANCE In this article, it is reported that syntheses of early signaling molecules such as PGE2 and NO can be used for the diagnosis and treatment target of periapical and periodontal infections.
Collapse
Affiliation(s)
- Fatih Ozcelik
- Department of Medical Biochemistry, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences Turkiye, Istanbul, Türkiye.
| | - Seyda Ersahan
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Türkiye
| | - Dursun Ali Sirin
- Department of Endodontics, Faculty of Dentistry, University of Health Sciences, Istanbul, Türkiye
| | | | - Yelda Erdem Hepsenoglu
- Department of Endodontics, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Türkiye
| | - Burak Karip
- Department of Anatomy (Dentist), Hamidiye Faculty of Medicine, University of Health Sciences Turkiye, Istanbul, Türkiye
| |
Collapse
|
4
|
Joshi IV, Chan EC, Lack JB, Liu C, Druey KM. RGS4 controls airway hyperresponsiveness through GAP-independent mechanisms. J Biol Chem 2024; 300:107127. [PMID: 38432633 PMCID: PMC11065749 DOI: 10.1016/j.jbc.2024.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.
Collapse
Affiliation(s)
- Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, Maryland, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Abarikwu SO, Mgbudom-Okah CJ, Ndufeiya-Kumasi LC, Monye VE, Aruoren O, Ezim OE, Omeodu SI, Charles IA. Influence of triazines and lipopolysaccharide coexposure on inflammatory response and histopathological changes in the testis and liver of BalB/c mice. Heliyon 2024; 10:e24431. [PMID: 38293467 PMCID: PMC10826326 DOI: 10.1016/j.heliyon.2024.e24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Triazines are environmental active chemicals that have been reported to alter the inflammatory status of the gonads. We tested the anti-inflammatory effect of the triazines (atrazine; ATZ, simazine; SMZ and cyanazine; CYZ) on the testis and compared it with the more classical liver model that has substantial populations of resident macrophages comparable to the testis. Methods BalB/c mice were treated with 25 mg/kg ATZ, SMZ and CYZ for 30 days and injected with lipopolysaccharide (0.5 mg/kg i.p.) 6 h before sacrifice. Myeloperoxidase activity and nitric oxide level in the testis and liver homogenates were determined by spectrophotometry whereas tumor necrosis factor-alpha and interleukin-6 concentrations were evaluated by immunoassay. Haematoxylin and eosin stained sections of the tissues were observed using a light microscope. Results Myeloperoxidase activity, nitric oxide, tumor necrosis factor-alpha, and interleukin-6 levels were decreased in the liver and testis of the triazines co-treated animals. SMZ has the most potent inhibitory effect and ATZ the least effect on inflammatory mediators in both tissues. Microscopic evaluation showed loss of inflammatory cells in the inter-tubular areas of the testis and few patchy masses of infiltrating inflammatory cells around the central vein of the liver. Conclusion Triazines inhibit the levels of inflammatory mediators in the testis and liver of mice. The anti-inflammatory effect of triazines in a lipopolysaccharide-induced inflammation model was established in this study.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Vivian E. Monye
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Oke Aruoren
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Stephen I. Omeodu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | |
Collapse
|
6
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Kim DI, Lee SJ, Park KI, Kim GS. Potential Antioxidant and Anti-Inflammatory Properties of Polyphenolic Compounds from Cirsium japonicum Extract. Int J Mol Sci 2024; 25:785. [PMID: 38255858 PMCID: PMC10815310 DOI: 10.3390/ijms25020785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cirsium japonicum is a medicinal plant that has been used due to its beneficial properties. However, extensive information regarding its therapeutic potential is scarce in the scientific literature. The antioxidant and anti-inflammatory potential of polyphenols derived from the Cirsium japonicum extracts (CJE) was systematically analyzed. High-performance liquid chromatography (HPLC) with mass spectrometry (MS) was used to examine the compounds in CJE. A total of six peaks of polyphenol compounds were identified in the extract, and their MS data were also confirmed. These bioactive compounds were subjected to ultrafiltration with LC analysis to assess their potential for targeting cyclooxygenase-2 (COX2) and DPPH. The outcomes showed which primary compounds had the highest affinity for binding both COX2 and DPPH. This suggests that components that showed excellent binding ability to DPPH and COX2 can be considered significant active substances. Additionally, in vitro analysis of CJE was carried out in macrophage cells after inducing inflammation with lipopolysaccharide (LPS). As a result, it downregulated the expression of two critical pro-inflammatory cytokines, COX2 and inducible nitric oxide synthase (iNOS). In addition, we found a solid binding ability through the molecular docking analysis of the selected compounds with inflammatory mediators. In conclusion, we identified polyphenolic compounds in CJE extract and confirmed their potential antioxidant and anti-inflammatory effects. These results may provide primary data for the application of CJE in the food and pharmaceutical industries with further analysis.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Dong Il Kim
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae 52430, Republic of Korea;
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea;
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.); (K.I.P.)
| |
Collapse
|
7
|
Ahmed RH, Rashad Ahmed R, Galaly SR, Moustafa N, Abourehab MAS, Abdelgawad MA, Ahmed OM, Abdul-Hamid M. Mesenchymal Stem Cells and Curcumin Effectively Mitigate Freund's Adjuvant- induced Arthritis via their Anti-inflammatory and Gene Expression of COX-1, IL-6 and IL-4. Endocr Metab Immune Disord Drug Targets 2024; 24:468-488. [PMID: 36825726 DOI: 10.2174/1871530323666230223143011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Rheumatoid arthritis (RA) is a type of arthritis that damages joints and can affect the thymus and the spleen. RA is an autoimmune disorder in which the immune system targets the body's own tissues. The causes of RA are unknown, although a genetic link is thought to be involved. The objective of this research was to evaluate the effect of curcumin, mesenchymal stem cells (MSCs), and their combination on the disruption of serum cytokines, ankle joint, thymus and spleen histopathology, and affected genes in complete Freund's adjuvant (CFA)-induced arthritis in male and female Wistar rats. METHODS Experimental animals were organized into 16 groups (6 animals for each), eight groups including male rats and the other eight groups including females rats. The groups are normal control, CMC, curcumin, MSCs, CFA, CFA/curcumin, CFA/ MSCs and the arthritic group treated with MSCs and curcumin. One subcutaneous injection of 0.1 mL CFA was given to rats into the right hind leg footpad to induce RA. The arthritic rats were intravenously injected three times with bone marrow-derived MSCs (BM-MSCs) and/or treated orally with curcumin daily (100 mg per kg body weight per day) for 21 days. RESULTS Curcumin and BM-MSCs work together to dramatically (P < 0.05) restore the high serum PGE2 and IL-17 levels and lower the IL-13 level in arthritic rats to normal levels. Deleterious effects on the spleen and thymus histological structure were counteracted. Gene expression of COX-1 and IL-6 was increased and IL-4 was decreased; these changes were improved by the combination treatment (P < 0.05). CONCLUSION Based on these findings, additive therapeutic effects on RA occur from the combined treatment of curcumin and BM-MSCs compared with their individual use (P < 0.05). Thus, it can be said that both curcumin and BM-MSCs are effective at reducing inflammation while also having beneficial effects on the ankle joint, thymus and spleen.
Collapse
Affiliation(s)
- Rania Hamed Ahmed
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Rasha Rashad Ahmed
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa Rida Galaly
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Nadia Moustafa
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdelwahab Sayed Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Osama Mohamed Ahmed
- Department of Zoology, Faculty of Science, Physiology Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Department of Zoology, Faculty of Science, Histology, Cell Biology and Genetic Division, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
8
|
Pei L, Hou Y, Feng Y, Li F, Su H, Zhang Y, Song Y, Liu K, Cao G. Equine β-defensin 1 regulates cytokine expression and phagocytosis in S. aureus-infected mouse monocyte macrophages via the Paxillin-FAK-PI3K pathway. Int Immunopharmacol 2023; 123:110793. [PMID: 37582311 DOI: 10.1016/j.intimp.2023.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
β-defensin-1 (BD-1) is a rich source of disulfide bonds and antibacterial peptides that exhibit direct bactericidal function. The expression of BD-1 is primarily induced by external stimulation and is known to correlate with TLR-mediated inflammation, suggesting its association with innate immune responses. Equine β-defensin-1 (eBD-1) belongs to the BD-1 family. Our previous study demonstrated that eBD-1 enhances cytokine expression and promotes macrophage phagocytosis of S. aureus, although the underlying mechanism remains unknown. In this study, we utilized a PI-3K inhibitor (PKI-402) to treat eBD-1 -treated S. aureus-infected macrophages in vitro. Our results revealed that PKI-402 decreased the expression of eBD-1-promoted TNF-α, IL-6, CXCL10, CD40, RANTES, and p65 mRNA. To further investigate the relationship between eBD-1 and phagocytosis, we examined the expression of paxillin and FcγRIII (CD16 receptor) using western blot and immunofluorescence techniques. Our findings demonstrated that eBD-1 enhanced CD16 and paxillin expression in S. aureus -infected macrophages. Considering the correlation between paxillin expression and focal adhesion kinase (FAK), we transfected FAK siRNA into macrophages and evaluated paxillin expression using western blot analysis. Additionally, we quantified the number of S. aureus phagocytosed by macrophages. The results indicated a reduction in both paxillin expression and the number of S. aureus phagocytosed by macrophages upon FAK siRNA treatment. Our study showed the eBD-1 promotes cytokine mRNA expression in S. aureus-infected macrophages regulated by PI-3K-NF-κB pathway, and it increases macrophage phagocytosis of S. aureus associated with the FAK-paxillin signaling pathway.
Collapse
Affiliation(s)
- Le Pei
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yongyue Hou
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Ying Feng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Feng Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yuemei Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Yue Song
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Kun Liu
- School of Public Healthy, Inner Mongolia Medical University, Huhhot 010110, China.
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, China.
| |
Collapse
|
9
|
Jeong SH, Park MY, Bhosale PB, Abusaliya A, Won CK, Park KI, Kim E, Heo JD, Kim HW, Ahn M, Seong JK, Kim HH, Kim GS. Potential Antioxidant and Anti-Inflammatory Effects of Lonicera japonica and Citri Reticulatae Pericarpium Polyphenolic Extract (LCPE). Antioxidants (Basel) 2023; 12:1582. [PMID: 37627577 PMCID: PMC10451293 DOI: 10.3390/antiox12081582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dermatitis is an inflammatory condition of the outer layer of the skin that causes itching, blisters, redness, swelling, and often exudation, scabs, and peeling. Among them, purulent inflammation is a symptom that often occurs on the skin and appears in the form of boils and acne. Various studies are being conducted to treat these inflammatory diseases. Accordingly, Lonicera japonica and Citri Reticulatae Pericarpium Polyphenolic Extract (LCPE), which uses herbal preparations such as Lonicera japonica, Citri Reticulatae Pericarpium, and Glycyrrhiza uralensis, has been used to suppress inflammation since ancient times, and its anti-inflammatory effect can be observed in skin keratinocytes after inducing inflammation. In this study, the major polyphenolic compounds in LCPE were quantitatively determined by analyzing the data through peak values using high-performance chromatography (HPLC-MS/MS) coupled with mass spectrometry. Additionally, bioactive compounds targeting 2,2-diphenyl-1-picrylhydrazyl (DPPH) were analyzed by ultrafiltration integrated with LC. Several compounds with the most significant effects were selected (chlorogenic acid, narirutin, and isorhamnetin). Skin keratinocytes induced by lipopolysaccharide (LPS) were treated with LCPE to show its anti-inflammatory effects. After LCPE treatment, inflammation-mediating cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were decreased. In addition, nuclear factor kappa (NF-кB) and mitogen-activated protein kinase (MAPK) were inhibited in important pathways related to inflammation. Lastly, molecular modeling was performed to determine binding scores with inflammation-related proteins using molecular docking for the selected compounds. According to these results, LCPE is effective in treating keratinocytes induced by LPS and reducing inflammation and has potential antioxidant effects, and the polyphenol components have been identified.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Chung Kil Won
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Eunhye Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (S.H.J.); (M.Y.P.); (P.B.B.); (A.A.)
| |
Collapse
|
10
|
Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023; 9:e13917. [PMID: 36873494 PMCID: PMC9982044 DOI: 10.1016/j.heliyon.2023.e13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Coffee pulp (CP) is a coffee byproduct that contains various active ingredients, namely, chlorogenic acid (CGA) and caffeine. These active compounds show several benefits, including antihyperlipidemia, antioxidants, and anti-inflammation. However, the anti-inflammatory properties of Coffea pulp extract (CPE) are unknown. This work determined the impact of CPE on lipopolysaccharide (LPS)-activated murine macrophage cells and the molecular mechanism behind this action. RAW 264.7 cells were exposed to varying doses of CPE with or without LPS. Inflammatory markers and their mechanism were studied. CPE therapy has been shown to suppress the synthesis of inflammatory cytokines and mediators, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Finally, CPE inactivated the nuclear factor-kappa B (NF-κB) and MAPK signaling pathways. Consequently, CPE might be used as a nutraceutical to treat inflammation and its related disorders.
Collapse
|
11
|
George G, Shyni GL, Mohan S, Abraham B, Nisha P, Ranjith S, Rajankutty K, Raghu KG. In vitro and in vivo anti-inflammatory and anti-arthritic effect of Tinospora cordifolia via modulation of JAK/STAT pathway. Inflammopharmacology 2023; 31:1009-1025. [PMID: 36840884 DOI: 10.1007/s10787-023-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disorder causing cartilage and joint degeneration. In spite of the availability of several robust drugs like biologics, most of the patients are unresponsive, and reports of severe adverse effects following long-term use are also there. Subsequently the use of natural plant-based products in RA therapy is broadening over the years. Tinospora cordifolia is a widely used medicinal plant in Ayurveda against various inflammatory disorders including RA. However, there is very limited knowledge regarding the actual molecular events responsible for its therapeutic effect, and this has limited its acceptance among the professionals. PURPOSE To explore the anti-inflammatory and anti-arthritic effect of hydro-alcoholic extract from Tinospora cordifolia. METHODS The rich polyphenol nature of the extract was elucidated using HPLC. LPS-stimulated murine macrophage cell line RAW 264.7 was used for in vitro studies, and collagen-induced arthritis (CIA) model was used for in vivo studies. RESULTS The polyphenols in TCE were identified using HPLC. TCE effectively downregulated the level of pro-inflammatory mediators (IL-6, TNF-α, PGE2, and NO) in LPS-stimulated RAW 264.7 cells. Subsequently the upregulated expression of COX-2 and iNOS following LPS stimulation were also downregulated by TCE. Furthermore, TCE targeted the upstream kinases of the JAK/STAT pathway, a crucial inflammatory pathway. The expression of VEGF, a key angiogenic factor as well as an inflammatory mediator was also decreased following pre-treatment with TCE. The anti-arthritic effect of TCE (150 mg/kg) was evaluated in the CIA model as well. From the results of histopathology, oral administration of TCE was found to be effective in reducing the clinical symptoms of arthritis including paw edema, erythema, and hyperplasia. In vivo results validated the in vitro results and there was a significant reduction in serum level of pro-inflammatory cytokines and mediators (IL-6, TNF-α, IL-17, NO, and PGE2). The phosphorylation of STAT3 and the expression of VEGF were also downregulated following TCE treatment. CONCLUSION Our study provided a detailed insight into the molecular events associated with anti-inflammatory and anti-arthritic effect of Tinospora cordifolia.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Sreelekshmi Mohan
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Billu Abraham
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Nisha
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Ranjith
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - K Rajankutty
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Takala R, Ramji DP, Choy E. The Beneficial Effects of Pine Nuts and Its Major Fatty Acid, Pinolenic Acid, on Inflammation and Metabolic Perturbations in Inflammatory Disorders. Int J Mol Sci 2023; 24:ijms24021171. [PMID: 36674687 PMCID: PMC9861571 DOI: 10.3390/ijms24021171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Inflammatory disorders such as atherosclerosis, diabetes and rheumatoid arthritis are regulated by cytokines and other inflammatory mediators. Current treatments for these conditions are associated with significant side effects and do not completely suppress inflammation. The benefits of diet, especially the role of specific components, are poorly understood. Polyunsaturated fatty acids (PUFAs) have several beneficial health effects. The majority of studies on PUFAs have been on omega-3 fatty acids. This review will focus on a less studied fatty acid, pinolenic acid (PNLA) from pine nuts, which typically constitutes up to 20% of its total fatty acids. PNLA is emerging as a dietary PUFA and a promising supplement in the prevention of inflammatory disorders or as an alternative therapy. Some studies have shown the health implications of pine nuts oil (PNO) and PNLA in weight reduction, lipid-lowering and anti-diabetic actions as well as in suppression of cell invasiveness and motility in cancer. However, few reviews have specifically focused on the biological and anti-inflammatory effects of PNLA. Furthermore, in recent bioinformatic studies on human samples, the expression of many mRNAs and microRNAs was regulated by PNLA indicating potential transcriptional and post-transcriptional regulation of inflammatory and metabolic processes. The aim of this review is to summarize, highlight, and evaluate research findings on PNO and PNLA in relation to potential anti-inflammatory benefits and beneficial metabolic changes. In this context, the focus of the review is on the potential actions of PNLA on inflammation along with modulation of lipid metabolism and oxidative stress based on data from both in vitro and in vivo experiments, and human findings, including gene expression analysis.
Collapse
Affiliation(s)
- Rabaa Takala
- Division of Infection and Immunity, Tenovus Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P. Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Ernest Choy
- Division of Infection and Immunity, Tenovus Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Department of Rheumatology, Heath Park, University Hospital of Wales, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
13
|
Yildirim M, Unal ZN, Ersatir M, Yetkin D, Degirmenci U, Giray ES. Anti-Inflammatory Effects of Coumarin–Selenophene Derivatives on LPS-Stimulated RAW 264.7 Macrophage Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses. Int J Mol Sci 2022; 23:ijms232012072. [PMID: 36292928 PMCID: PMC9602477 DOI: 10.3390/ijms232012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Angelicae tenussimae root has been used as a traditional medicine in Asia. Recently, anti-melanogenic and anti-photogenic effects of fermented A. tenuissima root (FAT) were identified. However, information about the anti-atopic dermatitis action of FAT is limited. Thus, the purpose of this study is to determine the applicability of FAT to AD by identifying the efficacy of FAT on the skin barrier and inflammatory response, which are the main pathogenesis of AD. Expression levels of skin barrier components and the production of inflammatory mediators in human keratinocyte and mouse macrophage cells were measured by quantitative RT-PCR or ELISA. FAT upregulated the expression of skin barrier components (filaggrin, involucrin, loricurin, SPTLC1) and inhibited the secretion of an inflammatory chemokine TARC in HaCaT cells. Furthermore, it suppressed pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide production in LPS-induced RAW264.7 cells. In addition, ligustilide increased filaggrin and SPTLC1, and also lowered pro-inflammatory mediators that increased in atopic environments, such as in FAT results. This means that ligustilide, one of the active ingredients derived from FAT, can ameliorate AD, at least in part, by promoting skin barrier formation and downregulating inflammatory mediators. These results suggest that FAT is a potential functional cosmetic material for the care and management of AD.
Collapse
|
15
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
16
|
Baradaran Rahimi V, Momeni-Moghaddam MA, Chini MG, Saviano A, Maione F, Bifulco G, Rahmanian-Devin P, Jebalbarezy A, Askari VR. Carnosol Attenuates LPS-Induced Inflammation of Cardiomyoblasts by Inhibiting NF- κB: A Mechanistic in Vitro and in Silico Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7969422. [PMID: 35571740 PMCID: PMC9095375 DOI: 10.1155/2022/7969422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023]
Abstract
Carnosol possesses several beneficial pharmacological properties. However, its role in lipopolysaccharide (LPS) induced inflammation and cardiomyocyte cell line (H9C2) has never been investigated. Therefore, the effect of carnosol and an NF-κB inhibitor BAY 11-7082 was examined, and the underlying role of the NF-κB-dependent inflammatory pathway was analyzed as the target enzyme. Cell viability, inflammatory cytokines levels (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and prostaglandin E 2 (PGE2)), and related gene expression (TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (COX-2)) were analyzed by ELISA and real-time PCR. In addition, docking studies analyzed carnosol's molecular interactions and binding modes to NF-κB and IKK. We report that LPS caused the reduction of cell viability while enhancing both cytokines protein and mRNA levels (P < 0.001, for all cases). However, the BAY 11-7082 pretreatment of the cells and carnosol increased cell viability and reduced cytokine protein and mRNA levels (P < 0.001 vs. LPS, for all cases). Furthermore, our in silico analyses also supported the modulation of NF-κB and IKK by carnosol. This evidence highlights the defensive effects of carnosol against sepsis-induced myocardial dysfunction and, contextually, paved the rationale for the next in vitro and in vivo studies aimed to precisely describe its mechanism(s) of action.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Anella Saviano
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Fatima H, Shahid M, Pruitt C, Pung MA, Mills PJ, Riaz M, Ashraf R. Chemical Fingerprinting, Antioxidant, and Anti-Inflammatory Potential of Hydroethanolic Extract of Trigonella foenum-graecum. Antioxidants (Basel) 2022; 11:364. [PMID: 35204245 PMCID: PMC8869320 DOI: 10.3390/antiox11020364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, the antioxidant and anti-inflammatory potential of hydroethanolic extract of T. foenum-graecum seeds was evaluated. Phenolic profiling of T. foenum-graecum was conducted through high-performance liquid chromatography-photodiode array (HPLC-PDA) as well as through the mass spectrometry technique to characterize compounds responsible for bioactivity, which confirmed almost 18 compounds, 13 of which were quantified through a chromatographic assay. In vitro antioxidant analysis of the extract exhibited substantial antioxidant activities with the lowest IC50 value of both DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) inhibition assays. The extract was found to be non-toxic against human RBCs and murine macrophage RAW 264.7 cells. Moreover, the extract significantly (p < 0.001) reduced the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), intrlukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in RAW 264.7 cells in a concentration-dependent manner. The hydroethanolic extract of T. foenum-graecum exhibited considerable anti-inflammatory potential by decreasing the cellular infiltration to the inflammatory site in both carrageenan-induced peritonitis and an air pouch model of inflammation. Pretreatment with T. foenum-graecum extract caused significant improvement in antioxidants such as superoxide dismutase (SOD), CAT (catalase), malondialdehyde (MDA), and myeloperoxidase (MPO) against oxidative stress induced by carrageenan. Based on our results of in vivo and in vitro experimentation, we concluded that hydroethanolic extract of T. foenum-graecum is a potential source of phenolic compounds with antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Chris Pruitt
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Meredith A. Pung
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Paul J. Mills
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
18
|
Egbuta MA, McIntosh S, Waters DLE, Vancov T, Liu L. In Vitro Anti-Inflammatory Activity of Essential Oil and β-Bisabolol Derived from Cotton Gin Trash. Molecules 2022; 27:molecules27020526. [PMID: 35056836 PMCID: PMC8779114 DOI: 10.3390/molecules27020526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Natural α-bisabolol has been widely used in cosmetics and is sourced mainly from the stems of Candeia trees that have become endangered due to over exploitation. The in vitro anti-inflammatory activity of cotton gin trash (CGT) essential oil and the major terpenoid (β-bisabolol) purified from the oil were investigated against lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages as well as the 3t3 and HS27 fibroblast cell lines. Nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) were measured using Greiss reagent, enzyme-linked immunosorbent assay (ELISA), and cytokine bead array (CBA)-flow cytometry. Non-toxic concentrations of CGT oil and β-bisabolol (1.6–50.0 µg/mL) significantly inhibited the production of the inflammatory mediators in a dose-dependent manner. Maximal inhibition by β-bisabolol was 55.5% for NO, 62.3% for PGE2, and 45.3% for TNF-α production in RAW cells. β-Bisabolol induced a level of inhibition similar to an equal concentration of α-bisabolol (50.0 µg/mL), a known anti-inflammatory agent. These results suggest β-bisabolol exerts similar in vitro effects to known topical anti-inflammatory agents and could therefore be exploited for cosmetic and therapeutic uses. This is the first study to report the in vitro anti-inflammatory activity of β-bisabolol in CGT essential oil.
Collapse
Affiliation(s)
- Mary A. Egbuta
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (M.A.E.); (S.M.); (D.L.E.W.)
| | - Shane McIntosh
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (M.A.E.); (S.M.); (D.L.E.W.)
| | - Daniel L. E. Waters
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (M.A.E.); (S.M.); (D.L.E.W.)
| | - Tony Vancov
- Elizabeth Macarthur Agricultural Institute, NSW Department of Planning, Industry & Environment, DPI Agriculture, Woodbridge Rd, Menangle, NSW 2568, Australia;
| | - Lei Liu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (M.A.E.); (S.M.); (D.L.E.W.)
- Correspondence: ; Tel.: +61-02-6620-3293
| |
Collapse
|
19
|
Lin YC, Lin CC, Chu YC, Fu CW, Sheu JH. Bioactive Diterpenes, Norditerpenes, and Sesquiterpenes from a Formosan Soft Coral Cespitularia sp. Pharmaceuticals (Basel) 2021; 14:1252. [PMID: 34959653 PMCID: PMC8708085 DOI: 10.3390/ph14121252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/28/2021] [Indexed: 12/19/2022] Open
Abstract
Chemical investigation of the soft coral Cespitularia sp. led to the discovery of twelve new verticillane-type diterpenes and norditerpenes: cespitulins H-O (1-8), one cyclic diterpenoidal amide cespitulactam L (9), norditerpenes cespitulin P (10), cespitulins Q and R (11 and 12), four new sesquiterpenes: cespilins A-C (13-15) and cespitulolide (16), along with twelve known metabolites. The structures of these metabolites were established by extensive spectroscopic analyses, including 2D NMR experiments. Anti-inflammatory effects of the isolated compounds were studied by evaluating the suppression of pro-inflammatory protein tumor necrosis factor-α (TNF-α) and nitric oxide (NO) overproduction, and the inhibition of the gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide-induced dendritic cells. A number of these metabolites were found to exhibit promising anti-inflammatory activities.
Collapse
Affiliation(s)
- You-Cheng Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-C.C.)
| | - Yi-Chia Chu
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-C.C.)
| | - Chung-Wei Fu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
20
|
Ko W, Kim KW, Liu Z, Dong L, Yoon CS, Lee H, Kim YC, Oh H, Lee DS, Kim SC. Macluraxanthone B inhibits LPS-induced inflammatory responses in RAW264.7 and BV2 cells by regulating the NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 2021; 44:67-75. [PMID: 34821534 DOI: 10.1080/08923973.2021.2006215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The prenylated xanthones compounds, macluraxanthone B (MCXB) was isolated from the MeOH extracts of Cudrania tricuspidata. In this study, we investigated the effect of MCXB on inflammatory response. MATERIALS AND METHODS Anti-inflammatory effects of MCXB were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 and BV2 cells. We observed their anti-inflammatory effects by ELISA, western blot analysis, and immunofluorescence. RESULTS MCXB significantly inhibited the LPS-stimulated production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α in RAW264.7 and BV2 cells. MCXB also reduced the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins. Incubating cells with MCXB prevented subsequent activation of the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting the nuclear localization and DNA-binding activity of the p65 subunit induced by LPS. MCXB inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinases (MAPKs) in RAW264.7 and BV2 cells. MCXB induced the expression of heme oxygenase (HO)-1 protein, and the inhibitory effect of MCXB on nitric oxide production was partially reversed by a selective HO-1 inhibitor. DISCUSSION AND CONCLUSIONS Our results suggested that the anti-inflammatory effect of MCXB is partly regulated by HO-1 induction. In conclusion, MCXB could be a useful candidate for the development of therapeutic and preventive agents to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Linsha Dong
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Sam Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Protective Effect of Piplartine against LPS-Induced Sepsis through Attenuating the MAPKs/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. Pharmaceuticals (Basel) 2021; 14:ph14060588. [PMID: 34207356 PMCID: PMC8234963 DOI: 10.3390/ph14060588] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Piplartine (or Piperlongumine) is a natural alkaloid isolated from Piper longum L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE2, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1β production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1β, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.
Collapse
|
22
|
Lin CY, Kao SH, Hung LC, Chien HJ, Wang WH, Chang YW, Chen YH. Lipopolysaccharide-Induced Nitric Oxide and Prostaglandin E2 Production Is Inhibited by Tellimagrandin II in Mouse and Human Macrophages. Life (Basel) 2021; 11:life11050411. [PMID: 33946374 PMCID: PMC8146495 DOI: 10.3390/life11050411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Sepsis develops from a serious microbial infection that causes the immune system to go into overdrive. The major microorganisms that induce sepsis are Gram-negative bacteria with lipopolysaccharide (LPS) in their cell walls. Nitric oxide (NO) and cyclooxygenase-2 (COX-2) are the key factors involved in the LPS-induced pro-inflammatory process. This study aimed to evaluate the effects of polyphenol Tellimagrandin II (TGII) on anti-inflammatory activity and its underlying basic mechanism in murine macrophage cell line RAW 264.7 and human monocyte-derived macrophages. Macrophages with more than 90% cell viability were found in the cytotoxicity assay under 50 μM TGII. Pre- or post-treatment with TGII significantly reduced LPS-induced inducible nitric oxide synthase (NOS2) protein and mRNA expression, reducing LPS-induced COX-2 protein. Downstream of NOS2 and COX-2, NO and prostaglandin E2 (PGE2) were significantly inhibited by TGII. Upstream of NOS2 and COX-2, phospho-p65, c-fos and phospho-c-jun were also reduced after pre-treatment with TGII. Mitogen-activated protein kinases (MAPKs) are also critical to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) stimulation, and phospho-p38 expression was found to have been blocked by TGII. TGII efficiently reduces LPS-induced NO production and its upstream regulatory factors, suggesting that TGII may be a potential therapeutic agent for sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
- Department of Surgical Sciences, Uppsala University, 751 23 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Shih-Han Kao
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Ling-Chien Hung
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Hsin-Ju Chien
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
| | - Wen-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Yu-Wei Chang
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-Y.L.); (H.-J.C.); (W.-H.W.)
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-H.K.); (L.-C.H.); (Y.-W.C.)
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 5677); Fax: +886-7-322-8547
| |
Collapse
|
23
|
Lin CY, Huang CH, Wang WH, Tenhunen J, Hung LC, Lin CC, Chen YC, Chen YH, Liao WT. Mono-(2-ethylhexyl) phthalate Promotes Dengue Virus Infection by Decreasing IL-23-Mediated Antiviral Responses. Front Immunol 2021; 12:599345. [PMID: 33659001 PMCID: PMC7919524 DOI: 10.3389/fimmu.2021.599345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Exposure to environmental hormones such as di(2-ethylhexyl) phthalate (DEHP) has become a critical human health issue globally. This study aimed to investigate the correlations between DEHP/mono-(2-ethylhexyl) phthalate (MEHP) levels and macrophage-associated immune responses and clinical manifestations in dengue virus (DV)-infected patients. Among 89 DV-infected patients, those with DV infection-related gastrointestinal (GI) bleeding (n = 13, 15% of patients) had significantly higher DEHP exposure than those without GI bleeding (n = 76, 85% of patients), which were 114.2 ng/ml versus 52.5 ng/ml ΣDEHP in urine; p = 0.023). In an in vitro study using cultured human monocyte-derived macrophages (MDMs) to investigate the effects of MEHP, treatment increased IL-1β and TNF-α release but decreased IL-23 release, with negative correlations observed between urine ΣDEHP and serum IL-23 levels in patients. MEHP-treated MDMs had lower antiviral Th17 response induction activity in mixed T-cell response tests. The in vitro data showed that MEHP increased DV viral load and decreased IL-23 release dose-dependently, and adding IL-23 to MEHP-exposed MDMs significantly reduced the DV viral load. MEHP also suppressed IL-23 expression via the peroxisome proliferator-activated receptor-gamma (PPAR-γ) pathway. Further, the PPAR-γ antagonist GW9662 significantly reversed MEHP-induced IL-23 suppression and reduced the DV viral load. These study findings help to explain the associations between high MEHP levels and the high global burden of dengue disease.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgical Sciences, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ling-Chien Hung
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chou Lin
- Department of Biotechnology, College of Biomedical Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Cheng Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Diseases Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Biomedical Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Gunjegaonkar SM, Wankhede SB, Shanmugarajan TS, Shinde SD. Bioactive role of plant stress hormone methyl jasmonate against lipopolysaccharide induced arthritis. Heliyon 2020; 6:e05432. [PMID: 33225090 PMCID: PMC7666351 DOI: 10.1016/j.heliyon.2020.e05432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 11/02/2020] [Indexed: 10/26/2022] Open
Abstract
The current investigation was carried out to screen antiarthritic potential of Methyl Jasmonate (MJ) against lipopolysaccharide (LPS) induced arthritis. Cartilage damage was induced in experimental animals by intraplantar administration of LPS (1 mg/kg) and antiarthritic effect of MJ was screened in two doses of MJ-1 (20 mg/kg), MJ-2 (40 mg/kg) by intraperitoneally administration. Indomethacin (30 mg/kg p.o.) was used as standard drug. The severity of arthritis was evaluated by assessing arthritis score, secondary lesions, motility test, stair climbing ability, and dorsal flexion pain score method. The estimation of blood cytokine tumor necrosis factor- aplha (TNF-α),interleukine (IL-2 and IL-6) and thymus/spleen index was carried out to access the severity of inflammation. Estimation of hepaticenzymatic antioxidant activity superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx)and radiological examination was carried out on 28th day. Results indicated that MJ showed significant reduction in severity of arthritis by decreasing arthritis score, secondary lesions where as significant increase in motility, climbing ability and flexion pain score was observed. Significant decreased in blood cytokine viz. TNF-α, IL-2, IL-6 andthymus/spleen index was observed in MJ treated animals in dose dependent manner. MJ treated animals showed significant increased and restoration of hepatic antioxidant enzymatic activityof SOD, CAT, GSH, GPx where asradiological examination indicates protective effect on joint structure as compared to LPS treated rats. These current studies conclude that MJ has protective role in arthritis.
Collapse
Affiliation(s)
- S M Gunjegaonkar
- JSPM's Charak College of Pharmacy and Research, Department of Pharmacology, Gate No. 720/1&2, Pune-Nagar Road, Wagholi, 412207, Pune, Maharashtra, India
| | - S B Wankhede
- JSPM's Charak College of Pharmacy and Research, Department of Pharmaceutical Chemistry, Gate No. 720/1&2, Pune-Nagar Road, Wagholi, 412207, Pune, Maharashtra, India
| | - T S Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies, School of Pharmaceutical Sciences, Department of Pharmaceutics, Velan Nagar, P. V. Vaithiyalingam Road, Pallavaram, Chennai, 600 117, Tamil Nadu, India
| | - S D Shinde
- Shri. R. D. Bhakt College of Pharmacy, Department of Pharmacology, Jalna 431203, Maharashtra, India
| |
Collapse
|
25
|
Vo TLT, Yang NC, Yang SE, Chen CL, Wu CH, Song TY. Effects of Cajanus cajan (L.) millsp. roots extracts on the antioxidant and anti-inflammatory activities. CHINESE J PHYSIOL 2020; 63:137-148. [PMID: 32594067 DOI: 10.4103/cjp.cjp_88_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cajanus cajan (L.) Millsp., also named pigeon pea, is widely grown in the tropics and the subtropics. C. cajan roots (CR) and ribs stewed in hot water have been used as a traditional medicine in various cultures to treat diabetes. The purpose of this study was to determine the functional components of hot water (WCR) and 50%, 95% ethanol extracts (EECR50 and EECR95) from CR, then evaluating their antioxidant and anti-inflammatory effects. The results indicated that EECR95 had higher polyphenol, especially the isoflavones (e.x. daidzein, genistein, and cajanol) than those of the other extracts, and it also exhibited the most potent anti-oxidative activities by in vitro antioxidant assay. In the lipopolysaccharide-stimulated RAW 264.7 cells, we found that EECR95 significantly decreased intracellular reactive oxygen species and significantly enhanced the activities of superoxide dismutase and catalase. Mechanism studies showed that EECR95 mainly activated nuclear factor (NF) erythroid 2-related factor 2/antioxidant protein heme oxygenase-1 and inhibited nuclear factor kappa B (NF-κB) signaling pathway, and thus exhibited antioxidant and anti-inflammatory effects. Overall, this study suggests that CR may have the potential to be developed as a biomedical material and that genistein, which has relatively high uptakes (3.44% for the pure compound and 1.73% for endogenous genistein of EECR95) at 24 h of incubation with RAW 264.7 cells, could be the main active component of CR.
Collapse
Affiliation(s)
- Thuy-Lan Thi Vo
- Department of Food Science and Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Er Yang
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan
| | - Chien-Lin Chen
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua, Taiwan
| | - Chi-Hao Wu
- Undergraduate Program of Nutrition Science, School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan, Taiwan
| | - Tuzz-Ying Song
- Department of Food Science and Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
26
|
Cho BO, Che DN, Kim JS, Kim JH, Shin JY, Kang HJ, Jang SI. In vitro Anti-Inflammatory and Anti-Oxidative Stress Activities of Kushenol C Isolated from the Roots of Sophora flavescens. Molecules 2020; 25:molecules25081768. [PMID: 32290603 PMCID: PMC7221590 DOI: 10.3390/molecules25081768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/10/2023] Open
Abstract
Kushenol C (KC) is a prenylated flavonoid isolated from the roots of Sophoraflavescens aiton. Little is known about its anti-inflammatory and anti-oxidative stress activities. Here, we investigated the anti-inflammatory and anti-oxidative stress effects of KC in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, and tert-butyl hydroperoxide (tBHP)-induced oxidative stress in HaCaT cells. The results demonstrated that KC dose-dependently suppressed the production of inflammatory mediators, including NO, PGE2, IL-6, IL1β, MCP-1, and IFN-β in LPS-stimulated RAW264.7 macrophages. The study demonstrated that the inhibition of STAT1, STAT6, and NF-κB activations by KC might have been responsible for the inhibition of NO, PGE2, IL-6, IL1β, MCP-1, and IFN-β in the LPS-stimulated RAW264.7 macrophages. KC also upregulated the expression of HO-1 and its activities in the LPS-stimulated RAW264.7 macrophages. The upregulation of Nrf2 transcription activities by KC in the LPS-stimulated RAW264.7 macrophages was demonstrated to be responsible for the upregulation of HO-1 expression and its activity in LPS-stimulated RAW264.7 macrophages. In HaCaT cells, KC prevented DNA damage and cell death by upregulating the endogenous antioxidant defense system involving glutathione, superoxide dismutase, and catalase, which prevented reactive oxygen species production from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in HaCaT cells. The upregulated activation of Nrf2 and Akt in the PI3K-Akt signaling pathway by KC was demonstrated to be responsible for the anti-oxidative stress activity of KC in HaCaT cells. Collectively, the study suggests that KC can be further investigated as a potential anti-inflammatory candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Byoung Ok Cho
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
- Correspondence: (B.O.C.); (S.I.J.); Tel.: +82-63-221-8005 (B.O.C.); +82-63-220-3124 (S.I.J.); Fax: +82-63-221-8035 (B.O.C.); +82-63-220-2054 (S.I.J.)
| | - Denis Nchang Che
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
- Department of Food Science and Technology, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea
| | - Ji-Su Kim
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
| | - Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do 56212, Korea;
| | - Jae Young Shin
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
| | - Seon Il Jang
- Research Institute, Ato Q&A Co., LTD, Jeonju-si, Jeollabuk-do 54840, Korea; (J.Y.S.); (H.J.K.)
- Department of Health Management, Jeonju University, Jeonju-si, Jeollabuk-do 55069, Korea; (D.N.C.); (J.-S.K.)
- Correspondence: (B.O.C.); (S.I.J.); Tel.: +82-63-221-8005 (B.O.C.); +82-63-220-3124 (S.I.J.); Fax: +82-63-221-8035 (B.O.C.); +82-63-220-2054 (S.I.J.)
| |
Collapse
|
27
|
He Y, Cao L, Wang L, Liu L, Huang Y, Gong X. Metformin Inhibits Proliferation of Human Thyroid Cancer TPC-1 Cells by Decreasing LRP2 to Suppress the JNK Pathway. Onco Targets Ther 2020; 13:45-50. [PMID: 32021253 PMCID: PMC6954091 DOI: 10.2147/ott.s227915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To uncover the potential effect of metformin on proliferation and apoptosis of thyroid cancer TPC-1 cell line, and the underlying mechanism. Methods Viability, apoptosis and LRP2 level in TPC-1 cells treated with different doses of metformin for different time points were determined. Besides, protein levels of p-JNK1 and c-Jun N-terminal kinases (JNK) in metformin-treated TPC-1 cells were detected by Western blot. Regulatory effects of LRP2 on the JNK pathway and cell viability in metformin-treated TPC-1 cells were assessed. Results Viability in TPC-1 cells gradually decreased with the treatment of increased doses of metformin either for 24 h or 48 h. The apoptotic rate was concentration-dependently elevated by metformin treatment. Relative levels of LRP2 and p-JNK1 were concentration-dependently downregulated by metformin treatment. In addition, overexpression of LRP2 partially abolished the inhibitory effect of metformin on the viability of TPC-1 cells. Conclusion Metformin treatment suppresses the proliferative ability and induces apoptosis of TPC-1 cells by downregulating LRP2 to block the JNK pathway.
Collapse
Affiliation(s)
- Yang He
- Department of Endocrinology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| | - Lingling Cao
- Department of Endocrinology, Jiujiang No 1 People's Hospital (Affiliated Jiujiang Hospital of Nanchang University), Jiujiang, People's Republic of China
| | - Li Wang
- Department of Endocrinology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China.,School of Medicine, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Lingping Liu
- Department of Endocrinology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| | - Ying Huang
- Department of Endocrinology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| | - Xuan Gong
- Department of Endocrinology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| |
Collapse
|
28
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
29
|
Chang YW, Huang WC, Lin CY, Wang WH, Hung LC, Chen YH. Tellimagrandin II, A Type of Plant Polyphenol Extracted from Trapa bispinosa Inhibits Antibiotic Resistance of Drug-Resistant Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20225790. [PMID: 31752109 PMCID: PMC6888525 DOI: 10.3390/ijms20225790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a critical global concern. Identifying new candidates of anti-S. aureus agents is urgently required because the therapeutic strategies for infected patients are limited currently. Therefore, the present study investigated whether Tellimagrandin II (TGII), a pure compound extracted from the shells of Trapa bispinosa, exhibits antibacterial effects against MRSA. We first showed that TGII exerted potent inhibitory activity against MRSA with a minimum inhibitory concentration of 128 μg/mL. The obtained fractional inhibitory concentration suggested that TGII could alone exert antistaphylococcal activity, and TGII combined with low doses of antibiotics displayed synergistic effects against MRSA. Moreover, we found that TGII exerted bactericidal activity by reducing the expression of mecA followed by the negative regulation of the penicillin-binding protein 2a (PBP2a) of MRSA. Transmission electron microscopy (TEM) images further confirmed that TGII destroyed the integrity of the cell wall of MRSA and caused the loss of cytoplasm content. In conclusion, we evidenced the antibacterial effects of TGII against MRSA, which enables the effective dose of current antibiotics to be reduced and the predicament of drug-resistant S. aureus isolates to be overcome.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-W.C.); (C.-Y.L.)
- Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung 95043, Taiwan
| | - Wan-Chun Huang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
| | - Chun-Yu Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-W.C.); (C.-Y.L.)
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Wen-Hung Wang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ling-Chien Hung
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (W.-C.H.); (W.-H.W.); (L.-C.H.)
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu 30010, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 5677)
| |
Collapse
|
30
|
Kim MS, Park JS, Chung YC, Jang S, Hyun CG, Kim SY. Anti-Inflammatory Effects of Formononetin 7- O-phosphate, a Novel Biorenovation Product, on LPS-Stimulated RAW 264.7 Macrophage Cells. Molecules 2019; 24:molecules24213910. [PMID: 31671623 PMCID: PMC6864718 DOI: 10.3390/molecules24213910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.
Collapse
Affiliation(s)
- Min-Seon Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea.
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), 679, Saimdang-ro 25451, Korea.
| | - You Chul Chung
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Sungchan Jang
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea.
| | - Chang-Gu Hyun
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea.
| | - Seung-Young Kim
- Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Korea.
| |
Collapse
|
31
|
Martín-Sierra C, Laranjeira P, Domingues MR, Paiva A. Lipoxidation and cancer immunity. Redox Biol 2019; 23:101103. [PMID: 30658904 PMCID: PMC6859558 DOI: 10.1016/j.redox.2019.101103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoxidation is a well-known reaction between electrophilic carbonyl species, formed during oxidation of lipids, and specific proteins that, in most cases, causes an alteration in proteins function. This can occur under physiological conditions but, in many cases, it has been associated to pathological process, including cancer. Lipoxidation may have an effect in cancer development through their effects in tumour cells, as well as through the alteration of immune components and the consequent modulation of the immune response. The formation of protein adducts affects different proteins in cancer, triggering different mechanism, such as proliferation, cell differentiation and apoptosis, among others, altering cancer progression. The divergent results obtained documented that the formation of lipoxidation adducts can have either anti-carcinogenic or pro-carcinogenic effects, depending on the cell type affected and the specific adduct formed. Moreover, lipoxidation adducts may alter the immune response, consequently causing either positive or negative alterations in cancer progression. Therefore, in this review, we summarize the effects of lipoxidation adducts in cancer cells and immune components and their consequences in the evolution of different types of cancer.
Collapse
Affiliation(s)
- C Martín-Sierra
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - P Laranjeira
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M R Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal.
| |
Collapse
|
32
|
Li YZ, Chen JH, Tsai CF, Yeh WL. Anti-inflammatory Property of Imperatorin on Alveolar Macrophages and Inflammatory Lung Injury. JOURNAL OF NATURAL PRODUCTS 2019; 82:1002-1008. [PMID: 30892032 DOI: 10.1021/acs.jnatprod.9b00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Imperatorin is one of the furanocoumarin derivatives and exists in many medicinal herbs with anticancer, antiviral, antibacterial, and antihypertensive activities. In this study, we examined the anti-inflammatory effects of imperatorin on inflammation-associated lung diseases. Imperatorin reduced iNOS and COX-2 expression and also IL-6 and TNFα production enhanced by zymosan. Imperatorin also inhibited the signaling pathways of JAK/STAT and NF-κB. Moreover, in vivo study also revealed that zymosan-induced immune cell infiltration, pulmonary fibrosis, and edema were relieved by imperatorin in mice. We found that imperatorin exerts anti-inflammatory effects that are associated with amelioration of lung inflammation, edema, and rapid fibrosis. Studies on alveolar macrophages also reveal that imperatorin reduced the production of pro-inflammatory mediators and cytokines and inhibited pro-inflammatory JAK1/STAT3 and NF-κB signaling pathways. These results indicate that imperatorin may be a potential anti-inflammatory agent for inflammatory-associated lung diseases.
Collapse
Affiliation(s)
- Ya-Zhen Li
- Department of Biological Science and Technology , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
| | - Jia-Hong Chen
- Department of General Surgery , Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation , Taichung , 42743 , Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology , Asia University , No. 500 Lioufeng Road , Taichung , 41354 , Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
- Research Center for Tumor Medical Science , China Medical University , No. 91 Hsueh-Shih Road , Taichung , 40402 , Taiwan
| |
Collapse
|
33
|
Hegedűs C, Kovács K, Polgár Z, Regdon Z, Szabó É, Robaszkiewicz A, Forman HJ, Martner A, Virág L. Redox control of cancer cell destruction. Redox Biol 2018; 16:59-74. [PMID: 29477046 PMCID: PMC5842284 DOI: 10.1016/j.redox.2018.01.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Redox regulation has been proposed to control various aspects of carcinogenesis, cancer cell growth, metabolism, migration, invasion, metastasis and cancer vascularization. As cancer has many faces, the role of redox control in different cancers and in the numerous cancer-related processes often point in different directions. In this review, we focus on the redox control mechanisms of tumor cell destruction. The review covers the tumor-intrinsic role of oxidants derived from the reduction of oxygen and nitrogen in the control of tumor cell proliferation as well as the roles of oxidants and antioxidant systems in cancer cell death caused by traditional anticancer weapons (chemotherapeutic agents, radiotherapy, photodynamic therapy). Emphasis is also put on the role of oxidants and redox status in the outcome following interactions between cancer cells, cytotoxic lymphocytes and tumor infiltrating macrophages.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|