1
|
Ahmed F, Abousaad S, Abouzeid A, Adhiambo C, Ongeri EM. Meprin β regulates osteopontin-signaling in ischemia/reperfusion-induced kidney injury. BMC Nephrol 2025; 26:90. [PMID: 39987047 PMCID: PMC11846229 DOI: 10.1186/s12882-025-03995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/30/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Meprin metalloproteases have been implicated in the pathology of ischemia/reperfusion (IR) induced kidney injury. Meprin β proteolytically processes several mediators of cell signaling pathways involved in apoptosis and extracellular matrix metabolism. We previously showed that meprin β cleaves osteopontin (OPN) in vitro. The objective of the current study was to determine how meprin β expression affects OPN and downstream mediators of the OPN-signaling pathway in IR-induced kidney injury. METHODS Ischemia/Reperfusion injury was induced in wild-type (WT) and meprin β knockout (βKO) mice. Blood samples and kidney tissues were obtained at 24 h post-IR. The levels of OPN, Caspase-3, Bcl-2, and NFκB were evaluated using real-time PCR, western blot, and immunohistochemical approaches. Data analysis utilized a combination of 2-way ANOVA and unpaired t test. RESULTS OPN mRNA increased in both genotypes at 24 h post-IR. Immunohistochemical staining showed IR-associated increases in the levels of OPN in both genotypes. Additionally, we observed higher levels of OPN in the lumen of proximal tubules in WT only, suggesting that meprin β contributes to enhanced release of OPN into filtrate and ultimately into urine. Immunohistochemical staining showed significant increases in the levels of Caspase-3 and NFκB in select tubules of WT only, while Bcl-2 staining intensity increased significantly in both genotypes at 24 h post-IR. CONCLUSIONS These findings suggest that meprin β modulates OPN levels in IR-induced kidney injury and impacts apoptotic genes regulated by the OPN signaling pathway. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Faihaa Ahmed
- Department of Kinesiology, North Carolina A&T State University, Greensboro, NC, 27411, USA
- Department of Biology, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Shaymaa Abousaad
- Department of Kinesiology, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Ayman Abouzeid
- Department of Agribusiness, Applied Economics and Agriscience Education, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Christine Adhiambo
- Department of Kinesiology, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Elimelda Moige Ongeri
- Department of Kinesiology, North Carolina A&T State University, Greensboro, NC, 27411, USA.
| |
Collapse
|
2
|
Ham J, Koh J, Kim J, Cho JY, Kim T, Chung DH, Bae YS, Kim HY. Modulating the PD-1-FABP5 axis in ILC2s to regulate adipose tissue metabolism in obesity. Mol Ther 2025:S1525-0016(25)00105-4. [PMID: 39949060 DOI: 10.1016/j.ymthe.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
Obesity is closely linked to metabolic dysregulation and chronic inflammation, which significantly impact immune cell functions in adipose tissue. Type 2 innate lymphoid cells (ILC2s) have emerged as key regulators of energy homeostasis, positioning them as promising targets for obesity management. However, the mechanisms governing ILC2 activity and their therapeutic potential in obesity are not fully understood. In this study, we demonstrate that ILC2s in obese adipose tissue exhibit increased PD-1 expression, leading to an exhausted phenotype with diminished cytokine production and proliferation. Elevated osteopontin (OPN) levels in adipose tissue are associated with higher PD-1 expression on ILC2s, while adipocyte-derived PD-L1 interacts with PD-1 to further impair ILC2 functionality. Importantly, blocking PD-1 signaling prevents weight gain and alleviates obesity-related metabolic dysfunctions. In addition, the adoptive transfer of PD-1-deficient ILC2s reduces diabetic phenotypes in obese models. Mechanistically, PD-1 signaling drives metabolic reprogramming in ILC2s, affecting fatty acid uptake and energy metabolism through the downregulation of fatty acid binding protein 5 (FABP5). These results, corroborated by findings in human adipose tissue, suggest a conserved OPN-PD-1 axis. Our study identifies the OPN-PD-1-FABP5 pathway as a crucial regulator of ILC2 function in adipose tissue and presents an emerging immune cell-based therapeutic target for obesity treatment.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical and Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, South Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, South Korea; CIRNO, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jungeun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, South Korea
| | - TaeSoo Kim
- Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, South Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea; CIRNO, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical and Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, South Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, South Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, South Korea; CIRNO, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Sadek KM, Khalifa NE, Alshial EE, Abdelnour SA, Mohamed AAR, Noreldin AE. Potential hazards of bisphenol A on the male reproductive system: Induction of programmed cell death in testicular cells. J Biochem Mol Toxicol 2024; 38:e23844. [PMID: 39252451 DOI: 10.1002/jbt.23844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman E Alshial
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amany A-R Mohamed
- Departmentof Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Cavazza A, Triantafyllou E, Savoldelli R, Mujib S, Jerome E, Trovato FM, Artru F, Sheth R, Huang XH, Ma Y, Dazzi F, Pirani T, Antoniades CG, Lee WM, McPhail MJ, Karvellas CJ. Macrophage activation markers are associated with infection and mortality in patients with acute liver failure. Liver Int 2024; 44:1900-1911. [PMID: 38588014 PMCID: PMC11466005 DOI: 10.1111/liv.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND AIMS Acute liver failure is a multisystem disorder with a high mortality and frequent need for emergency liver transplantation. Following massive innate immune system activation, soluble markers of macrophage activation are released during liver damage and their association with disease severity and prognosis requires exploration. METHODS Patients ALF from the United States Acute Liver Failure Study Group (USALFSG, n = 224) and King's College Hospital (n = 40) together with healthy controls (HC, n = 50) were recruited. Serum from early (Days 1-3) and late (>Day 3) time points were analysed for MAMs by enzyme-linked immunosorbent assay correlated to markers of illness severity and 21-day spontaneous survival. Surface expression phenotyping was performed via Flow Cytometry on CD14+ monocytes. RESULTS All MAMs serum concentrations were significantly higher in ALF compared to controls (p < .0001). sCD206 concentration was higher in early and late stages of the disease in patients with bacteraemia (p = .002) and infection in general (p = .006). In MELD-adjusted multivariate modelling, sCD206 and sCD163 were independently associated with mortality. CD14+ monocyte expression of CD206 (p < .001) was higher in patients with ALF compared with controls and correlated with SOFA score (p = .018). sCD206 was independently validated as a predictor of infection in an external cohort. CONCLUSIONS sCD206 is increased in serum of ALF patients with infections and poor outcome and is upregulated on CD14+ monocytes. Later measurements of sCD163 and sCD206 during the evolution of ALF have potential as mechanistic predictors of mortality. sCD206 should be explored as a biomarker of sepsis and mortality in ALF.
Collapse
Affiliation(s)
- Anna Cavazza
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Roberto Savoldelli
- School of Cardiovascular and Metabolic Medicine and ScienceKing's College LondonLondonUK
| | - Salma Mujib
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Ellen Jerome
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Francesca M. Trovato
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Florent Artru
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Roosey Sheth
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Xiao Hong Huang
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
| | - Yun Ma
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine and ScienceKing's College LondonLondonUK
| | - Tasneem Pirani
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Charalambos G. Antoniades
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - William M. Lee
- Division of Digestive and Liver DiseasesUT Southwestern Medical CenterDallasTexasUSA
| | - Mark J. McPhail
- Department of Inflammation Biology, School of Inflammation and Microbial Science, Institute of Liver StudiesKing's College LondonLondonUK
- Liver Intensive Therapy UnitInstitute of Liver Studies, King's College HospitalLondonUK
| | - Constantine J. Karvellas
- Division of Gastroenterology (Liver Unit), Department of Critical Care MedicineUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
5
|
Deguchi S, Iwakami A, Tujigiwa M, Otake H, Mano Y, Yamamoto N, Nakazawa Y, Misra M, Nagai N. Recovery from indomethacin-induced gastrointestinal bleeding by treatment with teprenone. J Pharm Health Care Sci 2023; 9:44. [PMID: 38012767 PMCID: PMC10683117 DOI: 10.1186/s40780-023-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Gastrointestinal injuries caused by nonsteroidal anti-inflammatory drugs (NSAIDs) is a serious side effect in patients with rheumatoid arthritis (RA). However, effective therapeutic strategies have yet to be established. In this study, we investigated the therapeutic effects of teprenone (TEP), a gastric mucosal protective drug, on NSAID-induced gastrointestinal injuries in rats with RA (AA rats). METHODS Gastrointestinal injury was induced by oral administration of indomethacin (IMC), a typical NSAID. TEP was orally administered after IMC-induced gastrointestinal bleeding, and the stomach, jejunum, and ileum were excised. RESULTS On day 14 of IMC administration, lesion areas in the stomach, jejunum, and ileum were significantly larger in AA rats than in normal rats. When TEP was orally administered to AA rats, the lesion areas in the stomach, jejunum, and ileum significantly decreased compared with those in control rats (IMC-induced AA rats). Therefore, we measured NOS2 mRNA and NO levels, which were significantly decreased in rats with IMC-induced AA after treatment with TEP. CONCLUSIONS These results suggest that the oral administration of TEP may be useful for the treatment of NSAID-induced gastrointestinal injuries in patients with RA.
Collapse
Affiliation(s)
- Saori Deguchi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka,Osaka, 577-8502, Japan
| | - Ayusa Iwakami
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka,Osaka, 577-8502, Japan
| | - Mizuki Tujigiwa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka,Osaka, 577-8502, Japan
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka,Osaka, 577-8502, Japan
| | - Yu Mano
- Department of Pharmacy, Bell Land General Hospital, 500-3, Higashiyama, Naka-ku, Sakai, Osaka, 599-8247, Japan
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Manju Misra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research; Opposite AirForce Station, Palaj Basan Road, Village Palaj, Gandhinagar, 382355, Gujarat, India
- Graduate school of Pharmacy, Gujarat Technological University Gandhinagar Campus Nr. Government Polytechnic K-6 Circle, E-4 Electronic Estate G.I.D.C, Sector-26, Gandhinagar, 382028, Gujarat, India
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka,Osaka, 577-8502, Japan.
| |
Collapse
|
6
|
Gustafson Å, Elfsmark L, Karlsson T, Jonasson S. N-acetyl cysteine mitigates lung damage and inflammation after chlorine exposure in vivo and ex vivo. Toxicol Appl Pharmacol 2023; 479:116714. [PMID: 37820773 DOI: 10.1016/j.taap.2023.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The objective of this study was to explore the effects of antioxidant treatments, specifically N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA), in a mouse model of chlorine (Cl2)-induced lung injury. Additionally, the study aimed to investigate the utility of pig precision-cut lung slices (PCLS) as an ex vivo alternative for studying the short-term effects of Cl2 exposure and evaluating antioxidant treatments. The toxicological responses were analyzed in Cl2-exposed mice (inflammation, airway hyperresponsiveness (AHR)) and PCLS (viability, cytotoxicity, inflammatory mediators). Airways contractions were assessed using a small ventilator for mice and electric-field stimulation (EFS) for PCLS. Antioxidant treatments were administered to evaluate their effects. In Cl2-exposed mice, NAC treatment did not alleviate AHR, but it did reduce the number of neutrophils in bronchoalveolar lavage fluid and inflammatory mediators in lung tissue. In PCLS, exposure to Cl2 resulted in concentration-dependent toxicity, impairing the lung tissue's ability to respond to EFS-stimulation. NAC treatment increased viability, mitigated the toxic responses caused by Cl2 exposure, and maintained contractility comparable to unexposed controls. Interestingly, NACA did not provide any additional treatment effect beyond NAC in both models. In conclusion, the establishment of a pig model for Cl2-induced lung damage supports further investigation of NAC as a potential treatment. However, the lack of protective effects on AHR after NAC treatment in mice suggests that NAC alone may not be sufficient as a complete treatment for Cl2 injuries. Optimization of existing medications with a polypharmacy approach may be more successful in addressing the complex sequelae of Cl2-induced lung injury.
Collapse
Affiliation(s)
- Åsa Gustafson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Terese Karlsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
7
|
Yan Z, Hu X, Tang B, Deng F. Role of osteopontin in cancer development and treatment. Heliyon 2023; 9:e21055. [PMID: 37867833 PMCID: PMC10587537 DOI: 10.1016/j.heliyon.2023.e21055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein secreted intracellularly and extracellularly by various cell types, including NK cells, macrophages, osteoblasts, T cells, and cancer cells. Owing to its diverse distribution, OPN plays a role in cell proliferation, stem-cell-like properties, epithelial-mesenchymal transformation, glycolysis, angiogenesis, fibrosis, invasion, and metastasis. In this review, we discuss recent findings, interpret representative studies on OPN expression in cancer, clarify that elevated OPN levels are observed in multiple cancer types (including colorectal, breast, lung, and liver cancer), and explore how OPN-macrophage interactions shape the tumor microenvironment. We also summarize progress in OPN research with regard to tumor therapy, which can facilitate the development of novel anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Zhihua Yan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
8
|
Yoelinda VT, Arifiantini RI, Solihin DD, Agil M, Setiadi DR, Maulana T, Purwantara B, Hastuti YT, Manansang J, Sajuthi D. Correlation between Post-Thaw Spermatozoa Quality of the Endangered Javan Banteng with OPN Gene Expression. Vet Med Int 2023; 2023:9982422. [PMID: 37448586 PMCID: PMC10338126 DOI: 10.1155/2023/9982422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
The role of ex situ conservation facilities or captivity through captive breeding programs is essential in the conservation of the endangered Javan banteng. The development of semen cryopreservation may assist on one side of the conservation plan. However, the male Javan banteng reproductive capability must be considered as it influences the targeted outputs. Studying the potential biomarker for fertility such as osteopontin gene expression is also expected to help predict male fertility. Therefore, this study aimed to analyze the quality of spermatozoa after thawing to help predict the male reproductive capability of Javan banteng. Furthermore, this study investigated the potential role of osteopontin gene expression in male Javan banteng fertility. A positive reinforcement approach was used to accustom the male and female animals as we focused on establishing a collection procedure using neither sedation nor anaesthesia. Semen samples were collected at Taman Safari Indonesia, Bogor, in accordance with the female banteng receptivity. Semen samples were then evaluated and then cryopreserved under field conditions. Our study showed the different predicted reproductive capability of the Javan banteng based on the post-thaw spermatozoa quality, which showed significant differences. The OPN gene showed positive correlations with the progressive motility (r = 0.711, p = 0.048), viability (r = 0.822, p = 0.012), and acrosomal integrity (r = 0.665, p = 0.072) of Javan banteng spermatozoa after thawing. Our study demonstrated the predicted Javan banteng reproductive capability based on various post-thaw spermatozoa variables. This finding is also the first report on the OPN gene potential to be developed as the assessment tool of post-thaw spermatozoa quality of the male Javan banteng. The findings in our study may help give recommendations for future breeding programs, especially in the ex situ conservation sites.
Collapse
Affiliation(s)
- Vincentia Trisna Yoelinda
- Study Program of Reproductive Biology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java 16680, Indonesia
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Raden Iis Arifiantini
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java 16680, Indonesia
| | | | - Muhammad Agil
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java 16680, Indonesia
| | - Dedi Rahmat Setiadi
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java 16680, Indonesia
| | - Tulus Maulana
- Research Centre of Applied Zoology, National Research and Innovation Agency, Cibinong, Bogor, West Java 16911, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java 16680, Indonesia
| | - Yohana Tri Hastuti
- Taman Safari Indonesia Bogor, Cisarua, Bogor, West Java 16750, Indonesia
| | - Jansen Manansang
- Taman Safari Indonesia Bogor, Cisarua, Bogor, West Java 16750, Indonesia
| | - Dondin Sajuthi
- Division of Internal Medicine, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, West Java 16680, Indonesia
| |
Collapse
|
9
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Hautz T, Salcher S, Fodor M, Sturm G, Ebner S, Mair A, Trebo M, Untergasser G, Sopper S, Cardini B, Martowicz A, Hofmann J, Daum S, Kalb M, Resch T, Krendl F, Weissenbacher A, Otarashvili G, Obrist P, Zelger B, Öfner D, Trajanoski Z, Troppmair J, Oberhuber R, Pircher A, Wolf D, Schneeberger S. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver. Nat Commun 2023; 14:2285. [PMID: 37085477 PMCID: PMC10121614 DOI: 10.1038/s41467-023-37674-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Normothermic machine perfusion (NMP) has emerged as an innovative organ preservation technique. Developing an understanding for the donor organ immune cell composition and its dynamic changes during NMP is essential. We aimed for a comprehensive characterization of immune cell (sub)populations, cell trafficking and cytokine release during liver NMP. Single-cell transcriptome profiling of human donor livers prior to, during NMP and after transplantation shows an abundance of CXC chemokine receptor 1+/2+ (CXCR1+/CXCR2+) neutrophils, which significantly decreased during NMP. This is paralleled by a large efflux of passenger leukocytes with neutrophil predominance in the perfusate. During NMP, neutrophils shift from a pro-inflammatory state towards an aged/chronically activated/exhausted phenotype, while anti-inflammatory/tolerogenic monocytes/macrophages are increased. We herein describe the dynamics of the immune cell repertoire, phenotypic immune cell shifts and a dominance of neutrophils during liver NMP, which potentially contribute to the inflammatory response. Our findings may serve as resource to initiate future immune-interventional studies.
Collapse
Affiliation(s)
- T Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Sturm
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Trebo
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - G Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - S Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Martowicz
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - J Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Daum
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Kalb
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - T Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - F Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - P Obrist
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - R Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - D Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria.
| | - S Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Savran M, Ascı H, Erzurumlu Y, Ozmen O, Ilhan I, Sırın MC, Karakuyu NF, Karaibrahimoglu A. "Theranekron: A Novel Anti-inflammatory Candidate for Acetic Acid-Induced Colonic Inflammation in Rats". Mol Biol Rep 2022; 49:8753-8760. [PMID: 35939182 DOI: 10.1007/s11033-022-07722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized with chronic inflammation of gastrointestinal track. In the pathogenesis of IBD, inflammation is the main mechanism. Induction of inflammation triggers the oxidative stress that subsequently leading to apoptosis. Considering the all pathological mechanisms, many therapeutic agents have been used for IBD but because of serious side effects there is still a need for new therapeutic drugs. In this study, we aim to evaluate the possible protective effects of Theranekron (TH) on acetic acid (AA)- induced colonic damage and to describe the probable effect mechanisms of TH. MATERIALS AND RESULTS Fourty female adult Wistar albino rats were divided into 5 groups. Following 24 h fasting, colitis was induced by rectal instillation of AA. In TH group, a single dose of subcutaneous 0.2 ml TH was used. In treatment groups, 0.2 ml TH single dose or 100 mg/kg sulfasalazine (SS) for 7 days were used after colitis induction. Normal salin was used for all applications in control group. Histopathologically hemorrhage, edema and inflammatory reactions were seen in AA group. TH and SS decreased the severity of lesions. Nuclear factor kappa B, Serum amyloid A, C-reactive protein, Growth-related oncogene, and Osteopontin expressions were markedly increased in AA group and TH markedly reduced these expressions. In Western analysis, decreased NF-kB and caspase-3 levels were observed with TH. Oxidative markers did not changed significantly. CONCLUSIONS TH has a prominent anti-inflammatory effect on AA-induced colonic inflammation via NF-kB signaling whereas antiapoptic effects seem to be independent from this pathway.
Collapse
Affiliation(s)
- Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Ascı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ilter Ilhan
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - M Cem Sırın
- Department of Medical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Adnan Karaibrahimoglu
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Single-Cell RNA Transcriptomics Reveals the State of Hepatic Lymphatic Endothelial Cells in Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. J Clin Med 2022; 11:jcm11102910. [PMID: 35629036 PMCID: PMC9143330 DOI: 10.3390/jcm11102910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an acutely decompensated cirrhosis syndrome with high short-term mortality. Very little is known about the relationship between the lymphatic system and ACLF. We explored the role of hepatic lymphatic vessels (LVs) and lymphatic endothelial cells (LyECs) in ACLF using human liver samples with the help of single-cell RNA-sequencing (scRNA-seq) technology. Here, ACLF exhibited more severe liver injury and inflammation than cirrhosis, as indicated by significant increases in plasma levels of alanine/aspartate aminotransferases and total bilirubin. Compared with cirrhosis cases, the number of intrahepatic LVs was decreased significantly in ACLF patients. ScRNA-seq revealed that many monocyte/macrophages infiltrated into the liver of ACLF cases. Meanwhile, scRNA-seq revealed a group of apoptotic and dysfunctional LyECs, which were the result of secreted phosphoprotein 1 (SPP1) released from infiltrating monocyte/macrophages. In vitro, SPP1 increased the proportion of dead LyECs significantly and impaired the ability of tube formation of LyECs in a dose- and time-dependent manner. In conclusion, ACLF is associated with less LV and LyEC dysfunction, at least in part mediated by SPP1 released from infiltrating monocyte/macrophages. Hepatic LVs and LyECs can be a novel therapeutic strategy for ACLF.
Collapse
|
13
|
Colon Expression of Chemokines and Their Receptors Depending on the Stage of Colitis and Oat Beta-Glucan Dietary Intervention-Crohn's Disease Model Study. Int J Mol Sci 2022; 23:ijms23031406. [PMID: 35163326 PMCID: PMC8835763 DOI: 10.3390/ijms23031406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Crohn’s disease (CD), a condition characterized by chronic inflammation of the gastrointestinal tract with alternating periods of exacerbation and remission, is becoming common around the world. This study aimed to analyze the molecular mechanisms underlying the anti-inflammatory properties of oat beta-glucans of varying molar masses by modulating the expression of chemokines and their receptors as well as other proteins related to both stages of TNBS (2,4,6-trinitrobenzosulfonic acid)-induced colitis, which is an animal model of CD. The experiment involved 96 Sprague–Dawley rats, which were divided into two main groups: control and TNBS-induced colitis. Both groups of rats were further divided into three dietary subgroups, which were fed with standard feed or feed supplemented with low- or high-molar-mass oat beta-glucans for 3 (reflecting acute inflammation) or 7 days (reflecting pre-remission). The gene expression of chemokines and their receptors in the colon wall was determined by RT-PCR, and the expression of selected proteins in the mucosa was determined by immunohistochemical analysis. The results showed that acute and pre-remission stages of colitis were characterized by the increased gene expression of seven chemokines and four chemokine receptors in the colon wall as well as disrupted protein expression of CXCL1, CCL5, CXCR2, CCR5, and OPN in the mucosa. The consumption of oat beta-glucans resulted in decreased expression of most of these genes and modulated the expression of all proteins, with a stronger effect observed with the use of high-molar-mass beta-glucan. To summarize, dietary oat beta-glucans, particularly those of high molar mass, can reduce colitis by modulating the expression of chemokines and their receptors and certain proteins associated with CD.
Collapse
|
14
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
15
|
Chaikiawkeaw D, Khorattanakulchai N, Nammultriputtar K, Rattanapisit K, Everts V, Kubera A, Phoolchareon W, Pavasant P. Osteopontin induces osteogenic differentiation by human periodontal ligament cells via calcium binding domain-activin receptor-like kinase (ALK-1) interaction. J Periodontol 2021; 93:e13-e23. [PMID: 34453745 DOI: 10.1002/jper.21-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Recently we have generated recombinant human osteopontin (rhOPN) using a plant platform (Nicotiana benthamiana) and demonstrated, when coated on culture plates, its osteogenic induction capacity of human periodontal ligament (PDL) cells. The aim of this study is to elucidate the molecular mechanism underlying the rhOPN-induced osteogenic differentiation of human PDL cells. METHODS Full length rhOPN (FL-OPN) and three constructs of OPN containing integrin binding domain (N142), calcium binding domain (C122) and mutated calcium-binding domain (C122δ) were generated from N. benthamiana. Human PDL cells were isolated from extracted third molars and cultured on FL-OPN, N142, C122, or C122δ-coated surfaces. Real-time PCR and Western blot analyses were used to determine mRNA and protein expression. In vitro calcification was determined by Alizarin red staining. A chemical inhibitor and RNAi silencing were used to elucidate signaling pathways. In silico analyses were performed to predict the protein-protein interaction. In vivo analysis was performed using a rat calvaria defect model. RESULTS Human PDL cells seeded on FL-OPN and C122-coated surfaces significantly increased both mRNA and protein expression of osterix (OSX) and enhanced in vitro calcification. Soluble FL-OPN as well as a surface coated with N142 did not affect OSX expression. Inhibition of activin receptor-like kinase (ALK-1) abolished the induction of osterix expression. In silico analysis suggested a possible interaction between the calcium binding domain (CaBD) of OPN and ALK-1 receptor. C122, but not C122δ coated surfaces, induced the expression of p-Smad-1 and this induction was inhibited by an ALK-1 inhibitor and RNAi against ALK-1. In vivo data showed that 3D porous scaffold containing C-122 enhanced new bone formation as compared to scaffold alone. CONCLUSION The results suggest that next to full length OPN, the CaBD of OPN, if coated to a surface, induces osteogenic differentiation via interaction with ALK-1 receptor.
Collapse
Affiliation(s)
- Daneeya Chaikiawkeaw
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Research Unit for Plant-Produced Pharmaceuticals, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasertsart University, Bangkok, Thailand
| | - Waranyoo Phoolchareon
- Research Unit for Plant-Produced Pharmaceuticals, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Amilca-Seba K, Sabbah M, Larsen AK, Denis JA. Osteopontin as a Regulator of Colorectal Cancer Progression and Its Clinical Applications. Cancers (Basel) 2021; 13:cancers13153793. [PMID: 34359694 PMCID: PMC8345080 DOI: 10.3390/cancers13153793] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The mortality of colorectal cancer is principally related to metastatic disease at the time of diagnosis or to the growth of initially undetectable micro-metastasis. Current therapeutic strategies are efficient in patients with locally advanced cancer, but are rarely able to cure patients with metastatic disease. Therapeutic failure is mainly associated with drug resistance and an aggressive phenotype. The identification of new biomarkers for micro-metastasis and tumor progression remains an unmet clinical need that should allow for improved patient stratification for optimal treatment and may lead to the identification of novel therapeutic targets. Osteopontin (OPN), a multifunctional protein, has emerged as a potentially valuable biomarker in several cancer types. This review principally describes the molecular mechanisms of OPN that are associated with colorectal cancer (CRC) progression and metastasis, as well as the use of OPN as a clinical biomarker. This review identifies a role for OPN as a biomarker ready for extended clinical application and discusses its use as a therapeutic target. Abstract A high expression of the phosphoprotein osteopontin (OPN) has been associated with cancer progression in several tumor types, including breast cancer, hepatocarcinoma, ovarian cancer, and colorectal cancer (CRC). Interestingly, OPN is overexpressed in CRC and is associated with a poor prognosis linked to invasion and metastasis. Here, we review the regulation and functions of OPN with an emphasis on CRC. We examine how epigenetic and genetic regulators interact with the key signaling pathways involved in this disease. Then, we describe the role of OPN in cancer progression, including proliferation, survival, migration, invasion, and angiogenesis. Furthermore, we outline the interest of using OPN as a clinical biomarker, and discuss if and how osteopontin can be implemented as a routine assay in clinical laboratories for monitoring CRC patients. Finally, we discuss the use of OPN an attractive, but challenging, therapeutic target.
Collapse
Affiliation(s)
- Katyana Amilca-Seba
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Jérôme A. Denis
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Department of Endocrinology and Oncology Biochemistry, Pitié-Salpetrière Hospital, 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)1-42-16-20-39
| |
Collapse
|
17
|
Larsson A, Helmersson-Karlqvist J, Lind L, Ärnlöv J, Feldreich TR. Strong Associations between Plasma Osteopontin and Several Inflammatory Chemokines, Cytokines, and Growth Factors. Biomedicines 2021; 9:biomedicines9080908. [PMID: 34440113 PMCID: PMC8389577 DOI: 10.3390/biomedicines9080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Osteopontin is a member of the proinflammatory cytokine network, a complex system that involves many chemokines, cytokines, and growth factors. The aim of the present study was to study the associations between osteopontin and a large number of chemokines, cytokines, and growth factors. We analyzed plasma and urine osteopontin in 652 men from the Uppsala Longitudinal Study of Adult Men (ULSAM) study cohort and compared the levels with the levels of eighty-five chemokines, cytokines, and growth factors. We found significant associations between plasma osteopontin and 37 plasma biomarkers in a model adjusted for age, and 28 of those plasma biomarkers were significant in a model also adjusting for cardiovascular risk factors. There were no significant associations after Bonferroni adjustment between urine osteopontin and any of the studied plasma cytokine biomarkers. This study shows that circulating osteopontin participates in a protein–protein interaction network of chemokines, cytokines, and growth factors. The network contains responses, pathways, and receptor binding interactions relating to cytokines, regulation of the immune system, and also regulation of apoptosis and intracellular signal transduction.
Collapse
Affiliation(s)
- Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (J.H.-K.); (L.L.)
- Correspondence: ; Tel.: +46-(18)-6114271
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; (J.H.-K.); (L.L.)
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | |
Collapse
|
18
|
Kaleta B. Osteopontin and Transplantation: Where Are We Now? Arch Immunol Ther Exp (Warsz) 2021; 69:15. [PMID: 34019147 PMCID: PMC8139897 DOI: 10.1007/s00005-021-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Organ transplantation represents the optimal therapeutic tool for patients with end-stage organ failure. Hematopoietic stem cell transplantation (HSCT) is likewise an effective therapy for a wide range of malignant and non-malignant diseases. Better understanding of transplantation immunology and the use of multi-modal immunosuppression protocols, can decrease the risk of graft failure and graft-versus-host disease (GVHD) after HSCT. Nevertheless, a major challenge of modern transplantology still seems to be finding non-invasive biomarkers for recipients selection, monitoring of allograft function, and diagnosis of rejection. Since proinflammatory cytokine osteopontin (OPN) is closely involved in regulating both adaptive and innate immune responses, as well as the pathogenesis of inflammatory and autoimmune diseases, it is likely to play an important role in organ and HSC transplantation. This review is to summarize recent advances in our knowledge about OPN function in the kidney, heart, liver, lung, and HSC transplantation. Most studies found that elevated OPN is associated with poorer graft function in kidney, heart, liver and lung recipients. Moreover, some reports suggested that this protein can play role in GVHD pathogenesis. However, due to relatively small number of similar studies, as well as some inconclusive results, future investigation in this field is needed to verify if OPN can serve as a biomarker of organ and HSC transplantation. The knowledge about such markers will promote our understanding of the mechanisms underlying graft dysfunction and posttransplant mortality. In addition, such knowledge may be helpful in the development of new treatment strategies and identification of recipients with increased risk of allograft failure.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59 St., 02-006, Warsaw, Poland.
| |
Collapse
|
19
|
van Kuijk K, Demandt JAF, Perales-Patón J, Theelen TL, Kuppe C, Marsch E, de Bruijn J, Jin H, Gijbels MJ, Matic L, Mees BME, Reutelingsperger CPM, Hedin U, Biessen EAL, Carmeliet P, Baker AH, Kramann RK, Schurgers LJ, Saez-Rodriguez J, Sluimer JC. DEFICIENCY OF MYELOID PHD PROTEINS AGGRAVATES ATHEROGENESIS VIA MACROPHAGE APOPTOSIS AND PARACRINE FIBROTIC SIGNALING: Atherogenic effects of myeloid PHD knockdown. Cardiovasc Res 2021; 118:1232-1246. [PMID: 33913468 PMCID: PMC8953448 DOI: 10.1093/cvr/cvab152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Aims Atherosclerotic plaque hypoxia is detrimental for macrophage function. Prolyl hydroxylases (PHDs) initiate cellular hypoxic responses, possibly influencing macrophage function in plaque hypoxia. Thus, we aimed to elucidate the role of myeloid PHDs in atherosclerosis. Methods and results Myeloid-specific PHD knockout (PHDko) mice were obtained via bone marrow transplantation (PHD1ko, PHD3ko) or conditional knockdown through lysozyme M-driven Cre recombinase (PHD2cko). Mice were fed high cholesterol diet for 6–12 weeks to induce atherosclerosis. Aortic root plaque size was significantly augmented 2.6-fold in PHD2cko, and 1.4-fold in PHD3ko compared to controls but was unchanged in PHD1ko mice. Macrophage apoptosis was promoted in PHD2cko and PHD3ko mice in vitro and in vivo, via the hypoxia-inducible factor (HIF) 1α/BNIP3 axis. Bulk and single-cell RNA data of PHD2cko bone marrow-derived macrophages (BMDMs) and plaque macrophages, respectively, showed enhanced HIF1α/BNIP3 signalling, which was validated in vitro by siRNA silencing. Human plaque BNIP3 mRNA was positively associated with plaque necrotic core size, suggesting similar pro-apoptotic effects in human. Furthermore, PHD2cko plaques displayed enhanced fibrosis, while macrophage collagen breakdown by matrix metalloproteinases, collagen production, and proliferation were unaltered. Instead, PHD2cko BMDMs enhanced fibroblast collagen secretion in a paracrine manner. In silico analysis of macrophage-fibroblast communication predicted SPP1 (osteopontin) signalling as regulator, which was corroborated by enhanced plaque SPP1 protein in vivo. Increased SPP1 mRNA expression upon PHD2cko was preferentially observed in foamy plaque macrophages expressing ‘triggering receptor expressed on myeloid cells-2’ (TREM2hi) evidenced by single-cell RNA, but not in neutrophils. This confirmed enhanced fibrotic signalling by PHD2cko macrophages to fibroblasts, in vitro as well as in vivo. Conclusion Myeloid PHD2cko and PHD3ko enhanced atherosclerotic plaque growth and macrophage apoptosis, while PHD2cko macrophages further activated collagen secretion by fibroblasts in vitro, likely via paracrine SPP1 signalling through TREM2hi macrophages.
Collapse
Affiliation(s)
- K van Kuijk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC
| | - J A F Demandt
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC
| | - J Perales-Patón
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T L Theelen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC
| | - C Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - E Marsch
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC
| | - J de Bruijn
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC
| | - H Jin
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC
| | - M J Gijbels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC.,Department of Molecular Genetics, MUMC.,Department of Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands.,GROW- School for Oncology and Developmental Biology, MUMC
| | - L Matic
- Dept of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - B M E Mees
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Vascular Surgery, MUMC
| | - C P M Reutelingsperger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Biochemistry, MUMC
| | - U Hedin
- Dept of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - E A L Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - P Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, VIB Center for Cancer biology, B-3000 Leuven, Belgium
| | - A H Baker
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| | - R K Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L J Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Department of Biochemistry, MUMC
| | - J Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - J C Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC.,BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
TNAP as a New Player in Chronic Inflammatory Conditions and Metabolism. Int J Mol Sci 2021; 22:ijms22020919. [PMID: 33477631 PMCID: PMC7831495 DOI: 10.3390/ijms22020919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
This review summarizes important information on the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP) and gives a brief insight into the symptoms, diagnostics, and treatment of the rare disease Hypophosphatasia (HPP), which is resulting from mutations in the TNAP encoding ALPL gene. We emphasize the role of TNAP beyond its well-known contribution to mineralization processes. Therefore, above all, the impact of the enzyme on central molecular processes in the nervous system and on inflammation is presented here.
Collapse
|
21
|
The Roles of Osteopontin in the Pathogenesis of West Nile Encephalitis. Vaccines (Basel) 2020; 8:vaccines8040748. [PMID: 33317005 PMCID: PMC7768535 DOI: 10.3390/vaccines8040748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN), a multifunctional protein encoded by the secreted phosphoprotein-1 (Spp-1) gene in humans, plays important roles in a variety of physiological conditions, such as biomineralization, bone remodeling and immune functions. OPN also has significant roles in the pathogenesis of autoimmune, allergy and inflammatory diseases, as well as bacterial, fungal and viral infections. West Nile virus (WNV), a mosquito-transmitted flavivirus, is the leading agent for viral encephalitis in North America. Recent progress has been made in understanding both the biological functions of OPN and the pathogenesis of WNV. In this review article, we have summarized the current understanding of the biology of OPN and its vital roles in the pathogenesis of WNV encephalitis.
Collapse
|
22
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Kriss M, Golden-Mason L, Kaplan J, Mirshahi F, Setiawan VW, Sanyal AJ, Rosen HR. Increased hepatic and circulating chemokine and osteopontin expression occurs early in human NAFLD development. PLoS One 2020; 15:e0236353. [PMID: 32730345 PMCID: PMC7392333 DOI: 10.1371/journal.pone.0236353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Background & aims Non-alcoholic steatohepatitis (NASH), a subtype of non-alcoholic fatty liver disease (NAFLD) that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma, is characterized by hepatic inflammation. Despite evolving therapies aimed to ameliorate inflammation in NASH, the transcriptional changes that lead to inflammation progression in NAFLD remain poorly understood. The aim of this pilot study was to define transcriptional changes in early, non-fibrotic NAFLD using two independent biopsy-proven NAFLD cohorts. Methods We extracted RNA from liver tissue of 40 patients with biopsy-proven NAFLD based on NAFLD Activity Score (NAS) (23 patients with NAS ≤3, 17 with NAS ≥5) and 21 healthy controls, and we compared changes in expression of 594 genes involved in innate immune function. Using plasma from an independent cohort of 67 patients with NAFLD and 15 healthy controls, we validated the gene changes observed using a multiplex protein assay. Results Compared to healthy controls, NAFLD patients with NAS ≥5 had differential expression of 211 genes, while those with NAS ≤3 had differential expression of only 14 genes. Notably, osteopontin (SPP1) (3.74-fold in NAS ≤3, 8.28-fold in NAS ≥5) and CXCL10 (2.27-fold in NAS ≤3, 8.28-fold in NAS ≥5) gene expression were significantly upregulated with histologic progression of NAFLD. Plasma osteopontin (SPP1) and CXCL10 are significantly increased in the presence of NAFLD, regardless of histologic grade. In addition, the plasma levels of these two proteins distinguish clearly between the presence or absence of NAFLD (AUC>0.90). Conclusions Osteopontin (SPP1) and CXCL10 are upregulated early in non-fibrotic NAFLD and may serve as valuable non-invasive biomarkers.
Collapse
Affiliation(s)
- Michael Kriss
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- GI and Liver Innate Immune Program, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Lucy Golden-Mason
- Department of Medicine, University of Southern California (USC) Keck School of Medicine, Los Angeles, CA, United States of America
- USC Research Center for Liver Disease (RCLD), Los Angeles, CA, United States of America
| | - Jeffrey Kaplan
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Faridoddin Mirshahi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - V. Wendy Setiawan
- Department of Medicine, University of Southern California (USC) Keck School of Medicine, Los Angeles, CA, United States of America
- USC Research Center for Liver Disease (RCLD), Los Angeles, CA, United States of America
- Department of Preventive Medicine, University of Southern California (USC) Keck School of Medicine, Los Angeles, CA, United States of America
| | - Arun J. Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Hugo R. Rosen
- Department of Medicine, University of Southern California (USC) Keck School of Medicine, Los Angeles, CA, United States of America
- USC Research Center for Liver Disease (RCLD), Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kawahara Y, Morimoto A, Oh Y, Furukawa R, Wakabayashi K, Monden Y, Osaka H, Yamagata T. Serum and cerebrospinal fluid cytokines in children with acute encephalopathy. Brain Dev 2020; 42:185-191. [PMID: 31787380 DOI: 10.1016/j.braindev.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathogenesis of acute encephalopathy (AE) remains unclear, and a biomarker has not been identified. METHODS Levels of 49 cytokines and chemokines, including osteopontin (OPN), were measured in serum and cerebrospinal fluid (CSF) of children with AE (n = 17) or febrile convulsion (FC; n = 8; control group). The AE group included acute necrotizing encephalopathy (n = 1), acute encephalopathy with biphasic seizures and late reduced diffusion (AESD; n = 3), clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS; n = 4), and unclassified acute encephalopathy (UCAE; n = 9) that does not meet the criteria of syndrome classification. Five individuals with AE had neurological sequelae or death (poor prognosis), whereas 12 were alive without neurological sequelae (good prognosis). RESULTS The CSF:serum ratios of OPN, CC chemokine ligand (CCL)4, and interleukin (IL)-10 were significantly higher in AE than in FC. The CSF levels of macrophage inhibitory factor (MIF) and leukemia inhibitory factor (LIF) were significantly higher in the poor-prognosis group than in the good-prognosis group. The CSF:serum ratios of OPN were significantly higher in AESD and in MERS than in FC. The CSF:serum ratios of MIF and OPN were higher in MERS than in UCAE or FC. CONCLUSION Our results suggest that microglia-related cytokines and chemokines such as OPN, MIF, and LIF could be novel biomarkers of AE, in addition to the previously reported IL-10 and CCL4, and that MIF and LIF may be markers of poor prognosis.
Collapse
Affiliation(s)
- Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan.
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Yukiko Oh
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Rieko Furukawa
- Department of Pediatric Medical Imaging, Jichi Medical University School of Medicine, Japan
| | - Kei Wakabayashi
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Yukifumi Monden
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan; Department of Pediatrics, International University of Health and Welfare, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University School of Medicine, Japan
| |
Collapse
|
25
|
Zhang LL, Li CW, Liu K, Liu Z, Liang BC, Yang YR, Shi XL. Discovery and Identification of Serum Succinyl-Proteome for Postmenopausal Women with Osteoporosis and Osteopenia. Orthop Surg 2019; 11:784-793. [PMID: 31663278 PMCID: PMC6819194 DOI: 10.1111/os.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/13/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE For the purpose of providing evidence for the treatment of osteoporosis and osteopenia, this study retrospectively identified succinylation-modified sites and proteins in postmenopausal women, and bioinformatics analysis were performed. METHODS From January 2016 to June 2018, a total of 30 postmenopausal women aged from 55 to 70 years old were assigned to three groups: 10 cases with osteoporosis; 10 cases with osteopenia; and 10 cases with normal bone mass. Subsequently, the serum samples were collected from all cases for succinyl-proteome. Measures comprised label-free quantitative analysis, succinylation enrichment techniques, the liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS) methods, and bioinformatics. RESULTS A total of 113 succinylation sites on 35 proteins were identified based on quantitative information. The variation of the different multiple folds were more than 1.2 times as a significant increase for up-regulated and less than 1/1.2 times as a significant decrease for down-regulated. Among the quantified succinylation sites, 66 were up-regulated and 11 down-regulated in the Osteopenia/Normal comparison group, 24 were up-regulated and 44 down-regulated in the Osteoporosis/Osteopenia comparison group, 45 were up-regulated and 32 down-regulated in the Osteoporosis/Normal comparison group. Among the quantified succinylation proteins, 24 were up-regulated and 7 down-regulated in the Osteopenia/Normal comparison group, 15 were up-regulated and 20 down-regulated in the Osteoporosis/Osteopenia comparison group, 20 were up-regulated and 17 down-regulated in the Osteoporosis/Normal comparison group. The percentage of proteins differed in immune response, signaling pathway, proteolysis, lymphocyte, leukocyte, and cell activation. Four differentially expressed proteins (apolipoprotein A-I, apolipoprotein A-II, hemoglobin subunit alpha, and haptoglobin) contained quantitative information; they were mediated with receptors, factors, mechanisms, that related to bone metabolism. Hemoglobin subunit alpha was screened for diagnosis of osteopenia. CONCLUSIONS The succinyl-proteome experimental data indicated that apolipoprotein A-I, apolipoprotein A-II, hemoglobin subunit alpha, and haptoglobin were valuable for diagnosis and treatment in postmenopausal women with osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pathology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Wen Li
- Department of Diagnostics of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kang Liu
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Cheng Liang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-Ran Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Lin Shi
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Sugino T, Okada A, Taguchi K, Unno R, Hamamoto S, Ando R, Mogami T, Kohri K, Yamashita H, Yasui T. Brown adipocytes and β 3-stimulant-induced brown-like adipocytes contribute to the prevention of renal crystal formation. Am J Physiol Renal Physiol 2019; 316:F1282-F1292. [PMID: 30995115 DOI: 10.1152/ajprenal.00523.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
According to recent studies, kidney stones are associated with metabolic syndrome. We focused on brown adipocytes and β3-stimulant-induced brown-like adipocytes to investigate how these adipocytes influence kidney stone disease. For the interscapular brown adipose tissue (iBAT) removal experiment, mice were subjected to either iBAT removal or sham operation (X-BAT group or sham group), and, after 3 wk, renal crystal deposition was induced by intra-abdominal injection of glyoxylate (GOX) for 6 days. For the β3-stimulant experiment, mice were administered intra-abdominal injections of the β3-stimulant (β3-group) or saline (control group) for 6 days. Thereafter, renal crystal deposition was induced by intra-abdominal injection of GOX for 6 days. iBAT removal decreased the expression of Sod1 and increased that of chemokine (C-C motif) ligand 2 (Ccl2), EGF module-containing mucin-like receptor 1 (Emr1), and tumor necrosis factor (Tnf) in the kidneys. Renal crystal deposition was 2.06-fold higher in the X-BAT group than in the sham group. The β3-stimulant caused differentiation of white adipocytes into brown-like adipocytes. In the kidneys of the β3-group, the expression of Ccl2 and Emr1 decreased and that of Sod1 increased. Renal crystal deposition was 0.17-fold lower in the β3-group than in the control group. In summary, iBAT removal promoted kidney inflammation and renal crystal formation. β3-Stimulant-induced brown-like adipocytes reduced inflammation and improved antioxidant action in the kidneys, which suppressed renal crystal formation. This is the first report on the therapeutic role of brown and brown-like adipocytes for kidney stone formation.
Collapse
Affiliation(s)
- Teruaki Sugino
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan.,Department of Urology, JA Mie Komono Kosei Hospital , Mie , Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Ryosuke Ando
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Tohru Mogami
- Department of Urology, JA Mie Komono Kosei Hospital , Mie , Japan
| | - Kenjiro Kohri
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences , Nagoya , Japan
| |
Collapse
|
27
|
OPeNing the Epithelial Barrier: Osteopontin Preserves Gut Barrier Function During Intestinal Inflammation. Dig Dis Sci 2019; 64:294-296. [PMID: 30368682 DOI: 10.1007/s10620-018-5350-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
28
|
Sobhy A, Fakhry M M, A Azeem H, Ashmawy AM, Omar Khalifa H. Significance of biglycan and osteopontin as non-invasive markers of liver fibrosis in patients with chronic hepatitis B virus and chronic hepatitis C virus. J Investig Med 2018; 67:681-685. [PMID: 30385593 DOI: 10.1136/jim-2018-000840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
Several studies were performed to evaluate the degree of liver fibrosis by non-invasive markers. We aimed to assess the diagnostic value of both biglycan (BGN) and osteopontin (OPN) as non-invasive markers of hepatic fibrosis in patients with chronic hepatitis B (CHB) and chronic hepatitis C (CHC). This study was performed on 100 patients with CHB virus, 100 patients with CHC virus and 100 normal controls. All participants were subjected to the following laboratory tests: hemoglobin, platelet, alanine aminotransferase, aspartate aminotransferase, albumin, international normalized ratio, HBs Ag, hepatitis C virus (HCV) antibody, hepatitis B virus DNA, HCV RNA, liver biopsy, BGN and OPN. We found that BGN level was significantly increased in the CHB group compared with the controls (p<0.001), but the level was not different between the CHC group and the controls (p<0.96). OPN was increased in both the CHB and CHC groups compared with the controls (p<0.001). Positive correlation was found between fibrosis stages and BGN level of the CHB group (r=0.64; p<0.001) and between fibrosis stages and OPN level of the CHB (r=0.63; p<0.001) and CHC (r=0.59; p<0.03) groups. The area under the curve (AUC), sensitivity and specificity of BGN were 1.0, 100% and 100% in predicting fibrosis in patients with CHB, and 0.50, 26% and 78% in predicting fibrosis in patients with CHC. OPN had an AUC of 0.997, sensitivity of 96% and specificity of 100% in predicting fibrosis in patients with CHB, and 0.974, 96.5% and 100% in predicting fibrosis in patients with CHC. In conclusion, BGN and OPN could be considered non-invasive markers for liver fibrosis assessment.
Collapse
Affiliation(s)
- Ali Sobhy
- Clinical Pathology Department., Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed Fakhry M
- Gastroenterology and Hepatology Department, Faculty of Medicine., Al-Azhar University, Assiut
| | - Haitham A Azeem
- Internal Medicine Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Ashmawy
- Internal Medicine Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hamed Omar Khalifa
- Public Health andCommunity Medicine Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
29
|
Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem 2018; 59:17-24. [PMID: 30003880 DOI: 10.1016/j.clinbiochem.2018.07.003] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a highly phosphorylated glycophosphoprotein having acidic characteristics and rich in aspartic acid. OPN, a multifunctional protein, has important functions on cardiovascular diseases, cancer, diabetes and kidney stone diseases and in the process of inflammation, biomineralization, cell viability and wound healing. Osteopontin acts on organisms by playing a key role in secretion levels of interleukin-10 (IL-10), interleukin-12 (IL-12), interleukin-3 (IL-3), interferon-γ (IFN-γ), integrin αvB3, nuclear factor kappa B (NF-kB), macrophage and T cells, regulating the osteoclast function and affecting CD44 receptors. The aim of the present review is to address majority of different functions of OPN protein which are known, suspected or suggested through the data obtained about this protein yet.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Gazi University, Faculty of Health Sciences, Nutrition and Dietetics Department, 06500 Beşevler, Ankara, Turkey.
| | - Makbule Gezmen-Karadag
- Gazi University, Faculty of Health Sciences, Nutrition and Dietetics Department, 06500 Beşevler, Ankara, Turkey.
| |
Collapse
|