1
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Liu H, Wang S, Zhang Z, Yan H, He T, Wei X, Shi Y, Chen Y, Wang W, Li X. Nanopore-based full-length transcriptome sequencing of the skin in Pseudopleuronectes yokohamae identifies novel antimicrobial peptide genes. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109957. [PMID: 39393612 DOI: 10.1016/j.fsi.2024.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The marbled flounder (Pseudopleuronectes yokohamae) is highly esteemed for its exceptional nutritional value and delicious taste. However, this species has extremely limited transcriptome data, which can offer priceless information for disease protection. In the study, the skin transcriptomic sequencing of P. yokohamae revealed 7.72 GB of clean data using the Nanopore sequencing platform. The results revealed 30,498 transcripts of functional annotations in the P. yokohamae transcriptome. All transcripts were searched in eight functional databases. A total of 10,337 ORFs were obtained, of which 6081 complete ORFs accounted for 58.83% of all predicted CDS. Moreover, 10,195 SSRs were detected. Meanwhile, the non-pecific immunity pathways were investigated for better understanding of the immunological reaction in P. yokohamae, and seven innate immune pathways were identified. The innate-immune related genes were highly expressed in the NOD-like receptor signaling pathway, followed by the C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. In this study, four families of antimicrobial peptides (AMPs) in P. yokohamae were analysed for the first time, including piscidins, hepcidins, liver-expressed antimicrobial peptide and defensins. Seven AMPs, including Pypleurocidin-like WF3, Pypleurocidin-like WFX, Pyhepcidin 1, Pyhepcidin-like 1, PyLEAP-2, Pybeta-defensin and Pybeta-defensin-like 1, were further identified. The seven AMPs showed a highly identity in their cDNA and genomic structures and an inducible expression pattern preferable to skin in response to pathogens. The transcriptomic data and investigation of AMPs from P. yokohamae promote a deeper awareness of fish mucosal immunity and provide information in the prevention of fish diseases.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zheng Zhang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, China
| | - Huixiang Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiaoyan Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yanyan Shi
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.
| |
Collapse
|
3
|
Wang X, Kong X, Chen Z, Li H, Tao Z, Zhang Q, Yu H. Transcriptome analysis reveals the mechanism of black rockfish (Sebastes schlegelii) macrophages respond to Edwardsiella piscicida infection in vivo. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109999. [PMID: 39486559 DOI: 10.1016/j.fsi.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Sebastes schlegelii is an economically significant marine fish that faces serious threats from various pathogens. Edwardsiella piscicida is a pathogenic bacterium that primarily affects fish, including S. schlegelii, leading to severe disease. Although numerous reports have documented the transcriptome sequencing of various fish tissues in response to E. piscicida infection, studies focusing on specific cells remain scarce. In this study, S. schlegelii were infected by intraperitoneal injection of E. piscicida. Severe external clinical signs were observed in E. piscicida-infected S. schlegelii and pathological examination demonstrated structural damage of the head kidney following treatment with E. piscicida. Furthermore, macrophages were isolated from the head kidneys of both the control and E. piscicida-infected groups for RNA sequencing (RNA-seq). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs were closely associated with immune response and oxidative stress. Additionally, Weighted Gene Co-expression Network Analysis (WGCNA) was performed based on the data from this study and RNA-seq files of macrophages infected with E. piscicida in vitro, revealing that immune responses, oxidative stress, and mitochondrial damage were involved in the macrophage response to E. piscicida infection both in vivo and in vitro. This study provides a reference for understanding the mechanisms by which teleost immune cells respond to pathogen invasion and enhances our comprehension of teleost innate immunity.
Collapse
Affiliation(s)
- Xuangang Wang
- Laboratary of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China
| | - Xiangfu Kong
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhentao Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Hengshun Li
- Laboratary of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China
| | - Ze Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Quanqi Zhang
- Laboratary of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, 572000, Sanya, Hainan, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Mirabent-Casals M, Caña-Bozada VH, Morales-Serna FN, Martínez-Brown JM, Medina-Guerrero RM, Hernández-Cornejo R, García-Gasca A. Transcriptomic analysis of immune-related genes in Pacific white snook (Centropomus viridis) gills infected with the monogenean parasite Rhabdosynochus viridisi. Parasitol Int 2024; 104:102981. [PMID: 39426511 DOI: 10.1016/j.parint.2024.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The parasite Rhabdosynochus viridisi (Platyhelminthes: Monogenea) infects the Pacific white snook Centropomus viridis gills and can cause adverse effects in the aquaculture industry. The immune responses of Pacific white snook to monogenean infections are poorly understood. Thus, this study aimed to identify differentially expressed genes (DEGs) in the gills of Pacific white snook juveniles experimentally infected with R. viridisi, emphasizing immune-related genes and pathways activated or suppressed during the infection. RNA sequencing was performed on the gills of uninfected (control) and infected fish. The algorithm Seq2Fun was selected without a reference transcriptome to map the reads to transcripts of fishes available from a database for gene orthologs (EcoOmics) and obtain the counting table. The ExpressAnalyst software was used for differential expression and functional analyses. A total of 20,106 transcripts were found, and 1430 (7 %) were differentially expressed genes (DEGs) between infected and control groups. We identified 860 (60 %) downregulated and 570 (40 %) upregulated genes. Thirteen canonical pathways after the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were overrepresented, and most of the DEGs were downregulated, suggesting the inactivation of these pathways. The functions of most of the DEGs with higher fold change found in this study are poorly understood in fish. Even though the well-known pro-inflammatory cytokines remained unchanged in infected gills of C. viridis, and transforming growth factor β (tgfβ) was downregulated, interleukin-17 ligands il17d and il17a/f1, as well as C-X-C motif chemokine receptor 2 (cxcr2) genes were upregulated, indicating that the infection with R. viridisi promotes Th17-like immunity. Overexpression of plasma B cell activity markers such as immunoglobulin light chain-like genes and the v-set pre-B cell surrogate light chain 3 (vpreb3) was also detected in this study. The possible implications of DEGs related to calcium imbalance, hypoxia adaptation, hemostasis, and immunity are discussed. These results will support future studies to improve the prevention and treatment of monogenean infections in finfish aquaculture.
Collapse
Affiliation(s)
- Marian Mirabent-Casals
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Víctor Hugo Caña-Bozada
- Laboratory of Parasitology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Francisco Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, Mazatlán 82040, Sinaloa, Mexico.
| | - Juan Manuel Martínez-Brown
- Laboratory of Reproduction and Marine Fish Hatchery, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Rosa María Medina-Guerrero
- Laboratory of Parasitology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Rubí Hernández-Cornejo
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| | - Alejandra García-Gasca
- Molecular Biology and Tissue Culture Laboratory, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, Mazatlán 82112, Sinaloa, Mexico.
| |
Collapse
|
5
|
Zhao X, Wang Y, Wang Z, Luo T, Huang J, Shao J. Analysis of Differential Alternative Splicing in Largemouth Bass After High Temperature Exposure. Animals (Basel) 2024; 14:3005. [PMID: 39457935 PMCID: PMC11505094 DOI: 10.3390/ani14203005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Temperature is one of the critical factors affecting the physiological functions of fish. With ongoing global warming, changes in water temperature have a profound impact on fish species. Alternative splicing, being a significant mechanism for gene expression regulation, facilitates fish to adapt and thrive in dynamic and varied aquatic environments. Our study used transcriptome sequencing to analyze alternative splicing in largemouth bass gills at 34 °C for 24 h. The findings indicated an increase in both alternative splicing events and alternative splicing genes after high temperature treatment. Specifically, the comparative analysis revealed a total of 674 differential alternative splicing events and 517 differential alternative splicing genes. Enrichment analysis of differential alternative splicing genes revealed significant associations with various gene ontology (GO) terms and KEGG pathways, particularly in immune-related pathways like necroptosis, apoptosis, and the C-type lectin receptor signaling pathway. These results emphasize that some RNA splicing-related genes are involved in the response of largemouth bass to high temperatures.
Collapse
Affiliation(s)
- Xianxian Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Yizhou Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
| | - Tianma Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Jun Huang
- Hubei Fisheries Science Research Institute, Wuhan 430077, China;
| | - Jian Shao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
| |
Collapse
|
6
|
Shen Y, Aly RSS, Chen T, Jiang H, Liu Y, Wang Y, Chen X. Short time-series expression transcriptome data reveal the gene expression patterns and potential biomarkers of blood infection with LPS and poly (I:C) in Mandarin fish (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109806. [PMID: 39102971 DOI: 10.1016/j.fsi.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Blood transcriptomics has emerged as a vital tool for tracking the immune system and supporting disease diagnosis, prognosis, treatment, and research. The present study was conducted to analyze the gene expression profile and potential biomarker candidates using the whole blood of mandarin fish (Siniperca chuatsi) infected with LPS or poly (I:C) at 0 h, 3 h, 6 h, and 12 h. Our data suggest that 310 shared differentially expressed genes (DEGs) were identified among each comparison group after LPS infection, and 137 shared DEGs were identified after poly (I:C) infection. A total of 62 shared DEGs were differentially expressed in all compared groups after LPS or poly (I:C) infection. Pathways analysis for DEGs in all different compared groups showed that cytokine-cytokine receptor interaction was the most enrichment pathway. The expression levels of genes C-X-C chemokine receptor type 2-like (cxcr2), chemokine (C-C motif) receptor 9a (ccr9a), chemokine (C-C motif) receptor 9b (ccr9b), chemokine (C-X-C motif) receptor 4b (cxcr4b), and interleukin 10 receptor alpha (il10ra) were significantly different in all compared groups and most enriched in cytokine-cytokine receptor interaction pathway. The protein-protein interactions analysis among all shared DEGs showed that cxcr4 was the hub gene with the highest degree. The biomarker candidates discovered in this study may, following validation, prove effective as diagnostic tools in monitoring mandarin fish diseases.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Rahma Sakina Said Aly
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yongxiang Wang
- Huangshan Fisheries Station, Huangshan 245000, Anhui, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
7
|
Xia Y, Yu X, Yuan Z, Yang Y, Liu Y. Whole-Transcriptome Analysis Reveals Potential CeRNA Regulatory Mechanism in Takifugu rubripes against Cryptocaryon irritans Infection. BIOLOGY 2024; 13:788. [PMID: 39452097 PMCID: PMC11504436 DOI: 10.3390/biology13100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Cryptocaryon irritans (C. irritans) is a proto-ciliate parasite that infects marine fishes, including the cultured species Takifugu rubripes (T. rubripes), causing disease and potential mortality. In host organisms, infection by parasites triggers an immune response that is modulated by regulatory elements including proteins and non-coding RNAs. In this study, the whole transcriptome RNA sequencing of T. rubripes gill tissue before and after infection with C. irritans was performed to reveal the competitive endogenous RNA (ceRNA) regulatory network. Histomorphology revealed gill segment swelling and parasitic invasion in the infected group. The analysis identified 18 differentially expressed miRNAs (DEMs), 214 lncRNAs (DELs), 2501 genes (DEGs), and 7 circRNAs (DECs) in the infected group. Gene Ontology (GO) enrichment analysis revealed that these genes were notably enriched in the Wnt signaling pathway and mTOR signaling pathway. The co-expression networks (lncRNA/circRNA-miRNA-mRNA) were constructed based on correlation analysis of the differentially expressed RNAs. Further analysis suggested that the LOC105418663-circ_0000361-fru-miR-204a-fzd3a ceRNA axis was potentially involved in the regulation of immune responses against C. irritans infection. Finally, the expression levels of DEG, DEL, and DEM were validated. This study reveals the regulatory mechanism of a candidate ceRNA network, providing insights into the potential mechanism of T. rubripes' infection with C. irritans.
Collapse
Affiliation(s)
- Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Xiaoqing Yu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Zhen Yuan
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
8
|
Jin N, Wang L, Song K, Lu K, Li X, Zhang C. Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass ( Lateolabrax maculatus) Fed a Low-Phosphorus Diet. Metabolites 2024; 14:406. [PMID: 39195503 DOI: 10.3390/metabo14080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
To analyze the potential mechanisms of growth differences in spotted seabass (Lateolabrax maculatus) fed a low-phosphorus diet, a total of 150 spotted seabass with an initial body weight of 4.49 ± 0.01 g were used (50 fish per tank) and fed a low-phosphorus diet for eight weeks. At the end of the experiment, five of the heaviest and five of the lightest fish were selected from each tank as fast-growing spotted seabass (FG) and slow-growing spotted seabass (SG), respectively, and their livers were analyzed by metabolomics and transcriptomics. The hepatic antioxidant capacity of the FG fed a low-phosphorus diet was significantly higher than that of the SG. A total of 431 differentially expressed genes (DEGs) were determined in the two groups, and most of the DEGs were involved in metabolism-related pathways such as steroid biosynthesis, glycolysis/gluconeogenesis, and protein digestion and absorption. Substance transport-related regulators and transporters were predominantly up-regulated. Furthermore, a large number of metabolites in the liver of FG were significantly up-regulated, especially amino acids, decanoyl-L-carnitine and dehydroepiandrosterone. The integration analysis of differential metabolites and genes further revealed that the interaction between protein digestion and absorption, as well as phenylalanine metabolism pathways were significantly increased in the liver of FG compared to those of the SG. In general, FG fed a low-phosphorus diet induced an enhancement in hepatic immune response, substance transport, and amino acid metabolism. This study provides new information on genetic mechanisms and regulatory pathways underlying differential growth rate and provides a basis for the foundation of efficient utilization of low-phosphorus diets and selective breeding programs for spotted seabass.
Collapse
Affiliation(s)
- Nan Jin
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
9
|
Gnanagobal H, Chakraborty S, Vasquez I, Chukwu-Osazuwa J, Cao T, Hossain A, Dang M, Valderrama K, Kumar S, Bindea G, Hill S, Boyce D, Hall JR, Santander J. Transcriptome profiling of lumpfish (Cyclopterus lumpus) head kidney to Renibacterium salmoninarum at early and chronic infection stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105165. [PMID: 38499166 DOI: 10.1016/j.dci.2024.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherine Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France; Equipe Labellisée Ligue Contre Le Cancer, 75013, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephen Hill
- Cold-Ocean Deep-Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
10
|
Yang Y, Ma N, Huang Y, Yang W, Zhu X, Liu T, Zhang H. Effects of phoxim on antibacterial infection of silver carp. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109628. [PMID: 38750706 DOI: 10.1016/j.fsi.2024.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The efficacy of phoxim in treating bacterial sepsis in silver carp is significant, yet its underlying mechanism remains elusive. This study aimed to establish a model of Aeromonas veronii infection in silver carp and subsequently treat the infected fish with 10 μg/L phoxim. Kidney and intestine samples from silver carp were collected for transcriptome analysis and assessment of intestinal microbial composition, with the aim of elucidating the mechanism underlying the efficacy of phoxim in treating bacterial sepsis in silver carp. The results of transcriptome and intestinal microbial composition analysis of silver carp kidney indicated that A. veronii infection could up-regulate the expression of il1β, il6, nos2, ctsl, casp3 et al., which means, signifying that the kidney of silver carp would undergo inflammation, induce apoptosis, and alter the composition of intestinal microorganisms. Phoxim immersion might enhance the energy metabolism of silver carp and change its intestinal microbial composition, potentially elevating the antibacterial infection resistance of silver carp. These findings may contribute to an understanding of how phoxim can effectively treat bacterial sepsis in silver carp.
Collapse
Affiliation(s)
- Yibin Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Tao Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
11
|
Blondeau-Bidet E, Tine M, Gonzalez AA, Guinand B, Lorin-Nebel C. Coping with salinity extremes: Gill transcriptome profiling in the black-chinned tilapia (Sarotherodon melanotheron). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172620. [PMID: 38642748 DOI: 10.1016/j.scitotenv.2024.172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.
Collapse
Affiliation(s)
| | - Mbaye Tine
- UFR of Agricultural Sciences, Aquaculture and Food Technologies (UFR S2ATA), Gaston Berger University, Saint-Louis, Senegal
| | | | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | |
Collapse
|
12
|
Soontara C, Uchuwittayakul A, Kayansamruaj P, Amparyup P, Wongpanya R, Srisapoome P. Adjuvant Effects of a CC Chemokine for Enhancing the Efficacy of an Inactivated Streptococcus agalactiae Vaccine in Nile Tilapia ( Oreochromis niloticus). Vaccines (Basel) 2024; 12:641. [PMID: 38932370 PMCID: PMC11209360 DOI: 10.3390/vaccines12060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the ability of a CC chemokine (On-CC1) adjuvant to enhance the efficacy of a formalin-killed Streptococcus agalactiae vaccine (WC) in inducing immune responses against S. agalactiae in Nile tilapia was investigated through immune-related gene expression analysis, enzyme-linked immunosorbent assay (ELISA), transcriptome sequencing, and challenge tests. Significantly higher S. agalactiae-specific IgM levels were detected in fish in the WC+CC group than in the WC alone or control groups at 8 days postvaccination (dpv). The WC vaccine group exhibited increased specific IgM levels at 15 dpv, comparable to those of the WC+CC group, with sustained higher levels observed in the latter group at 29 dpv and after challenge with S. agalactiae for 14 days. Immune-related gene expression analysis revealed upregulation of all target genes in the control group compared to those in the vaccinated groups, with notable differences between the WC and WC+CC groups at various time intervals. Additionally, transcriptome analysis revealed differential gene expression profiles between the vaccinated (24 and 96 hpv) and control groups, with notable upregulation of immune-related genes in the vaccinated fish. Differential gene expression (DGE) analysis revealed significant upregulation of immunoglobulin and other immune-related genes in the control group compared to those in the vaccinated groups (24 and 96 hpv), with distinct patterns observed between the WC and WC+CC vaccine groups. Finally, challenge with a virulent strain of S. agalactiae resulted in significantly higher survival rates for fish in the WC and WC+CC groups compared to fish in the control group, with a notable increase in survival observed in fish in the WC+CC group.
Collapse
Affiliation(s)
- Chayanit Soontara
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Khlong Luang 12120, Thailand;
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
13
|
Wang X, Liu X, Tan L, Jahangiri L, Cai W, Kim DY, Li R. Chromosome level genome assembly and transcriptome analysis of E11 cells infected by tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109505. [PMID: 38521144 DOI: 10.1016/j.fsi.2024.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The E11 cell line, derived from striped snakehead fish (Channa striata), possesses a distinctive feature: it is persistently infected with a C-type retrovirus. Notably, it exhibits high permissiveness to piscine nodavirus and the emerging tilapia lake virus (TiLV). Despite its popularity in TiLV research, the absence of genome assembly for the E11 cell line and Channa striata has constrained research on host-virus interactions. This study aimed to fill this gap by sequencing, assembling, and annotating the E11 cell line genome. Our efforts yielded a 600.5 Mb genome including 24 chromosomes with a BUSCO score of 98.8%. In addition, the complete proviral DNA sequence of snakehead retrovirus (SnRV) was identified in the E11 cell genome. Comparative genomic analysis between the E11 cell line and another snakehead species Channa argus revealed the loss of many immune-related gene families in the E11 cell genome, indicating a compromised immune response. We also conducted transcriptome analysis of mock- and TiLV-infected E11 cells, unveiling new perspectives on virus-virus and host-virus interactions. The TiLV infection suppressed the high expression of SnRV in E11 cells, and activated some other endogenous retroviruses. The protein-coding gene comparison revealed a pronounced up-regulation of genes involved in immune response, alongside a down-regulation of genes associated with specific metabolic processes. In summary, the genome assembly and annotation of the E11 cell line provide valuable resources to understand the SnRV and facilitate further studies on nodavirus and TiLV. The RNA-seq profiles shed light on the cellular mechanisms employed by fish cells in response to viral challenges, potentially guiding the development of therapeutic strategies against TiLV in aquaculture. This study also provides the first insights into the viral transcriptome profiles of endogenous SnRV and evading TiLV, enhancing our understanding of host-virus interactions in fish.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Xudong Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Ladan Jahangiri
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Dal Young Kim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China.
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China; Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Jo SH, Jo KA, Park SY, Kim JY. Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis. J Microbiol Biotechnol 2024; 34:880-890. [PMID: 38379288 DOI: 10.4014/jmb.2401.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.
Collapse
Affiliation(s)
- Seon Ha Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Ah Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
15
|
Yang Y, Xu S, He H, Zhu X, Liu Y, Ai X, Chen Y. Mechanism of sturgeon intestinal inflammation induced by Yersinia ruckeri and the effect of florfenicol intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116138. [PMID: 38394759 DOI: 10.1016/j.ecoenv.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1β, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China
| | - Shijian Xu
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China.
| | - Hao He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
16
|
Ye B, Wang Q, Ye Q, Wang D, Wang Z, Dong Z, Zou J. Effects of different combinations of koumine and gelsemine on growth performance, intestinal health, and transcriptome of Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133130. [PMID: 38086301 DOI: 10.1016/j.jhazmat.2023.133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Koumine (KM) and gelsemine (GS) have shown significant benefits in livestock production, but their potential in aquaculture remains largely unexplored. This study examined the impact of different KM and GS combinations as feed additives on C. carpio (90 fish per group, initial weight 1.95 ± 0.08 g). KM and GS were introduced in ratios of 2:2 (mg/kg), 2:1 (mg/kg), and 2:0.67 (mg/kg) over a 10-week aquaculture experiment. The results demonstrate that the 2:1 (mg/kg) group increases the villus length, muscular layer thickness, crude protein, and crude fat content. Regarding fatty acid content, KM and GS enhance the levels of various fatty acids, including the total saturated fatty acid and total monounsaturated fatty acid. Additionally, KM and GS improve the composition and function of the intestinal microbiota. The 2:1 (mg/kg) group significantly elevates the enzymatic activities of SOD, MDA, CAT and upregulates the expression of immune-related genes such as toll-like receptor 2, transforming growth factor β, and glutathione S-transferase. Transcriptomic analysis suggests that KM and GS may have potential benefits for nutrient utilization and immune regulation in C. carpio. In summary, this study provides valuable insights into the use of KM and GS as feed additives in aquaculture.
Collapse
Affiliation(s)
- Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Luo W, Chi S, Wang J, Yu X, Tong J. Comparative transcriptomic analyses of brain-liver-muscle in channel catfish (Ictalurus punctatus) with differential growth rate. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101178. [PMID: 38128380 DOI: 10.1016/j.cbd.2023.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Growth is an important economically trait for aquatic animals. The popularity of farmed channel catfish (Ictalurus punctatus) in China has recently surged, prompting a need for research into the genetic mechanisms that drive growth and development to expedite the selection of fast-growing variants. In this study, the brain, liver and muscle transcriptomes of channel catfish between fast-growing and slow-growing groups were analyzed using RNA-Seq. Totally, 63, 110 and 86 differentially expressed genes (DEGs) were from brain, liver and muscle tissues. DEGs are primarily involved in growth, development, metabolism and immunity, which are related to the growth regulation of channel catfish, such as growth hormone receptor b (ghrb), fibroblast growth factor receptor 4 (fgfr4), bone morphogenetic protein 1a (bmp1a), insulin-like growth factor 2a (igf2a), collagen, type I, alpha 1a (col1a1a), acyl-CoA synthetase long chain family member 2 (acsl2) and caveolin 1 (cav1). This study advances our knowledge of the genetic mechanisms accounting for differences in growth rate and offers crucial gene resources for future growth-related molecular breeding programs in channel catfish.
Collapse
Affiliation(s)
- Weiwei Luo
- Jiangsu Union Technical Institute, Yancheng Bioengineering Branch, Yancheng Aquatic Science Research Institute, Yancheng 224001, China
| | - Shuang Chi
- Jiangsu Union Technical Institute, Yancheng Bioengineering Branch, Yancheng Aquatic Science Research Institute, Yancheng 224001, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy of Seed Design, The Chinese Academy of Sciences, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
18
|
Zhou J, Yu J, Chu Q. Comparative transcriptome analysis reveals potential regulatory mechanisms of genes and immune pathways following Vibrio harveyi infection in red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109386. [PMID: 38242261 DOI: 10.1016/j.fsi.2024.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-β), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.
Collapse
Affiliation(s)
- Jiale Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Jingyao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
19
|
Lin L, Li XN, Xie ZY, Hu YZ, Long QS, Wen YQ, Wei XB, Zhang LY, Li XS. Pivotal Role of GSTO2 in Ferroptotic Neuronal Injury After Intracerebral Hemorrhage. J Mol Neurosci 2024; 74:24. [PMID: 38386166 PMCID: PMC10884062 DOI: 10.1007/s12031-023-02187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/02/2023] [Indexed: 02/23/2024]
Abstract
Previous research has found that an adaptive response to ferroptosis involving glutathione peroxidase 4 (GPX4) is triggered after intracerebral hemorrhage. However, little is known about the mechanisms underlying adaptive responses to ferroptosis. To explore the mechanisms underlying adaptive responses to ferroptosis after intracerebral hemorrhage, we used hemin-treated HT22 cells to mimic brain injury after hemorrhagic stroke in vitro to evaluate the antioxidant enzymes and performed bioinformatics analysis based on the mRNA sequencing data. Further, we determined the expression of GSTO2 in hemin-treated hippocampal neurons and in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH) by using Western blot. After hemin treatment, the antioxidant enzymes GPX4, Nrf2, and glutathione (GSH) were upregulated, suggesting that an adaptive response to ferroptosis was triggered. Furthermore, we performed mRNA sequencing to explore the underlying mechanism, and the results showed that 2234 genes were differentially expressed. Among these, ten genes related to ferroptosis (Acsl1, Ftl1, Gclc, Gclm, Hmox1, Map1lc3b, Slc7a11, Slc40a1, Tfrc, and Slc39a14) were altered after hemin treatment. In addition, analysis of the data retrieved from the GO database for the ten targeted genes showed that 20 items on biological processes, 17 items on cellular components, and 19 items on molecular functions were significantly enriched. Based on the GO data, we performed GSEA and found that the glutathione metabolic process was significantly enriched in the hemin phenotype. Notably, the expression of glutathione S-transferase omega (GSTO2), which is involved in glutathione metabolism, was decreased after hemin treatment, and overexpression of Gsto2 decreased lipid reactive oxygen species level in hemin-exposed HT22 cells. In addition, the expression of GSTO2 was also decreased in a mouse model of hippocampus-intracerebral hemorrhage (h-ICH). The decreased expression of GSTO2 in the glutathione metabolic process may be involved in ferroptotic neuronal injury following hemorrhagic stroke.
Collapse
Affiliation(s)
- Li Lin
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Xiao-Na Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhen-Yan Xie
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Yong-Zhen Hu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Qing-Shan Long
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Yi-Qi Wen
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Xiao-Bing Wei
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Li-Yang Zhang
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China
| | - Xue-Song Li
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Du L, Zhao L, Elumalai P, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Effects of sublethal fipronil exposure on cross-generational functional responses and gene expression in Binodoxys communis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32211-6. [PMID: 38296923 DOI: 10.1007/s11356-024-32211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
The effective systemic insecticide fipronil is widely used on a variety of crops and in public spaces to control insect pests. Binodoxys communis (Gahan) (Hymenoptera: Braconidae) is the dominant natural enemy of Aphis gossypii Glover (Homoptera: Aphididae), an important cotton pest, and has good efficiency in inhibiting aphid populations. The direct effects of environmental residues of sublethal fipronil doses on adult B. communis have not previously been reported. This study therefore aimed to evaluate the side effects and transcriptomic impacts of sublethal fipronil doses on B. communis. The results showed that exposure to the LC10 dose of fipronil significantly reduced the survival rate and parasitism rate of the F0 generation, but did not affect these indicators in the F1 generation. The LC25 dose did not affect the survival or parasitic rates of the F0 generation, but did significantly reduce the survival rate of F1 generation parasitoids. These results indicated that sublethal doses of fipronil affected B. communis population growth. Transcriptome analysis showed that differentially expressed genes (DEGs) in B. communis at 1 h after treatment were primarily enriched in pathways associated with fatty acid elongation, biosynthesis of fatty acids, and fatty acid metabolism. DEGs at 3 days after treatment were mainly enriched in ribosomal functions, glycolysis/gluconeogenesis, and tyrosine metabolism. Six DEGs (PY, ELOVL, VLCOAR, MRJP1, ELOVL AAEL008004-like, and RPL13) were selected for validation with real-time fluorescent quantitative PCR. This is the first report of sublethal, trans-generational, and transcriptomic side effects of fipronil on the dominant parasitoid of A. gossypii. The results of this study show that adaptation of parasitoids to high concentrations of pesticides may be at the expense of their offspring. These findings broaden our overall understanding of the intergenerational adjustments used by insects to respond to pesticide stress and call for risk assessments of the long-term impacts and intergenerational effects of other pesticides.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Punniyakotti Elumalai
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
21
|
Su N, Lin Z, Liu X, Sun X, Jin X, Feng H, Zhan C, Hu X, Gu C, Zhang W, Cheng G. Pathological observation and transcriptomic analysis of thymus injury in PRRSV-infected piglets. Vet Res Commun 2023; 47:1949-1962. [PMID: 37266866 DOI: 10.1007/s11259-023-10133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
The thymus, the central immune organ in mammals, plays an important role in immune defense. Porcine reproductive and respiratory syndrome virus (PRRSV) infection in piglets can cause thymus injury and immunosuppression. However, the mechanisms of thymus injury remain unknown. This study was aimed at investigating the specific manifestations of thymus injury through the construction of a PRRSV-infected piglet model and histopathological observation. In this study, fourteen 40-day-old PRRSV-free piglets were randomly divided into two groups, eleven of which were intramuscularly injected with 3 mL of PRRSV WUH3 virus suspension (106 PFU /mL) in the infection group, and three of which were sham-inoculated with 3 mL of RPMI-1640 medium in the control group. Clinical necropsy and samples collection were performed on day 8 after artificial infection. With the Illumina platform, the transcriptomes of piglet thymus tissues from infected and control piglets were sequenced to explore the relationships of differentially expressed genes (DEGs) and signaling pathways with thymus injury. The immune organs of PRRSV-infected piglets were severely damaged. The histopathological findings in the thymus indicated that PRRSV infection was associated with a large decrease in lymphocytes, cell necrosis and cell apoptosis; an increase in blood vessels and macrophages; thymic corpuscle hyperplasia; and interstitial widening of the thymic lobules. The transcriptomic analysis results revealed that the Gene Ontology functions of DEGs were enriched primarily in biological processes such as angiogenesis, regulation of angiogenesis and positive regulation of cell migration. Moreover, greater numbers of blood vessels and macrophages were observed in the thymus in PRRSV-infected than control piglets. KEGG pathway enrichment analysis revealed that the DEGs were significantly enriched in the Toll-like receptor signaling pathway, chemokine signaling pathway, IL-17 signaling pathway and TNF signaling pathway. The expression of TLR8, IRF5, the chemokines CCL2, CCL3L1 and CCL5; and their receptors CCR1, CCR2 and CCR5 was significantly up-regulated in PRRSV infection, thus suggesting that these cytokines were associated with the pathological processes of thymus injury.
Collapse
Affiliation(s)
- Naying Su
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Shanghai InnoStar Bio-tech Co., Ltd., Shanghai, China
| | - Zhengdan Lin
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xi Liu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xiuxiu Sun
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xinxin Jin
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Helong Feng
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Cunlin Zhan
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xueying Hu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Changqin Gu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wanpo Zhang
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Guofu Cheng
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
22
|
Rasal KD, Mohapatra S, Kumar PV, K SR, Asgolkar P, Acharya A, Dey D, Shinde S, Vasam M, Kumar R, Sundaray JK. DNA Methylation Profiling of Ovarian Tissue of Climbing Perch (Anabas testudienus) in Response to Monocrotophos Exposure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1123-1135. [PMID: 37870741 DOI: 10.1007/s10126-023-10264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Epigenetic modifications like DNA methylation can alter an organism's phenotype without changing its DNA sequence. Exposure to environmental toxicants has the potential to change the resilience of aquatic species. However, little information is available on the dynamics of DNA methylation in fish gonadal tissues in response to organophosphates. In the present work, reduced-representation bisulfite sequencing was performed to identify DNA methylation patterns in the ovarian tissues of Anabas testudienus exposed to organophosphates, specifically monocrotophos (MCP). Through sequencing, an average of 41,087 methylated cytosine sites were identified and distributed in different parts of genes, i.e., in transcription start sites (TSS), promoters, exons, etc. A total of 1058 and 1329 differentially methylated regions (DMRs) were detected as hyper-methylated and hypo-methylated in ovarian tissues, respectively. Utilizing whole-genome data of the climbing perch, the DMRs, and their associated overlapping genes revealed a total of 22 genes within exons, 45 genes at transcription start sites (TSS), and 218 genes in intergenic regions. Through gene ontology analysis, a total of 16 GO terms particularly involved in ovarian follicular development, response to oxidative stress, oocyte maturation, and multicellular organismal response to stress associated with reproductive biology were identified. After functional enrichment analysis, relevant DMGs such as steroid hormone biosynthesis (Cyp19a, 11-beta-HSD, 17-beta-HSD), hormone receptors (ar, esrrga), steroid metabolism (StAR), progesterone-mediated oocyte maturation (igf1ar, pgr), associated with ovarian development in climbing perch showed significant differential methylation patterns. The differentially methylated genes (DMGs) were subjected to analysis using real-time PCR, which demonstrated altered gene expression levels. This study revealed a molecular-level alteration in genes associated with ovarian development in response to chemical exposure. This work provides evidence for understanding the relationship between DNA methylation and gene regulation in response to chemicals that affect the reproductive fitness of aquatic animals.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Sujata Mohapatra
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | - Pokanti Vinay Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Shasti Risha K
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Prachi Asgolkar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Diganta Dey
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Siba Shinde
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Manohar Vasam
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | - Rajesh Kumar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | | |
Collapse
|
23
|
Taube K, Noreikiene K, Kahar S, Gross R, Ozerov M, Vasemägi A. Subtle transcriptomic response of Eurasian perch ( Perca fluviatilis) associated with Triaenophorus nodulosus plerocercoid infection. Int J Parasitol Parasites Wildl 2023; 22:146-154. [PMID: 37869060 PMCID: PMC10585624 DOI: 10.1016/j.ijppaw.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Determining the physiological effects of parasites and characterizing genes involved in host responses to infections are essential to improving our understanding of host-parasite interactions and their ecological and evolutionary consequences. This task, however, is complicated by high diversity and complex life histories of many parasite species. The use of transcriptomics in the context of wild-caught specimens can help ameliorate this by providing both qualitative and quantitative information on gene expression patterns in response to parasites in specific host organs and tissues. Here, we evaluated the physiological impact of the widespread parasite, the pike tapeworm (Triaenophorus nodulosus), on its second intermediate host, the Eurasian perch (Perca fluviatilis). We used an RNAseq approach to analyse gene expression in the liver, the target organ of T. nodulosus plerocercoids, and spleen which is one of the main immune organs in teleost fishes. We compared perch collected from multiple lakes consisting of individuals with (n = 8) and without (n = 6) T. nodulosus plerocercoids in the liver. Results revealed a small number of differentially expressed genes (DEGs, adjusted p-value ≤0.05) in both spleen (n = 22) and liver (n = 10). DEGs in spleen consisted of mostly upregulated immune related genes (e.g., JUN, SIK1, THSB1), while those in the liver were often linked to metabolic functions (e.g., FABP1, CADM4, CDAB). However, Gene Ontology (GO) analysis showed lack of functional enrichment among DEGs. This study demonstrates that Eurasian perch displays a subtle response at a gene expression level to T. nodulosus plerocercoid infection. Given that plerocercoids are low-metabolic activity transmission stages, our results suggest that moderate T. nodulosus plerocercoid infection most likely does not provoke an extensive host immune response and have relatively low physiological costs for the host. Our findings illustrate that not all conspicuous infections have severe effects on host gene regulation.
Collapse
Affiliation(s)
- Konrad Taube
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius, Lithuania
| | - Siim Kahar
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
| | - Mikhail Ozerov
- Biodiversity Unit, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Anti Vasemägi
- Chair of Aquaculture, Estonian University of Life Sciences, Kreutzwaldi 46a, 51014 Tartu, Estonia
- Swedish University of Agricultural Sciences, Sötvattenslaboratoriet, Stångholmsvägen 2, 17893 Drottningholm, Sweden
| |
Collapse
|
24
|
T A JP, Karunakaran C, Nath A, Kappalli S. Transcriptomic Variation of Amphiprion Percula (Lacepède, 1802) in Response to Infection with Cryptocaryon Irritans Brown, 1951. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:858-890. [PMID: 37695540 DOI: 10.1007/s10126-023-10246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Cryptocaryon irritans (Brown 1951) frequently infect the Pomacentridae fishes causing severe economic losses. However, the anti-C. irritans' molecular mechanism in these fishes remains largely unknown. To address this issue, we conducted RNA-Seq for C. irrtians-infected gills of the clownfish Amphiprion percula (Lacepède 1802) at the early (day 1) and late (day 3) stages of infection. A total of 1655 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs showed a vast genetic variation related to the following aspects: ECM-receptor interaction, P13K-Akt signalling, cytokine-cytokine receptor interaction, and endocytosis. During the early phase of infection, key genes involved in ATP production, energy homeostasis, and stress control were abruptly increased. In the late phase, however, acute response molecules of the peripheral nervous system (synaptic transmission and local immunity), metabolic system triggering glycogen synthesis, energy maintenance, and osmoregulation were found to be critical. The highest number of upregulated genes (URGs) recovered during the early phase was included under the 'biological process' category, which primarily functions as response to stimuli, signalling, and biological regulation. In the late phase, most of the URGs were related to gene regulation and immune system processes under 'molecular function' category. The immune-related URGs of early infection include major histocompatibility complex (MHC) class-II molecules apparently triggering CD4+ T-cell-activated Th responses, and that of late infection include MHC class-1 molecules for the possible culmination of CD8+ T-cell triggered cytotoxicity. The high level of genic single nucleotide polymorphisms (SNPs) identified during the late phase of infection is likely to influence their susceptibility to secondary infection. In summary, the identified DEGs and their related metabolic and immune-related pathways and the SNPs may provide new insights into coordinating the immunological events and improving resistance in Pomacentridae fishes against C. irritans.
Collapse
Affiliation(s)
- Jose Priya T A
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| | - Charutha Karunakaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Aishwarya Nath
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Sudha Kappalli
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| |
Collapse
|
25
|
Wang S, Li M, Jiang Y, Sun C, Wu G, Yang C, Liu W, Pan Y. Transcriptome analysis reveals immune regulation in the spleen of koi carp (Cyprinus carpio Koi) during Aeromonas hydrophila infection. Mol Immunol 2023; 162:11-20. [PMID: 37633251 DOI: 10.1016/j.molimm.2023.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
A. hydrophila (Aeromonas hydrophila) is one of the most hazardous pathogenic microorganisms threatening the aquaculture industry and exhibits zoonotic-like characteristics. This study was designed to investigate the differential gene expression and pathway enrichment in the spleen of koi carp (Cyprinus carpio koi) upon A. hydrophila infection. The Illumina NovaSeq 6000 sequencing platform was used to identify 252 DEGs (differentially expressed genes), including 112 upregulated genes and 140 downregulated genes, in the spleens of koi carp challenged with A. hydrophila compared to those in the spleens of koi carp treated with PBS (phosphate-buffered saline). DEGs were shown to be involved in 133 pathways by KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Numerous immunological disease-related pathways, such as the immune defense network for IgA production, Staphylococcus aureus infection, and antigen processing and presentation, were enriched in the DEGs. In addition, the expression levels of 10 randomly screened DEGs, including the inflammatory factor nlrp3 (NOD-like receptor family pyrin domain containing 3), cytokine il-8 (interleukin-8), c2 (complement c2), c3 (complement c3), and the lipid mediator cox1 (cyclooxygenase-1), were compared by qPCR. The results showed that six genes, including il-8, cox1, and nlrp3, were upregulated according to both RNA-seq and qPCR validation, while four, including c2 and c3, showed downregulated expression. This result verified a strong correlation between the RNA-seq and qPCR datasets at the expression level. Moreover, this study provided splenic transcriptome data for koi carp during A. hydrophila infection and provided theoretical support for future drug development.
Collapse
Affiliation(s)
- Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Mei Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China.
| | - Yu Jiang
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Chang Sun
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Chengyong Yang
- Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Wenli Liu
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Yufang Pan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
26
|
Li M, Li D, Li F, Liu W, Wang S, Wu G, Wu G, Tan G, Zheng Z, Li L, Pan Z, Liu Y. Hemolysin from Aeromonas hydrophila enhances the host's serum enzyme activity and regulates transcriptional responses in the spleen of Cyprinus rubrofuscus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115375. [PMID: 37591129 DOI: 10.1016/j.ecoenv.2023.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/04/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Aeromonas hydrophila is a conditional pathogen impacting public hygiene and safety. Hemolysin is a virulence factor of Aeromonas hydrophila that causes erythrocyte hemolysis, yet its transcriptional response to Cyprinus rubrofuscus remains unknown. Our investigation confirmed the hemolysis of hemolysin from A. hydrophila. Serum enzyme activity was evaluated weekly after C. rubrofuscus were immunized with hemolysin Ahh1. The results showed that the hemolysin enhances the serum superoxide dismutase (SOD), lysozyme (LZM), and catalase (CAT) activity, which reached a maximum on day 14. To elucidate the molecular interaction between hemolysin from A. hydrophila and the host, we performed transcriptome sequencing on the spleen of C. rubrofuscus 14 days post hemolysin infection. The total number of clean reads was 41.37 Gb, resulting in 79,832 unigenes with an N50 length of 1863 bp. There were 1982 significantly differentially expressed genes (DEGs), including 1083 upregulated genes and 899 downregulated genes. Transcript levels of the genes, such as LA6BL, CD2, and NLRC5, were significantly downregulated, while those of IL11, IL1R2, and IL8 were dramatically upregulated. The DEGs were mainly enriched in the immune disease, viral protein interaction with cytokine and cytokine receptor, and toll-like receptor pathways, suggesting that hemolysin stimulation can activate the transcriptional responses. RT-qPCR experiments results of seven genes, IL-8, STAT2, CTSK, PRF1, CXCL9, TLR5, and SACS, showed that their expression was highly concordant with RNA-seq data. We clarified for the first time the key genes and signaling pathways response to hemolysin from A. hydrophila, which offers strategies for treating and preventing diseases.
Collapse
Affiliation(s)
- Mei Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Dan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fenglan Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Wenli Liu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guofeng Wu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Guiliang Tan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziyi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Lin Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziqiang Pan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| |
Collapse
|
27
|
Liu Y, Li L, Yang J, Huang H, Song W. Transcriptome analysis reveals genes connected to temperature adaptation in juvenile antarctic krill Euphausia superba. Genes Genomics 2023; 45:1063-1071. [PMID: 37301775 PMCID: PMC10349771 DOI: 10.1007/s13258-023-01377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/15/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The Antarctic krill, Euphausia superba (E. superba), is a key organism in the Antarctic marine ecosystem and has been widely studied. However, there is a lack of transcriptome data focusing on temperature responses. METHODS In this study, we performed transcriptome sequencing of E. superba samples exposed to three different temperatures: -1.19 °C (low temperature, LT), - 0.37 °C (medium temperature, MT), and 3 °C (high temperature, HT). RESULTS Illumina sequencing generated 772,109,224 clean reads from the three temperature groups. In total, 1,623, 142, and 842 genes were differentially expressed in MT versus LT, HT versus LT, and HT versus MT, respectively. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that these differentially expressed genes were mainly involved in the Hippo signaling pathway, MAPK signaling pathway, and Toll-like receptor signaling pathway. Quantitative reverse-transcription PCR revealed that ESG037073 expression was significantly upregulated in the MT group compared with the LT group, and ESG037998 expression was significantly higher in the HT group than in the LT group. CONCLUSIONS This is the first transcriptome analysis of E. superba exposed to three different temperatures. Our results provide valuable resources for further studies on the molecular mechanisms underlying temperature adaptation in E. superba.
Collapse
Affiliation(s)
- Yongliang Liu
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, Shangdong, 264005, China
| | - Lingzhi Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jialiang Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Hongliang Huang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wei Song
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
28
|
Liu B, Jin X, Zhang K, Liu Y, Wang S, Chen S, Zhang S, Yin X. Transcriptomic Analysis of Liver Tissue of Black Sea Bass ( Centropristis striata) Exposed to High Nitrogen Environment. Genes (Basel) 2023; 14:1440. [PMID: 37510344 PMCID: PMC10378819 DOI: 10.3390/genes14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The black sea bass, Centropristis striata, is a potential candidate for commercial aquaculture. Due to inadequate removal of nitrogen in its breeding environment, C. striata exhibits increased nitrate concentration, which can cause acute toxicity, including energy metabolism damage and tissue damage. Therefore, RNA-seq technology was applied to characterize genes associated with toxicity tolerance under nitrate stress. The nitrate treatment caused significant changes in a total of 8920 genes, of which 2949 genes were up-regulated and 5971 genes were down-regulated. It was found that significantly enriched GO terms and KEGG were associated with blood microparticles, inhibitors of enzyme activity, and complement and coagulation cascade pathways. Furthermore, through bioinformatics analysis, it was found that these different pathways obtained in GO and KEGG enrichment analysis were mostly related to the immune and inflammatory response of fish. This study expands our understanding of the mechanism of nitrate stress affecting the liver function of C. striata.
Collapse
Affiliation(s)
- Bingjian Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316021, China
| | - Xun Jin
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316021, China
| | - Kun Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316021, China
| | - Yifan Liu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316021, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shiyi Chen
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316021, China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan 316021, China
| |
Collapse
|
29
|
Shivam S, Ertl R, Sexl V, El-Matbouli M, Kumar G. Differentially expressed transcripts of Tetracapsuloides bryosalmonae (Cnidaria) between carrier and dead-end hosts involved in key biological processes: novel insights from a coupled approach of FACS and RNA sequencing. Vet Res 2023; 54:51. [PMID: 37365650 PMCID: PMC10291810 DOI: 10.1186/s13567-023-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Tetracapsuloides bryosalmonae is a malacosporean endoparasite that infects a wide range of salmonids and causes proliferative kidney disease (PKD). Brown trout serves as a carrier host whereas rainbow trout represents a dead-end host. We thus asked if the parasite adapts to the different hosts by changing molecular mechanisms. We used fluorescent activated cell sorting (FACS) to isolate parasites from the kidney of brown trout and rainbow trout following experimental infection with T. bryosalmonae. The sorted parasite cells were then subjected to RNA sequencing. By this approach, we identified 1120 parasite transcripts that were expressed differentially in parasites derived from brown trout and rainbow trout. We found elevated levels of transcripts related to cytoskeleton organisation, cell polarity, peptidyl-serine phosphorylation in parasites sorted from brown trout. In contrast, transcripts related to translation, ribonucleoprotein complex biogenesis and subunit organisation, non-membrane bounded organelle assembly, regulation of protein catabolic process and protein refolding were upregulated in rainbow trout-derived parasites. These findings show distinct molecular adaptations of parasites, which may underlie their distinct outcomes in the two hosts. Moreover, the identification of these differentially expressed transcripts may enable the identification of novel drug targets that may be exploited as treatment against T. bryosalmonae. We here also describe for the first time how FACS based isolation of T. bryosalmonae cells from infected kidney of fish fosters research and allows to define differentially expressed parasite transcripts in carrier and dead-end fish hosts.
Collapse
Affiliation(s)
- Saloni Shivam
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Karwar Regional Station of Indian Council of Agricultural Research, Central Marine Fisheries Research Institute, Karwar, Karnataka, India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mansour El-Matbouli
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Gokhlesh Kumar
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Liao Z, Lin K, Liao W, Xie Y, Yu G, Shao Y, Dai M, Sun F. Transcriptomic analyses reveal the potential antibacterial mechanism of citral against Staphylococcus aureus. Front Microbiol 2023; 14:1171339. [PMID: 37250032 PMCID: PMC10213633 DOI: 10.3389/fmicb.2023.1171339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Background The emergence of multi-drug resistant Staphylococcus aureus (S. aureus) has posed a challenging clinical problem for treating its infection. The development of novel or new antibacterial agents becomes one of the useful methods to solve this problem, and has received more attention over the past decade. Citral is reported to have antibacterial activity against S. aureus, but its mechanism is yet entirely clear. Methods To reveal the antibacterial mechanism of citral against S. aureus, comparative transcriptomic analysis was carried out to analyze the gene expression differences between the citral-treated and untreated groups. The changes of protein, adenosine triphosphate (ATP) and reactive oxygen species (ROS) content in S. aureus caused by citral were also examined. Results Six hundred and fifty-nine differentially expressed genes were obtained according to the comparative transcriptomic analysis, including 287 up-regulated genes and 372 down-regulated genes. The oxidoreductase activity and fatty acid degradation pathway were enriched in up-regulated genes, and ribosome and S. aureus infection pathway were enriched in down-regulated genes. Meanwhile, physiological trials revealed a decline in ATP and protein levels, but an increase in ROS content within the citral-treated group. Thus, it can be inferred that the antibacterial effects of citral against S. aureus were likely due to its ability to decrease ATP content by down-regulating ATP synthase genes (atpD and atpG), reduce protein content, induce cell membrane and cell wall damages, accumulate ROS, and down-regulate virulence factor genes to reduce pathogenicity. Conclusion These findings revealed the antibacterial mechanism of citral was likely a type of multi-target mode that affected multiple molecular processes in S. aureus, which lays the groundwork for further exploitation of citral as a therapeutic candidate against S. aureus infections.
Collapse
Affiliation(s)
- Zedong Liao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Keshan Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Weijiang Liao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xie
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guoqing Yu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Shao
- The Second People’s Hospital of Pinghu, Pinghu, Zhejiang, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Pérez-Rodríguez D, Agís-Balboa RC, López-Fernández H. MyBrain-Seq: A Pipeline for MiRNA-Seq Data Analysis in Neuropsychiatric Disorders. Biomedicines 2023; 11:biomedicines11041230. [PMID: 37189848 DOI: 10.3390/biomedicines11041230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
High-throughput sequencing of small RNA molecules such as microRNAs (miRNAs) has become a widely used approach for studying gene expression and regulation. However, analyzing miRNA-Seq data can be challenging because it requires multiple steps, from quality control and preprocessing to differential expression and pathway-enrichment analyses, with many tools and databases available for each step. Furthermore, reproducibility of the analysis pipeline is crucial to ensure that the results are accurate and reliable. Here, we present myBrain-Seq, a comprehensive and reproducible pipeline for analyzing miRNA-Seq data that incorporates miRNA-specific solutions at each step of the analysis. The pipeline was designed to be flexible and user-friendly, allowing researchers with different levels of expertise to perform the analysis in a standardized and reproducible manner, using the most common and widely used tools for each step. In this work, we describe the implementation of myBrain-Seq and demonstrate its capacity to consistently and reproducibly identify differentially expressed miRNAs and enriched pathways by applying it to a real case study in which we compared schizophrenia patients who responded to medication with treatment-resistant schizophrenia patients to obtain a 16-miRNA treatment-resistant schizophrenia profile.
Collapse
Affiliation(s)
- Daniel Pérez-Rodríguez
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Neuro Epigenetics Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Translational Research in Neurological Diseases Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago University Hospital Complex, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| |
Collapse
|
32
|
Xu W, Zhang Z, Lai F, Yang J, Qin Q, Huang Y, Huang X. Transcriptome analysis reveals the host immune response upon LMBV infection in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108753. [PMID: 37080326 DOI: 10.1016/j.fsi.2023.108753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Largemouth bass (Micropterus salmoides) is one of the important economical freshwater aquaculture species in China. However, the outbreak of viral diseases always caused great economic losses in the largemouth bass aquaculture industry. Largemouth bass virus (LMBV), a double-stranded DNA (dsDNA) virus belonging to genus Ranavirus, family Iridoviridae causes high mortality in cultivated largemouth bass. However, host responses, especially the molecular events involved in LMBV infection still remained largely uncertain. Here, we established an in vivo model of LMBV infection, and systematically investigated the mRNA expression profiles of host genes in liver and spleen from infected largemouth bass using RNA sequencing (RNA-seq). Histopathological analysis indicated that necrotic cells and the formed necrotic focus were present in spleen, while numerous basophilic cells, hepatocytes volume shrinkage, nucleus pyknosis, and the disappeared boundary of hepatocytes were observed in the liver of infected largemouth bass. Transcriptomic analysis showed that transcription levels of 5128 genes (2804 up-regulated genes and 2324 down-regulated) in liver and 7008 genes (2603 up-regulated and 4405 down-regulated) in spleen were altered significantly. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that numerous co-regulated differentially expressed genes (DEGs) in liver and spleen were enriched in the pathways related to cell death and immune signaling, such as apoptosis, necroptosis, cytokine-cytokine receptor interaction and JAK-STAT signaling. Moreover, the DEGs specially regulated by LMBV infection in liver were significantly enriched in the KEGG pathways related to metabolism and cell death, while those in spleen were enriched in the immune related pathways. In addition, the expression changes of several randomly selected genes, such as SOCS1, IL-6, CXCL2, CASP8, CYC and TNF from qPCR were consistent with the transcriptomic data. Taken together, our findings will provide new insights into the fundamental patterns of molecular responses induced by LMBV in vivo, but also contribute greatly to understanding the host defense mechanisms against iridoviral pathogens.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zemiao Zhang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Fuxiang Lai
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Jiahui Yang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Fuess LE, Bolnick DI. Single-Cell RNA Sequencing Reveals Microevolution of the Stickleback Immune System. Genome Biol Evol 2023; 15:evad053. [PMID: 37039516 PMCID: PMC10116603 DOI: 10.1093/gbe/evad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
The risk and severity of pathogen infections in humans, livestock, or wild organisms depend on host immune function, which can vary between closely related host populations or even among individuals. This immune variation can entail between-population differences in immune gene coding sequences, copy number, or expression. In recent years, many studies have focused on population divergence in immunity using whole-tissue transcriptomics. But, whole-tissue transcriptomics cannot distinguish between evolved differences in gene regulation within cells, versus changes in cell composition within the focal tissue. Here, we leverage single-cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight broad immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types among the three populations of fish. Furthermore, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data: we reevaluate previously published whole-tissue transcriptome data from a quantitative genetic experimental infection study to gain better resolution relating infection outcomes to inferred cell type variation. Our combined study demonstrates the power of single-cell sequencing to not only document evolutionary phenomena (i.e., microevolution of immune cells) but also increase the power of traditional transcriptomic data sets.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, Texas State University
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut
| |
Collapse
|
34
|
Qin G, Ai X, Xu J, Yang Y. Dual RNA-seq of spleens extracted from channel catfish infected with Aeromonas veronii reveals novel insights into host-pathogen interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114609. [PMID: 36739739 DOI: 10.1016/j.ecoenv.2023.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Interactions between host and pathogen are involving various dynamic changes in transcript expression and critical for understanding host immunity against infections and its associated pathogenesis. Herein, we established a model of channel catfish infected with Aeromonas veronii. The infected fish had prominent body surface bleeding, and the spleen showed hyperemia and swelling. Then, the spleen of channel catfish infected with A. veronii was analyzed by dual RNA sequencing (RNA-seq), and the transcriptome data were compared with uninfected channel catfish spleen or bacteria cultured in vitro. The transcript expression profile of pathogen-host interaction between A. veronii and channel catfish was successfully studied. During infection, the host was enriched for multiple immune-related signaling pathways, such as the Toll-like receptor signaling pathway, Cytokine-cytokine receptor interaction, and T cell receptor signaling pathway; and significantly upregulated for many innate immune-related genes, including IL-8. At the same time, we found that A. veronii mainly harmed the host spleen through hemolysin. Our current findings are of great significance in clarifying the pathogenesis of channel catfish induced by A. veronii and provide gene targets for developing preventive measures.
Collapse
Affiliation(s)
- Gaixiao Qin
- College of Animal Science and Technology, Henan university of animal husbandry and Economy, Zhengzhou 450046, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
35
|
Wang J, Chen G, Yu X, Zhou X, Zhang Y, Wu Y, Tong J. Transcriptome analyses reveal differentially expressed genes associated with development of the palatal organ in bighead carp (Hypophthalmichthys nobilis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101072. [PMID: 36990038 DOI: 10.1016/j.cbd.2023.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/11/2023] [Indexed: 03/28/2023]
Abstract
The palatal organ is a filter-feeding related organ and occupies a considerable proportion of the head of bighead carp (Hypophthalmichthys nobilis), a large cyprinid fish intensive aquaculture in Asia. In this study, we performed RNA-seq of the palatal organ during growth periods of two (M2), six (M6) and 15 (M15) months of age after hatching. The numbers of differentially expressed genes (DEGs) were 1384, 481 and 1837 for M2 VS M6, M6 VS M15 and M2 VS M15 respectively. The following signaling pathways of energy metabolism and cytoskeleton function were enriched, including ECM-receptor interaction, Cardiac muscle contraction, Steroid biosynthesis and PPAR signaling pathway. Several members of collagen family (col1a1, col2a1, col6a2, col6a3, col9a2), Laminin gamma 1 (lamc1), integrin alpha 1 (itga1), Fatty acid binding protein 2 (fads2) and lipoprotein lipase (lpl), and Protein tyrosine kinase 7 (Ptk7) are candidate genes for growth and development of basic tissues of the palatal organ. Furthermore, taste-related genes such as fgfrl1, fgf8a, fsta and notch1a were also identified, which may be involved in the development of taste buds of the palatal organ. The transcriptome data obtained in this study provide insights into the understanding functions and development mechanisms of palatal organ, and potential candidate genes that may be related to the genetic modulation of head size of bighead carp.
Collapse
Affiliation(s)
- Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoyu Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanhong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
36
|
Borsi G, Motheramgari K, Dhiman H, Baumann M, Sinkala E, Sauerland M, Riba J, Borth N. Single-cell RNA sequencing reveals homogeneous transcriptome patterns and low variance in a suspension CHO-K1 and an adherent HEK293FT cell line in culture conditions. J Biotechnol 2023; 364:13-22. [PMID: 36708997 DOI: 10.1016/j.jbiotec.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Recombinant mammalian host cell lines, in particular CHO and HEK293 cells, are used for the industrial production of therapeutic proteins. Despite their well-known genomic instability, the control mechanisms that enable cells to respond to changes in the environmental conditions are not yet fully understood, nor do we have a good understanding of the factors that lead to phenotypic shifts in long-term cultures. A contributing factor could be inherent diversity in transcriptomes within a population. In this study, we used a full-length coverage single-cell RNA sequencing (scRNA-seq) approach to investigate and compare cell-to-cell variability and the impact of standardized and homogenous culture conditions on the diversity of individual cell transcriptomes, comparing suspension CHO-K1 and adherent HEK293FT cells. Our data showed a critical batch effect from the sequencing of four 96-well plates of CHO-K1 single cells stored for different periods of time, which was and may be therefore identified as a technical variable to consider in experimental planning. Besides, in an artificial and controlled culture environment such as used in routine cell culture technology, the gene expression pattern of a given population does not reveal any marker gene capable to disclose relevant cell population substructures, both for CHO-K1 cells and for HEK293FT cells. The variation observed is primarily driven by the cell cycle.
Collapse
Affiliation(s)
- Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190, Vienna, Austria
| | - Krishna Motheramgari
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Heena Dhiman
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | | | | | | | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
37
|
Haridevamuthu B, Guru A, Velayutham M, Snega Priya P, Arshad A, Arockiaraj J. Long non‐coding RNA, a supreme post‐transcriptional immune regulator of bacterial or virus‐driven immune evolution in teleost. REVIEWS IN AQUACULTURE 2023; 15:163-178. [DOI: 10.1111/raq.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2023]
Abstract
AbstractThe global aquaculture boom, fuelled by a reduction in wild population and detection of novel viruses, has created a demanding market, hence, there is a pressing need to investigate the immune system of fish, further. As the most diverse community of vertebrates and a central contributor to the progressing global aquaculture market, teleost continues to draw vast scientific interest. Recent breakthroughs in multi‐omics technologies have provided a platform to understand the role of long non‐coding RNA (lncRNA) in the host immune system during infection. Emerging evidence shows that teleost lncRNA might have a regulatory role in immune responses, mostly through lncRNA–microRNA (miRNA) sponging. Teleost lncRNA shares a functionally active short sequence complement to target the miRNA which is conserved among the several fish species. Recent report suggests that rhabdovirus exploits a lncRNA in teleost and, to dodge the host immune mechanism and negatively regulate the immune system. This observation reveals the essentiality of lncRNA in pathogen‐driven immunity in teleost. Reports available on the function of teleost lncRNA are still in early stages and experimental verifications are a limiting factor. Unravelling the lncRNA‐mediated immune regulation in fishes could be used against the invading pathogens to strengthen the aquaculture production. This review elaborates on the experimentally identified and functionally characterized lncRNA and its regulatory role in the teleost immune response during infection and pathogen‐driven host immune evolution, which could eventually lead to achieving high standards in aquaculture productivity.
Collapse
Affiliation(s)
- B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
38
|
Blood-based gene expression as non-lethal tool for inferring salinity-habitat history of European eel (Anguilla anguilla). Sci Rep 2022; 12:22142. [PMID: 36550161 PMCID: PMC9780358 DOI: 10.1038/s41598-022-26302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The European eel is a facultative catadromous species, meaning that it can skip the freshwater phase or move between marine and freshwater habitats during its continental life stage. Otolith microchemistry, used to determine the habitat use of eel or its salinity history, requires the sacrifice of animals. In this context, blood-based gene expression may represent a non-lethal alternative. In this work, we tested the ability of blood transcriptional profiling to identify the different salinity-habitat histories of European eel. Eels collected from different locations in Norway were classified through otolith microchemistry as freshwater residents (FWR), seawater residents (SWR) or inter-habitat shifters (IHS). We detected 3451 differentially expressed genes from blood by comparing FWR and SWR groups, and then used that subset of genes in a machine learning approach (i.e., random forest) to the extended FWR, SWR, and IHS group. Random forest correctly classified 100% of FWR and SWR and 83% of the IHS using a minimum of 30 genes. The implementation of this non-lethal approach may replace otolith-based microchemistry analysis for the general assessment of life-history tactics in European eels. Overall, this approach is promising for the replacement or reduction of other lethal analyses in determining certain fish traits.
Collapse
|
39
|
Yu MH, Li XS, Wang J, Longshaw M, Song K, Wang L, Zhang CX, Lu KL. Substituting fish meal with a bacteria protein (Methylococcus capsulatus, Bath) grown on natural gas: Effects on growth non-specific immunity and gut health of spotted seabass (Lateolabrax maculatus). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Klykken C, Boissonnot L, Reed AK, Whatmore P, Attramadal K, Olsen RE. Gene expression patterns in Atlantic salmon (Salmo salar) with severe nephrocalcinosis. JOURNAL OF FISH DISEASES 2022; 45:1645-1658. [PMID: 35862221 PMCID: PMC9796406 DOI: 10.1111/jfd.13687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 05/24/2023]
Abstract
Nephrocalcinosis is a common disorder in farmed Atlantic salmon, but the consequences for the fish physiology are not well understood. We performed a transcriptome study in kidneys of Atlantic salmon (Salmo salar) smolts without and with severe chronic nephrocalcinosis (NC). The study revealed that numerous genes are differentially expressed in fish with NC compared with healthy salmon. The most evident changes in gene expression patterns in the NC group were a massive downregulation of metabolism and energy production, upregulation of signalling pathways important for tissue repair and function maintenance and upregulation of inflammatory responses. Overall, the extensive tissue damage and the gene regulation responses that affect salmon with severe nephrocalcinosis are highly likely to have dramatic consequences on fish survival.
Collapse
Affiliation(s)
- Christine Klykken
- Aqua Kompetanse ASFlatangerNorway
- Department of Biology, Faculty of Science and TechnologyNorwegian University of Science and TechnologyTrondheimNorway
| | | | | | - Paul Whatmore
- eResearch DepartmentQueensland Univesity of TechnologyBrisbaneQLDAustralia
| | - Kari Attramadal
- Department of Biotechnology and Food ScienceFaculty of Science and TechnologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Rolf Erik Olsen
- Department of Biology, Faculty of Science and TechnologyNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
41
|
Wang X, Xie Y, Hu W, Wei Z, Wei X, Yuan H, Yao H, Dunxue C. Transcriptome characterization and SSR discovery in the giant spiny frog Quasipaa spinosa. Gene 2022; 842:146793. [PMID: 35952842 DOI: 10.1016/j.gene.2022.146793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
The giant spiny frog Quasipaa spinosa (Amphibia: Ranidae) is a large unique frog species found mainly in southern China with a low amount of fat and high protein, and it has become one of the most important aquaculture animal species in China. To better understand its genetic background and screen potential molecular markers for artificial breeding and species conservation, we constructed an expression profile of Q. spinosa with high-throughput RNA sequencing and acquired potential SSR markers. Approximately 81.7 Gb of data and 93,887 unigenes were generated. The transcriptome contains 2085 (80.7 %) complete BUSCOs, suggesting that our assembly methods were effective and accurate.These unigenes were functionally classified using 7 functional databases, yielding 17,482 Pfam-, 12,752 Sting-, 17,526 KEGG-, 24,341 Swiss-Prot-, 28,604 Nr-, 16,287 GO- and 12,752 COG-annotated unigenes. Among several amphibian species, Q. spinosa unigenes had the highest number of hits to Xenopus tropicalis (35.25 %), followed by Xenopus laevis (12.68 %). 1417 unigenes were assigned to the immune system. In addition, a total of 33,019 candidate SSR markers were identified from the constructed library. Further tests with 20 loci and 118 large-scale breeding specimens gathered from four culture farms in China showed that 15 (75 %) loci were polymorphic, with the number of alleles per locus varying from 3 to 9 (mean of 4.3). The PIC values for the SSR markers ranged from 0.19 to 0.82, with an average value of 0.43, indicating moderate polymorphism in Q. spinosa. The transcriptomic profile and SSR repertoire obtained in the present study will facilitate population genetic studies and the selective breeding of amphibian species.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yongguang Xie
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Wei Hu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Zhaoyu Wei
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Xiuying Wei
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Hong Yuan
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Hongyan Yao
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China
| | - Chen Dunxue
- College of Animal Science/Key Laboratory of Animal Genetics and Breeding and Reproduction of Plateau and Mountain Animals of Guizhou University, Guiyang, China.
| |
Collapse
|
42
|
Transcriptomic Analysis in Marine Medaka Gill Reveals That the Hypo-Osmotic Stress Could Alter the Immune Response via the IL17 Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012417. [PMID: 36293271 PMCID: PMC9604416 DOI: 10.3390/ijms232012417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fish gills are the major osmoregulatory tissue that contact the external water environment and have developed an effective osmoregulatory mechanism to maintain cellular function. Marine medaka (Oryzias melastigma) has the ability to live in both seawater and fresh water environments. The present study performed a seawater (SW) to 50% seawater (SFW) transfer, and the gill samples were used for comparative transcriptomic analysis to study the alteration of hypo-osmotic stress on immune responsive genes in this model organism. The result identified 518 differentiated expressed genes (DEGs) after the SW to SFW transfer. Various pathways such as p53 signaling, forkhead box O signaling, and the cell cycle were enriched. Moreover, the immune system was highlighted as one of the top altered biological processes in the enrichment analysis. Various cytokines, chemokines, and inflammatory genes that participate in the IL-17 signaling pathway were suppressed after the SW to SFW transfer. On the other hand, some immunoglobulin-related genes were up-regulated. The results were further validated by real-time qPCR. Taken together, our study provides additional gill transcriptome information in marine medaka; it also supports the notion that osmotic stress could influence the immune responses in fish gills.
Collapse
|
43
|
Guo X, Wang W, Zheng Q, Qin Q, Huang Y, Huang X. Comparative transcriptomic analysis reveals different host cell responses to Singapore grouper iridovirus and red-spotted grouper nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:136-147. [PMID: 35921938 DOI: 10.1016/j.fsi.2022.07.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) are important pathogens that cause high mortality and heavy economic losses in grouper aquaculture. Interestingly, SGIV infection in grouper cells induces paraptosis-like cell death, while RGNNV infection induces autophagy and necrosis characterized morphologically by vacuolation of lysosome. Here, a comparative transcriptomic analysis was carried out to identify the different molecular events during SGIV and RGNNV infection in grouper spleen (EAGS) cells. The functional enrichment analysis of DEGs suggested that several signaling pathways were involved in CPE progression and host immune response against SGIV or RGNNV. Most of DEGs featured in the KEGG "lysosome pathway" were up-regulated in RGNNV-infected cells, indicating that RGNNV induced lysosomal vacuolization and autophagy might be due to the disturbance of lysosomal function. More than 100 DEGs in cytoskeleton pathway and mitogen-activated protein kinase (MAPK) signal pathway were identified during SGIV infection, providing additional evidence for the roles of cytoskeleton remodeling in cell rounding during CPE progression and MAPK signaling in SGIV induced cell death. Of note, consistent with changes at the transcriptional levels, the post-translational modifications of MAPK signaling-related proteins were also detected during RGNNV infection, and the inhibitors of extracellular signal-regulated kinase (ERK) and p38 MAPK significantly suppressed viral replication and virus induced vacuoles formation. Moreover, the majority of DEGs in interferon and inflammation signaling were obviously up-regulated during RGNNV infection, but down-regulated during SGIV infection, suggesting that SGIV and RGNNV differently manipulated host immune response in vitro. In addition, purine and pyrimidine metabolism pathways were also differently regulated in SGIV and RGNNV-infection cells. Taken together, our data will provide new insights into understanding the potential mechanisms underlying different host cell responses against fish DNA and RNA virus.
Collapse
Affiliation(s)
- Xixi Guo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wenji Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaohong Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
44
|
McLimans CJ, Shelledy K, Conrad W, Prendergast K, Le AN, Grant CJ, Buonaccorsi VP. Potential biomarkers of endocrine and habitat disruption identified via RNA-Seq in Salvelinus fontinalis with proximity to fracking operations in Pennsylvania headwater stream ecosystems. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1044-1055. [PMID: 35834075 DOI: 10.1007/s10646-022-02564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Unconventional natural gas development (fracking) has been a rapidly expanding technique used for the extraction of natural gas from the Marcellus Shale formation in Pennsylvania. There remains a knowledge gap regarding the ecological impacts of fracking, especially regarding the long-term health of native Brook trout (Salvelinus fontinalis) populations. During the summer of 2015, Brook trout were sampled from twelve streams located in forested, northwestern Pennsylvania in order to evaluate the impacts of fracking on Brook trout. Four stream sites were undisturbed (no fracking activity), three had a developed well pad without fracking activity, and five had active fracking with natural gas production. Liver tissue was isolated from two to five fish per stream and underwent RNA-Seq analysis to identify differentially expressed genes between ecosystems with differing fracking status. Data were analyzed individually and with samples pooled within-stream to account for hierarchical data structure and variation in sample coverage within streams. Differentially expressed and differentially alternatively spliced genes had functions related to lipid and steroid metabolism, mRNA processing, RNA polymerase and protein regulation. Unique to our study, genes related to xenobiotic and stress responses were found as well as potential markers for endocrine disruption and saline adaptation that were identified in watersheds with active fracking activity. These results support the utility of RNA-Seq to assess trout health and suggest detrimental impacts of fracking on sensitive trout populations.
Collapse
Affiliation(s)
| | | | - William Conrad
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | - Anh N Le
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | | |
Collapse
|
45
|
Sundaray JK, Dixit S, Rather A, Rasal KD, Sahoo L. Aquaculture omics: An update on the current status of research and data analysis. Mar Genomics 2022; 64:100967. [PMID: 35779450 DOI: 10.1016/j.margen.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing technology has revolutionized the biological sciences and provided necessary tools. Application of 'omics' in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, transcriptome profiling and miRNAs analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. Metagenomics has been successfully used in the aquaculture sector to identify novel and potential pathogens, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.
Collapse
Affiliation(s)
- Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Ashraf Rather
- Division of Fish Genetics and Biotechnology, College of Fisheries, Sher-e- Kashmir University of Agricultural Science and Technology, Rangil-Ganderbal 190006, Jammu and Kashmir, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400 061, Maharastra, India
| | - Lakshman Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
46
|
Sudhagar A, El-Matbouli M, Kumar G. Genome-wide alternative splicing profile in the posterior kidney of brown trout (Salmo trutta) during proliferative kidney disease. BMC Genomics 2022; 23:446. [PMID: 35710345 PMCID: PMC9204890 DOI: 10.1186/s12864-022-08685-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The cnidarian myxozoan parasite Tetracapsuloides bryosalmonae causes chronic proliferative kidney disease (PKD) in salmonids. This parasite is a serious threat to wild and cultured salmonids. T. bryosalmonae undergoes intra-luminal sporogonic development in the kidney of brown trout (Salmo trutta) and the viable spores are released via urine. We investigated the alternative splicing pattern in the posterior kidney of brown trout during PKD. RESULTS RNA-seq data were generated from the posterior kidney of brown trout collected at 12 weeks post-exposure to T. bryosalmonae. Subsequently, this data was mapped to the brown trout genome. About 153 significant differently expressed alternatively spliced (DEAS) genes, (delta PSI = 5%, FDR P-value < 0.05) were identified from 19,722 alternatively spliced events. Among the DEAS genes, the least and most abundant alternative splicing types were alternative 5' splice site (5.23%) and exon skipping (70.59%), respectively. The DEAS genes were significantly enriched for sodium-potassium transporter activity and ion homeostasis (ahcyl1, atp1a3a, atp1a1a.1, and atp1a1a.5). The protein-protein interaction network analysis enriched two local network clusters namely cation transporting ATPase C-terminus and Sodium/potassium ATPase beta chain cluster, and mixed inclusion of Ion homeostasis and EF-hand domain cluster. Furthermore, the human disease-related salmonella infection pathway was significantly enriched in the protein-protein interaction network. CONCLUSION This study provides the first baseline information about alternative splicing in brown trout during PKD. The generated data lay a foundation for further functional molecular studies in PKD - brown trout infection model. The information generated from the present study can help to develop therapeutic strategies for PKD in the future.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Peninsular and Marine Fish Genetic Resources Centre, ICAR - National Bureau of Fish Genetic Resources, Kochi, Kerala, 682 018, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
47
|
Qi Z, Lin J, Gao R, Wu W, Zhang Y, Wei X, Xiao X, Wang H, Peng Y, Clark JM, Park Y, Sun Q. Transcriptome analysis provides insight into deltamethrin-induced fat accumulation in 3T3-L1 adipocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105114. [PMID: 35715053 DOI: 10.1016/j.pestbp.2022.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Previously, deltamethrin (a Type-II pyrethroid) has been reported to increase triglyceride (fat) accumulation in adipocytes, while its underlying molecular mechanism is not fully determined. The aim of this study was to further investigate the molecular mechanisms of deltamethrin induced fat accumulation in murine 3T3-L1 adipocytes. Consistent to previous reports, deltamethrin (10 μM) significantly promoted adipogenesis in 3T3-L1 adipocytes. RNA sequencing (RNA-seq) results showed that 721 differentially expressed genes (DEGs) were identified after deltamethrin treatment, involving in 58 Functional groups of Gene Ontology (GO) and 255 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Several key functional groups regulating adipogenesis, such as fat cell differentiation (Igf1, Snai2, Fgf10, and Enpp1) and cytosolic calcium ion concentration (Nos1, Cxcl1, and Ngf) were significantly enriched. Collectively, these results suggest that the promotion of adipogenesis by deltamethrin was attributed to an obesogenic global transcriptomic response, which provides further understanding of the underlying mechanisms of deltamethrin-induced fat accumulation.
Collapse
Affiliation(s)
- Zexiu Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jie Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Weize Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinyuan Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Huili Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Ye Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
48
|
De Felice B, Sugni M, Casati L, Parolini M. Molecular, biochemical and behavioral responses of Daphnia magna under long-term exposure to polystyrene nanoplastics. ENVIRONMENT INTERNATIONAL 2022; 164:107264. [PMID: 35489111 DOI: 10.1016/j.envint.2022.107264] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The presence and potential toxicity of nanoplastics (NPs) in aquatic ecosystems is an issue of growing concern. Although many studies have investigated the adverse effects of short-term exposure to high concentrations of NPs to aquatic organisms, the information on the consequences caused by the administration of low NPs concentrations over long-term exposure is limited. The present study aimed at investigating the effects induced by a long-term exposure (21-days) to two sub-lethal concentrations of polystyrene nanoplastics (PS-NPs; 0.05 and 0.5 µg/mL) on Daphnia magna. A multi-level approach was performed to assess potential sub-individual (i.e., molecular and biochemical) and individual (i.e., behavioural) adverse effects. At molecular level, the modulation of the expression of genes involved in antioxidant defence, response to stressful conditions and specific physiological pathways was investigated. Oxidative stress (i.e., the amount of pro-oxidants, the activity of antioxidant and detoxifying enzymes and lipid peroxidation) and energetic (i.e., protein, carbohydrate, lipid and total caloric content) biomarkers were applied to assess effects at the biochemical level, while swimming activity was measured to monitor changes in individual behavior. Although the 21-days exposure to PS-NPs induced a slight modulation of gene involved in oxidative stress response, biochemical analyses showed that D. magna individuals did not experience an oxidative stress condition. Significant changes in energy reserves of individuals exposed for 21 days to both the PS-NPs concentrations were observed, but no alterations of swimming activity occurred. Our results highlighted that the exposure to low concentrations of PS-NPs could pose a limited risk to D. magna individuals and suggested the importance of a multi-level approach to assess the risks of NPs on aquatic organisms.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, Via di Rudinì, 8 - ASST Santi Paolo e Carlo, I-20142 Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| |
Collapse
|
49
|
Teng J, Zhao Y, Meng QL, Zhu SR, Chen HJ, Xue LY, Ji XS. Transcriptome analysis in the spleen of Northern Snakehead (Channa argus) challenged with Nocardia seriolae. Genomics 2022; 114:110357. [PMID: 35378240 DOI: 10.1016/j.ygeno.2022.110357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Northern snakehead (Channa argus) is an indigenous fish species and is one of popularly cultured snakeheads in China and other Asian countries. Unfortunately, Nocardia seriolae infections have caused considerable losses in the snakehead aquaculture industry. However, the infectivity and the immune response induced by N. seriolae in snakehead are unclear. In order to better understand the immune response of Northern snakehead in a series of time points after N. seriolae challenge, we conducted the transcriptomic comparison in snakehead spleen at 48, 96, and 144 h after the challenge of N. seriola against their control counterparts. Gene annotation and pathway analysis of differentially expressed genes (DEGs) were carried out to understand the functions of the DEGs. Additionally, protein-protein interaction networks were conducted to obtain the interaction relationships of immune-related DEGs. These results revealed the expression changes of multiple DEGs and signaling pathways involved in immunity during N. seriolae infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the northern snakehead.
Collapse
Affiliation(s)
- Jian Teng
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China; College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yan Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Qing Lei Meng
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Shu Ren Zhu
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Hong Ju Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Shan Ji
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
50
|
Zheng X, Guo J, Cao C, Qin T, Zhao Y, Song X, Lv M, Hu L, Zhang L, Zhou D, Fang T, Yang W. Time-Course Transcriptome Analysis of Lungs From Mice Infected With Hypervirulent Klebsiella pneumoniae via Aerosolized Intratracheal Inoculation. Front Cell Infect Microbiol 2022; 12:833080. [PMID: 35573776 PMCID: PMC9097095 DOI: 10.3389/fcimb.2022.833080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening community-acquired infections among healthy young individuals and is thus of concern for global dissemination. In this study, a mouse model of acute primary hvKp pneumonia was established via aerosolized intratracheal (i.t.) inoculation, laying the foundation for conducting extensive studies related to hvKp. Subsequently, a time-course transcriptional profile was created of the lungs from the mouse model at 0, 12, 24, 48 and 60 hours post-infection (hpi) using RNA Sequencing (RNA-Seq). RNA-Seq data were analyzed with the use of Mfuzz time clustering, weighted gene co-expression network analysis (WGCNA) and Immune Cell Abundance Identifier for mouse (ImmuCellAI-mouse). A gradual change in the transcriptional profile of the lungs was observed that reflected expected disease progression. At 12 hpi, genes related to acute phase inflammatory response increased in expression and lipid metabolism appeared to have a pro-inflammatory effect. At 24 hpi, exacerbation of inflammation was observed and active IFN-γ suggested that signaling promoted activation and recruitment of macrophages occurred. Genes related to maintaining the structural integrity of lung tissues showed a sustained decrease in expression after infection and the decrease was especially marked at 48 hpi. TNF, IL-17, MAPK and NF-kB signaling pathways may play key roles in the immunopathogenesis mechanism at all stages of infection. Natural killer (NK) cells consistently decreased in abundance after infection, which has rarely been reported in hvKp infection and could provide a new target for treatment. Genes Saa1 and Slpi were significantly upregulated during infection. Both Saa1, which is associated with lipopolysaccharide (LPS) that elicits host inflammatory response, and Slpi, which encodes an antimicrobial protein, have not previously been reported in hvKp infections and could be important targets for subsequent studies. To t our knowledge, this paper represents the first study to investigate the pulmonary transcriptional response to hvKp infection. The results provide new insights into the molecular mechanisms underlying the pathogenesis of hvKp pulmonary infection that can contribute to the development of therapies to reduce hvKp pneumonia.
Collapse
Affiliation(s)
- Xinying Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianshu Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chaoyue Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongtong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Yue Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyu Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Tongyu Fang, ; Wenhui Yang,
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Tongyu Fang, ; Wenhui Yang,
| |
Collapse
|