1
|
Adedibu PA, Noskova YA, Yugay YA, Ovsiannikova DM, Vasyutkina EA, Kudinova OD, Grigorchuk VP, Shkryl YN, Tekutyeva LA, Balabanova LA. Expression and Characterization of Alkaline Phosphatase from Cobetia amphilecti KMM 296 in Transiently Transformed Tobacco Leaves and Transgenic Calli. PLANTS (BASEL, SWITZERLAND) 2024; 13:3570. [PMID: 39771268 PMCID: PMC11679904 DOI: 10.3390/plants13243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders. This study aims to produce recombinant ALP from the marine bacterium Cobetia amphilecti KMM 296 (CmAP) in transformed leaves and calli of Nicotiana tabacum and to elucidate the influence of the plant host on its physical and chemical properties. N. tabacum has proven to be versatile and is extensively used as a heterologous host in molecular farming. The alp gene encoding for CmAP was cloned into the binary vectors pEff and pHREAC and transformed into N. tabacum leaves through agroinfiltration and the leaf disc method for callus induction using Agrobacterium tumefaciens strain EHA105. Transformed plants were screened for recombinant CmAP (rCmAP) production by its enzymatic activity and protein electrophoresis, corresponding to 55 kDa of mature CmAP. A higher rCmAP activity (14.6 U/mg) was detected in a homogenate of leaves bearing the pEFF-CmAP construct, which was further purified 150-fold using metal affinity, followed by anion exchange chromatography. Enzymatic activity and stability were assessed at different temperatures (15-75 °C) and exposure times (≤1 h), with different buffers, pHs, divalent metal ions, and salt concentrations. The results show that rCmAP is relatively thermostable, retaining its activity at 15-45 °C for up to 1 h. Its activity is highest in Tris HCl (pH 9.0-11.0) at 35 °C for 40 min. rCmAP shows higher salt-tolerance and divalent metal-dependence than obtained in Escherichia coli. This can be further explored for cost-effective and massively scalable production of LPS-free CmAP for possible biomedical and agricultural applications.
Collapse
Affiliation(s)
- Peter Adeolu Adedibu
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Yulia Aleksandrovna Noskova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Yulia Anatolievna Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Daria Mikhailovna Ovsiannikova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Elena Anatolievna Vasyutkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Olesya Dmitrievna Kudinova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Valeria Petrovna Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Yury Nikolaevich Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia (Y.N.S.)
| | - Liudmila Aleksandrovna Tekutyeva
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
| | - Larissa Anatolievna Balabanova
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia (L.A.B.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka 152, 690022 Vladivostok, Russia
| |
Collapse
|
2
|
Hanittinan O, Rattanapisit K, Malla A, Tharakhet K, Ketloy C, Prompetchara E, Phoolcharoen W. Feasibility of plant-expression system for production of recombinant anti-human IgE: An alternative production platform for therapeutic monoclonal antibodies. FRONTIERS IN PLANT SCIENCE 2022; 13:1012583. [PMID: 36531354 PMCID: PMC9755585 DOI: 10.3389/fpls.2022.1012583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/18/2022] [Indexed: 05/07/2023]
Abstract
Omalizumab, the anti-immunoglobulin IgE antibody is the only approved and available monoclonal antibody as an auxiliary medicament for the severe respiratory allergic reactions. It forms small size immune complexes by binding to free IgE, thereby inhibiting the interaction of IgE with its receptors. Additionally, the anti-IgE can also differently shape the airflow by impeding the stimulation of IgE receptors present on structural cells in the respiratory tract. The present study aimed to use plants as an expression system for anti-human IgE antibody production, using Nicotiana benthamiana as hosts. Recombinant Agrobacterium tumefaciens containing heavy chain (HC) and light chain (LC) domains of anti-human IgE were co-transformed in N. benthamiana. The assembling of the antibody and its expression was detected by SDS-PAGE and Western blot analysis. The functional ability of the anti-IgE antibody was determined via its binding capacity with target IgE by ELISA and the inhibition of basophil activation. The anti-human IgE mAb generated in plants was shown to be effective in binding to its target IgE and inhibit the IgE-crosslink in RS-ATL8 reporter cells. Although, antibody yield and purification process have to be further optimized, this study demonstrates the use of plant expression system as a promising platform for the production of Omalizumab which showed a comparable in vitro function to that of commercial Omalizumab (Xolair) in the inhibition of basophil activation.
Collapse
Affiliation(s)
- Oranicha Hanittinan
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Kittipan Tharakhet
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eakachai Prompetchara
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Eakachai Prompetchara, ; Waranyoo Phoolcharoen,
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Eakachai Prompetchara, ; Waranyoo Phoolcharoen,
| |
Collapse
|
3
|
Kang CE, Lee S, Seo DH, Heo W, Kwon SH, Kim J, Lee J, Ko BJ, Koiwa H, Kim WT, Kim JY. Comparison of CD20 Binding Affinities of Rituximab Produced in Nicotiana benthamiana Leaves and Arabidopsis thaliana Callus. Mol Biotechnol 2021; 63:1016-1029. [PMID: 34185248 DOI: 10.1007/s12033-021-00360-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Seungeun Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Sun Hyung Kwon
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - JeongRyeol Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byoung Joon Ko
- Mass Analysis Team, New Drug Development Center, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hisashi Koiwa
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX77843-2133, USA
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Shenoy A, Yalamanchili S, Davis AR, Barb AW. Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain. Antibodies (Basel) 2021; 10:antib10040038. [PMID: 34698072 PMCID: PMC8544235 DOI: 10.3390/antib10040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to mammalian expression platforms. Yeasts, for example, generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endoglycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal (HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 μM) and bound CD20 on Raji B cells.
Collapse
Affiliation(s)
- Anjali Shenoy
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Srisaimaneesh Yalamanchili
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Alexander R. Davis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
5
|
Biobetters in patients with immune-mediated inflammatory disorders: An international Delphi consensus. Autoimmun Rev 2021; 20:102849. [PMID: 33974946 DOI: 10.1016/j.autrev.2021.102849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022]
Abstract
Several efforts have been made to improve the available therapeutic armamentarium of patients with immune-mediated inflammatory disorders (IMIDs) leading to the development of biobetters. To date, there is no commonly accepted definition of biobetters. Sixteen physicians with expertise in the field of IMIDs from eleven countries attended a virtual international consensus meeting to provide for the first time a definition of biobetter and to identify unmet needs on this topic. Improvements in clinical outcomes and drug pharmacology were considered crucial for the definition of biobetters, while safety profile and patient acceptability were not. In addition, an appropriate balance between clinical outcomes and costs and a shared decision between physicians and patients should guide the decision to use a biobetter. Clinical studies are required to validate the biobetter definition and to investigate their role in the management of patients with IMIDs.
Collapse
|
6
|
Macharoen K, Li Q, Márquez-Escobar VA, Corbin JM, Lebrilla CB, Nandi S, McDonald KA. Effects of Kifunensine on Production and N-Glycosylation Modification of Butyrylcholinesterase in a Transgenic Rice Cell Culture Bioreactor. Int J Mol Sci 2020; 21:ijms21186896. [PMID: 32962231 PMCID: PMC7555773 DOI: 10.3390/ijms21186896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The production and N-glycosylation of recombinant human butyrylcholinesterase (BChE), a model highly glycosylated therapeutic protein, in a transgenic rice cell suspension culture treated with kifunensine, a strong α-mannosidase I inhibitor, was studied in a 5 L bioreactor. A media exchange was performed at day 7 of cultivation by removing spent sugar-rich medium (NB+S) and adding fresh sugar-free (NB-S) medium to induce the rice α-amylase 3D (RAmy3D) promoter to produce rice recombinant human BChE (rrBChE). Using a 1.25X-concentrated sugar-free medium together with an 80% reduced working volume during the media exchange led to a total active rrBChE production level of 79 ± 2 µg (g FW)-1 or 7.5 ± 0.4 mg L-1 in the presence of kifunensine, which was 1.5-times higher than our previous bioreactor runs using normal sugar-free (NB-S) media with no kifunensine treatment. Importantly, the amount of secreted active rrBChE in culture medium was enhanced in the presence of kifunensine, comprising 44% of the total active rrBChE at day 5 following induction. Coomassie-stained SDS-PAGE gel and Western blot analyses revealed different electrophoretic migration of purified rrBChE bands with and without kifunensine treatment, which was attributed to different N-glycoforms. N-Glycosylation analysis showed substantially increased oligomannose glycans (Man5/6/7/8) in rrBChE treated with kifunensine compared to controls. However, the mass-transfer limitation of kifunensine was likely the major reason for incomplete inhibition of α-mannosidase I in this bioreactor study.
Collapse
Affiliation(s)
- Kantharakorn Macharoen
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Veronica A. Márquez-Escobar
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Jasmine M. Corbin
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
7
|
McDonald KA, Holtz RB. From Farm to Finger Prick-A Perspective on How Plants Can Help in the Fight Against COVID-19. Front Bioeng Biotechnol 2020; 8:782. [PMID: 32714921 PMCID: PMC7351482 DOI: 10.3389/fbioe.2020.00782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
As a consequence of the COVID-19 pandemic crisis, farmers across the country are plowing under their fields and laying off workers. Plant biomass has been shown by the DARPA “Blue Angel” project in 2010 to be an efficient way to rapidly make vaccines and diagnostics. This technology could pivot some areas of agriculture toward biomedical products to aid in the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States.,Food and Pharmaceutical Synthesis Division Lead, Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Global HealthShare® Initiative, Davis, CA, United States
| | - R Barry Holtz
- Holtz Biopharma Consulting, Austin, TX, United States.,Scientific Advisory Committee, Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States
| |
Collapse
|
8
|
Fairbanks AJ. Chemoenzymatic synthesis of glycoproteins. Curr Opin Chem Biol 2019; 53:9-15. [DOI: 10.1016/j.cbpa.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
|
9
|
Mastrangeli R, Palinsky W, Bierau H. Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 2019; 29:199-210. [PMID: 30289453 DOI: 10.1093/glycob/cwy092] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (mAbs) are currently the largest and fastest growing class of biopharmaceuticals, and they address unmet medical needs, e.g., in oncology and in auto-immune diseases. Their clinical efficacy and safety is significantly affected by the structure and composition of their glycosylation profile which is commonly heterogeneous, heavily dependent on the manufacturing process, and thus susceptible to variations in the cell culture conditions. Glycosylation is therefore considered a critical quality attribute for mAbs. Commonly, in currently marketed therapeutic mAbs, the glycosylation profile is suboptimal in terms of biological properties such as antibody-dependent cell-mediated cytotoxicity or may give rise to safety concerns due to the presence of non-human glycans. This article will review recent innovative developments in chemo-enzymatic glycoengineering, which allow generating mAbs carrying single, well-defined, uniform Fc glycoforms, which confers the desired biological properties for the target application. This approach offers significant benefits such as enhanced Fc effector functions, improved safety profiles, higher batch-to-batch consistency, decreased risks related to immunogenicity and manufacturing process changes, and the possibility to manufacture mAbs, in an economical manner, in non-mammalian expression systems. Overall, this approach could facilitate and reduce mAb manufacturing costs which in turn would translate into tangible benefits for both patients and manufacturers. The first glycoengineered mAbs are about to enter clinical trials and it is expected that, once glycoengineering reagents are available at affordable costs, and in-line with regulatory requirements, that targeted remodeling of antibody Fc glycosylation will become an integral part in manufacturing the next-generation of immunotherapeutics.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma, an affiliate of Merck KgaA, Darmstadt, Germany. Zone Industrielle de l'Ouriettaz, Aubonne, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| |
Collapse
|
10
|
Kommineni V, Markert M, Ren Z, Palle S, Carrillo B, Deng J, Tejeda A, Nandi S, McDonald KA, Marcel S, Holtz B. In Vivo Glycan Engineering via the Mannosidase I Inhibitor (Kifunensine) Improves Efficacy of Rituximab Manufactured in Nicotiana benthamiana Plants. Int J Mol Sci 2019; 20:E194. [PMID: 30621113 PMCID: PMC6337617 DOI: 10.3390/ijms20010194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation has been shown to affect the pharmacokinetic properties of several classes of biologics, including monoclonal antibodies, blood factors, and lysosomal enzymes. In the last two decades, N-glycan engineering has been employed to achieve a N-glycosylation profile that is either more consistent or aligned with a specific improved activity (i.e., effector function or serum half-life). In particular, attention has focused on engineering processes in vivo or in vitro to alter the structure of the N-glycosylation of the Fc region of anti-cancer monoclonal antibodies in order to increase antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we applied the mannosidase I inhibitor kifunensine to the Nicotiana benthamiana transient expression platform to produce an afucosylated anti-CD20 antibody (rituximab). We determined the optimal concentration of kifunensine used in the infiltration solution, 0.375 µM, which was sufficient to produce exclusively oligomannose glycoforms, at a concentration 14 times lower than previously published levels. The resulting afucosylated rituximab revealed a 14-fold increase in ADCC activity targeting the lymphoma cell line Wil2-S when compared with rituximab produced in the absence of kifunensine. When applied to the cost-effective and scalable N. benthamiana transient expression platform, the use of kifunensine allows simple in-process glycan engineering without the need for transgenic hosts.
Collapse
Affiliation(s)
- Vally Kommineni
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Matthew Markert
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Zhongjie Ren
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Sreenath Palle
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Berenice Carrillo
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Jasmine Deng
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Armando Tejeda
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Somen Nandi
- Global HealthShare® Initiative, University of California at Davis, Davis, CA 95616, USA.
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| | - Karen A McDonald
- Global HealthShare® Initiative, University of California at Davis, Davis, CA 95616, USA.
- Department of Chemical Engineering, University of California at Davis, Davis, CA 95616, USA.
| | - Sylvain Marcel
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Barry Holtz
- iBio CDMO, LLC, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| |
Collapse
|