1
|
Liu S, Hu Y, Liu F, Jiang Y, Wang H, Wu X, Hu D. Identifying Key Genes as Progression Indicators of Prostate Cancer with Castration Resistance Based on Dynamic Network Biomarker Algorithm and Weighted Gene Correlation Network Analysis. Biomedicines 2024; 12:2157. [PMID: 39335669 PMCID: PMC11429123 DOI: 10.3390/biomedicines12092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Androgen deprivation therapy (ADT) is the mainstay of treatment for prostate cancer, yet dynamic molecular changes from hormone-sensitive to castration-resistant states in patients treated with ADT remain unclear. Methods: In this study, we combined the dynamic network biomarker (DNB) method and the weighted gene co-expression network analysis (WGCNA) to identify key genes associated with the progression to a castration-resistant state in prostate cancer via the integration of single-cell and bulk RNA sequencing data. Based on the gene expression profiles of CRPC in the GEO dataset, the DNB method was used to clarify the condition of epithelial cells and find out the most significant transition signal DNB modules and genes included. Then, we calculated gene modules associated with the clinical phenotype stage based on the WGCNA. IHC was conducted to validate the expression of the key genes in CRPC and primary PCa patients Results:Nomograms, calibration plots, and ROC curves were applied to evaluate the good prognostic accuracy of the risk prediction model. Results: By combining single-cell RNA sequence data and bulk RNA sequence data, we identified a set of DNBs, whose roles involved in androgen-associated activities indicated the signals of a prostate cancer cell transition from an androgen-dependent state to a castration-resistant state. In addition, a risk prediction model including the risk score of four key genes (SCD, NARS2, ALDH1A1, and NFXL1) and other clinical-pathological characteristics was constructed and verified to be able to reasonably predict the prognosis of patients receiving ADT. Conclusions: In summary, four key genes from DNBs were identified as potential diagnostic markers for patients treated with ADT and a risk score-based nomogram will facilitate precise prognosis prediction and individualized therapeutic interventions of CRPC.
Collapse
Affiliation(s)
- Siyuan Liu
- School of Life Sciences, Central South University, Changsha 410013, China; (S.L.); (Y.H.); (Y.J.); (H.W.)
| | - Yi Hu
- School of Life Sciences, Central South University, Changsha 410013, China; (S.L.); (Y.H.); (Y.J.); (H.W.)
| | - Fei Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Yizheng Jiang
- School of Life Sciences, Central South University, Changsha 410013, China; (S.L.); (Y.H.); (Y.J.); (H.W.)
| | - Hongrui Wang
- School of Life Sciences, Central South University, Changsha 410013, China; (S.L.); (Y.H.); (Y.J.); (H.W.)
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Dehua Hu
- School of Life Sciences, Central South University, Changsha 410013, China; (S.L.); (Y.H.); (Y.J.); (H.W.)
| |
Collapse
|
2
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A 2024; 121:e2402903121. [PMID: 39102549 PMCID: PMC11331113 DOI: 10.1073/pnas.2402903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| |
Collapse
|
3
|
Ding Y, Chen ZQ, Pan WF, Chen HJ, Wu M, Lyu YQ, Xie H, Huang YC, Chen ZZ, Chen F. The association and underlying mechanism of the digit ratio (2D:4D) in hypospadias. Asian J Androl 2024; 26:356-365. [PMID: 38563741 PMCID: PMC11280205 DOI: 10.4103/aja202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
The second-to-fourth digit (2D:4D) ratio is thought to be associated with prenatal androgen exposure. However, the relationship between the 2D:4D ratio and hypospadias is poorly understood, and its molecular mechanism is not clear. In this study, by analyzing the hand digit length of 142 boys with hypospadias (23 distal, 68 middle, and 51 proximal) and 196 controls enrolled in Shanghai Children's Hospital (Shanghai, China) from December 2020 to December 2021, we found that the 2D:4D ratio was significantly increased in boys with hypospadias ( P < 0.001) and it was positively correlated with the severity of the hypospadias. This was further verified by the comparison of control mice and prenatal low testosterone mice model obtained by knocking out the risk gene (dynein axonemal heavy chain 8 [ DNAH8 ]) associated with hypospadias. Furthermore, the discrepancy was mainly caused by a shift in 4D. Proteomic characterization of a mouse model validated that low testosterone levels during pregnancy can impair the growth and development of 4D. Comprehensive mechanistic explorations revealed that during the androgen-sensitive window, the downregulation of the androgen receptor (AR) caused by low testosterone levels, as well as the suppressed expression of chondrocyte proliferation-related genes such as Wnt family member 5a ( Wnt5a ), Wnt5b , Smad family member 2 ( Smad2 ), and Smad3 ; mitochondrial function-related genes in cartilage such as AMP-activated protein kinase ( AMPK ) and nuclear respiratory factor 1 ( Nrf-1 ); and vascular development-related genes such as myosin light chain ( MLC ), notch receptor 3 ( Notch3 ), and sphingosine kinase 1 ( Sphk1 ), are responsible for the limitation of 4D growth, which results in a higher 2D:4D ratio in boys with hypospadias via decreased endochondral ossification. This study indicates that the ratio of 2D:4D is a risk marker of hypospadias and provides a potential molecular mechanism.
Collapse
Affiliation(s)
- Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zu-Quan Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wen-Feng Pan
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hao-Jie Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Min Wu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Qing Lyu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Chen Huang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhong-Zhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center for Hypospadias, Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
4
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
5
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-to-osteoblast transition generates an immunosuppressive bone tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569496. [PMID: 38076845 PMCID: PMC10705502 DOI: 10.1101/2023.11.30.569496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.
Collapse
|
6
|
Archer Goode E, Wang N, Munkley J. Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett 2023; 25:163. [PMID: 36960185 PMCID: PMC10028493 DOI: 10.3892/ol.2023.13749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/25/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prominent causes of cancer-related mortality in the male population. A highly impactful prognostic factor for patients diagnosed with PCa is the presence or absence of bone metastases. The formation of secondary tumours at the bone is the most commonly observed site for the establishment of PCa metastases and is associated with reduced survival of patients in addition to a cohort of life-debilitating symptoms, including mobility issues and chronic pain. Despite the prevalence of this disease presentation and the high medical relevance of bone metastases, the mechanisms underlying the formation of metastases to the bone and the understanding of what drives the osteotropism exhibited by prostate tumours remain to be fully elucidated. This lack of in-depth understanding manifests in limited effective treatment options for patients with advanced metastatic PCa and culminates in the low rate of survival observed for this sub-set of patients. The present review aims to summarise the most recent promising advances in the understanding of how and why prostate tumours metastasise to the bone, with the ultimate aim of highlighting novel treatment and prognostic targets, which may provide the opportunity to improve the diagnosis and treatment of patients with PCa with bone metastases.
Collapse
Affiliation(s)
- Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
| |
Collapse
|
7
|
Thellenberg-Karlsson C, Vjaters E, Kase M, Tammela T, Ojamaa K, Norming U, Nyman C, Andersson SO, Hublarovs O, Marquez-Holmberg M, Castellanos E, Ullen A, Holmberg A, Nilsson S. A randomised, double-blind, dose-finding, phase II multicentre study of ODX in the treatment of patients with castration-resistant prostate cancer and skeletal metastases. Eur J Cancer 2023; 181:198-207. [PMID: 36682096 DOI: 10.1016/j.ejca.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
AIMS This study aimed to assess the efficacy and safety of ODX, a novel, cytotoxic, bone-targeting drug candidate, in castration-resistant prostate cancer bone metastatic disease. METHODS Patients with progressive disease were randomised to ten cycles of ODX, intravenous infusion Q2W (3, 6, and 9 mg/kg, respectively). The primary objective was to assess the relative change from baseline in bone alkaline phosphatase (B-ALP) and serum-aminoterminal-propeptide of Type I procollagen (S-P1NP) at 12 weeks. The inclusion criteria selected were broad, and a double-blind design was used to ensure objective recruitment of patients for the assessment of efficacy. None of the patients received bone-protecting agents during the ODX treatment period. RESULTS Fifty-five 21,20 and 14) patients were randomised to ODX (3, 6 and 9 mg/kg), respectively. The lower number of patients in arm 3 was due to too low a recruitment rate towards the end of the study. The median treatment time were 14, 13 and 14 weeks, respectively. The decrease in B-ALP at 12 weeks in study arms 3, 6 and 9 mg/kg was seen in 6/15 (40%), 8/12 (67%) and 5/12 (42%) patients, respectively, whereas the corresponding numbers for P1NP were 8/15 (53%), 8/12 (67%), and 4/12 (33%), respectively. The median decrease in B-ALP and P1NP at 12 weeks for study arms 3, 6 and 9 mg/kg were 37%, 14% and 43%, respectively, and 51%, 40% and 64%, respectively. The decrease in serum C-terminal telopeptide at 12 weeks was seen in the vast majority of patients and in about one-third of patients in bone scan index. ODX was well tolerated, and no drug-related serious adverse events occurred. There were no significant differences between study arms regarding efficacy and safety. CONCLUSIONS ODX was well tolerated and demonstrated inhibitory effects on markers related to the vicious cycle in bone at all three doses. The reduction in metastatic burden, assessed with bone scan index, supports this finding. Studies with continued ODX treatment until disease progression are being planned (ClinicalTrials.gov Identifier: NCT02825628).
Collapse
Affiliation(s)
| | - Egils Vjaters
- Pauls Strandis Clinical University Hospital, Pilsonu Iela 13, Riga, Latvia.
| | - Marju Kase
- Tartu University Hospital, L.Puusepa 8, Tartu, Estonia.
| | - Teuvo Tammela
- Tampere University Hospital, Urology Clinic, Teiskontie 35, Tampere, Finland.
| | | | - Ulf Norming
- Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden.
| | - Claes Nyman
- Department of Clinical Science and Education, Karolinska Institutet and Södersjukhuset, Stockholm, Sweden.
| | | | | | | | | | - Anders Ullen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna.
| | - Anders Holmberg
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna; Dextech Medical, Box 389, 751 06 Uppsala.
| | - Sten Nilsson
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna.
| |
Collapse
|
8
|
Lin SC, Yu G, Lee YC, Song JH, Song X, Zhang J, Panaretakis T, Logothetis CJ, Komatsu Y, Yu-Lee LY, Wang G, Lin SH. Endothelial-to-osteoblast transition in normal mouse bone development. iScience 2023; 26:105994. [PMID: 36798441 PMCID: PMC9926118 DOI: 10.1016/j.isci.2023.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metastatic prostate cancer (PCa) in bone induces bone-forming lesions. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone EC-to-osteoblast (OSB) transition. Here, we investigated whether EC-to-OSB transition also occurs during normal bone formation. We developed an EC and OSB dual-color reporter mouse (DRM) model that marks EC-OSB hybrid cells with red and green fluorescent proteins. We observed EC-to-OSB transition (RFP and GFP co-expression) in both endochondral and intramembranous bone formation during embryonic development and in adults. Co-expression was confirmed in cells isolated from DRM. Bone marrow- and lung-derived ECs underwent transition to OSBs and mineralization in osteogenic medium. RNA-sequencing revealed GATA family transcription factors were upregulated in EC-OSB hybrid cells and knockdown of GATA3 inhibited BMP4-induced mineralization. Our findings support that EC-to-OSB transition occurs during normal bone development and suggest a new paradigm regarding the endothelial origin of OSBs.
Collapse
Affiliation(s)
- Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Epithelial and Stromal Characteristics of Primary Tumors Predict the Bone Metastatic Subtype of Prostate Cancer and Patient Survival after Androgen-Deprivation Therapy. Cancers (Basel) 2022; 14:cancers14215195. [PMID: 36358614 PMCID: PMC9659192 DOI: 10.3390/cancers14215195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Metastatic prostate cancer is a lethal disease and metastasis-specific treatments need to be developed. Mechanisms driving metastases and primary tumor growth could be different, but this is largely unexplored. We previously discovered that bone metastases can be separated into transcriptomic-based subtypes, showing different responses to standard androgen-deprivation therapy for metastatic prostate cancer. One subtype, named MetB, is particularly aggressive and has the worst prognosis. Here, we describe similarities and differences between primary tumors and their metastases, and specifically examine if the development of specific subtype of bone metastases can be predicted by analyzing the primary tumor. Results show that many aspects of prostate cancer bone metastases morphology are related to those in the primary tumor, while others are not. Importantly, men with primary tumors with high cell proliferation and low cellular PSA expression tend to develop metastases enriched for the MetB subtype, have poor prognosis, and need complementary treatment to standard hormone treatment. Abstract Prostate cancer (PC) bone metastases can be divided into transcriptomic subtypes, by us termed MetA-C. The MetB subtype, constituting about 20% of the cases, is characterized by high cell cycle activity, low androgen receptor (AR) activity, and a limited response to standard androgen deprivation therapy (ADT). Complementary treatments should preferably be introduced early on if the risk of developing metastases of the MetB subtype is predicted to behigh. In this study, we therefore examined if the bone metastatic subtype and patient outcome after ADT could be predicted by immunohistochemical analysis of epithelial and stromal cell markers in primary tumor biopsies obtained at diagnosis (n = 98). In this advanced patient group, primary tumor International Society of Urological Pathology (ISUP) grade was not associated with outcome or metastasis subtype. In contrast, high tumor cell Ki67 labeling (proliferation) in combination with low tumor cell immunoreactivity for PSA, and a low fraction of AR positive stroma cells in the primary tumors were prognostic for poor survival after ADT. Accordingly, the same tissue markers were associated with developing metastases enriched for the aggressive MetB subtype. The development of the contrasting MetA subtype, showing the best response to ADT, could be predicted by the opposite staining pattern. We conclude that outcome after ADT and metastasis subtype can, at least to some extent, be predicted by analysis of primary tumor characteristics, such as tumor cell proliferation and PSA expression, and AR expression in stromal cells.
Collapse
|
10
|
Yu G, Corn PG, Shen P, Song JH, Lee YC, Lin SC, Pan J, Agarwal SK, Panaretakis T, Pacifici M, Logothetis CJ, Yu-Lee LY, Lin SH. Retinoic Acid Receptor Activation Reduces Metastatic Prostate Cancer Bone Lesions by Blocking the Endothelial-to-Osteoblast Transition. Cancer Res 2022; 82:3158-3171. [PMID: 35802768 PMCID: PMC9444986 DOI: 10.1158/0008-5472.can-22-0170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
Metastatic prostate cancer in the bone induces bone-forming lesions that contribute to progression and therapy resistance. Prostate cancer-induced bone formation originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition in response to tumor-secreted BMP4. Current strategies targeting prostate cancer-induced bone formation are lacking. Here, we show that activation of retinoic acid receptor (RAR) inhibits EC-to-OSB transition and reduces prostate cancer-induced bone formation. Treatment with palovarotene, an RARγ agonist being tested for heterotopic ossification in fibrodysplasia ossificans progressiva, inhibited EC-to-OSB transition and osteoblast mineralization in vitro and decreased tumor-induced bone formation and tumor growth in several osteogenic prostate cancer models, and similar effects were observed with the pan-RAR agonist all-trans-retinoic acid (ATRA). Knockdown of RARα, β, or γ isoforms in ECs blocked BMP4-induced EC-to-OSB transition and osteoblast mineralization, indicating a role for all three isoforms in prostate cancer-induced bone formation. Furthermore, treatment with palovarotene or ATRA reduced plasma Tenascin C, a factor secreted from EC-OSB cells, which may be used to monitor treatment response. Mechanistically, BMP4-activated pSmad1 formed a complex with RAR in the nucleus of ECs to activate EC-to-OSB transition. RAR activation by palovarotene or ATRA caused pSmad1 degradation by recruiting the E3-ubiquitin ligase Smad ubiquitination regulatory factor1 (Smurf1) to the nuclear pSmad1/RARγ complex, thus blocking EC-to-OSB transition. Collectively, these findings suggest that palovarotene can be repurposed to target prostate cancer-induced bone formation to improve clinical outcomes for patients with bone metastasis. SIGNIFICANCE This study provides mechanistic insights into how RAR agonists suppress prostate cancer-induced bone formation and offers a rationale for developing RAR agonists for prostate cancer bone metastasis therapy. See related commentary by Bhowmick and Bhowmick, p. 2975.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Pengfei Shen
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Jing Pan
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Sandeep K. Agarwal
- Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine; Houston, Texas 77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, The Children’s Hospital of Philadelphia; Philadelphia
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030
| | - Li-Yuan Yu-Lee
- Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine; Houston, Texas 77030,Co-Corresponding authors: Dr. Sue-Hwa Lin, Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713-794-1559; Fax: 713-834-6084; ; Dr. Li-yuan Yu-Lee, Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. Phone: 713-798-4770;
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030,Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center; Houston, Texas 77030,The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, Texas.,Co-Corresponding authors: Dr. Sue-Hwa Lin, Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713-794-1559; Fax: 713-834-6084; ; Dr. Li-yuan Yu-Lee, Department of Medicine, Section of Immunology Allergy & Rheumatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. Phone: 713-798-4770;
| |
Collapse
|
11
|
Huang J, Freyhult E, Buckland R, Josefsson A, Damber JE, Welén K. Osteoclasts directly influence castration-resistant prostate cancer cells. Clin Exp Metastasis 2022; 39:801-814. [PMID: 35971022 PMCID: PMC9474581 DOI: 10.1007/s10585-022-10179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Metastasis to bone is the leading cause of death from prostate cancer. Interaction between tumor cells and bone cells can promote progression and influence tumor phenotype. It is known that prostate cancer cells support osteoclast differentiation, and degradation of bone matrix by osteoclasts releases growth factors stimulating tumor cell proliferation and invasion. In the present study osteolytic (PC-3) and osteoblastic (LNCaP-19) castration-resistant prostate cancer (CRPC) cells were co-cultured with mature osteoclasts or their precursor cells (RAW 264.7) to characterize direct effects of mature osteoclasts on CRPC cells. Osteoclasts increased proliferation and decrease apoptosis of CRPC cells as assessed with flow cytometry. RNA sequencing revealed that osteolytic CRPC cells were more responsive to osteoclast stimulation regarding gene expression, but the overall induced expression patterns were similar between the prostate cancer cell lines. Genes related to DNA repair were upregulated by osteoclasts, while genes related to endoplasmic reticulum stress-induced apoptosis and cholesterol synthesis were downregulated. The results of this study shows that osteoclasts directly influence CRPC cells, increasing proliferation, decreasing apoptosis, and affecting gene expression pathways that can affect sensitivity to DNA damage and endoplasmic reticulum function. This suggests targeting of osteoclasts to be a possible way to affect efficacy of other drugs by combination regimens in treating prostate cancer metastases.
Collapse
Affiliation(s)
- Junchi Huang
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Uppsala University, 75124, Uppsala, Sweden
| | - Robert Buckland
- Department of Surgical and Perioperative Sciences, Umeå University, Urology & Andrology, Umeå, Sweden
| | - Andreas Josefsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Urology & Andrology, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jan-Erik Damber
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Wang X, Miao J, Wang S, Shen R, Zhang S, Tian Y, Li M, Zhu D, Yao A, Bao W, Zhang Q, Tang X, Wang X, Li J. Single-cell RNA-seq reveals the genesis and heterogeneity of tumor microenvironment in pancreatic undifferentiated carcinoma with osteoclast-like giant-cells. Mol Cancer 2022; 21:133. [PMID: 35733218 PMCID: PMC9214989 DOI: 10.1186/s12943-022-01596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Undifferentiated carcinoma with osteoclast-like giant cells (OGCs) of pancreas (UCOGCP) is a rare subtype of pancreatic ductal adenocarcinoma (PDAC), which had poorly described histopathological and clinical features. METHODS In this study, single-cell RNA sequencing (scRNA-seq) was used to profile the distinct tumor microenvironment of UCOGCP using samples obtained from one UCOGCP patient and three PDAC patients. Bioinformatic analysis was carried out and immunohistochemical (IHC) staining was used to support the findings of bioinformatic analysis. After quality control of the raw data, a total of 18,376 cells were obtained from these four samples for subsequent analysis. These cells were divided into ten main cell types following the Seurat analysis pipeline. Among them, the UCOGCP sample displayed distinct distribution patterns from the rest samples in the epithelial cell, myeloid cell, fibroblast, and endothelial cell clusters. Further analysis supported that the OGCs were generated from stem-cell-like mesenchymal epithelial cells (SMECs). RESULTS Functional analysis showed that the OGCs cluster was enriched in antigen presentation, immune response, and stem cell differentiation. Gene markers such as LOX, SPERINE1, CD44, and TGFBI were highly expressed in this SMECs cluster which signified poor prognosis. Interestingly, in myeloid cell, fibroblasts, and endothelial cell clusters, UCOGCP contained higher percentage of these cells and unique subclusters, compared with the rest of PDAC samples. CONCLUSIONS Analysis of cell communication depicted that CD74 plays important roles in the formation of the microenvironment of UCOGCP. Our findings illustrated the genesis and function of OGCs, and the tumor microenvironment (TME) of UCOGCP, providing insights for prognosis and treatment strategy for this rare type of pancreatic cancer.
Collapse
Affiliation(s)
- Xinbo Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Jiaying Miao
- International Genome Center, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Sizhen Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Rongxi Shen
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Shuo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, NJU Advanced Institute for Life Sciences (NAILS), Nanjing University, 163 Xianlin Road, Nanjing, 210046 Jiangsu China
| | - Yurao Tian
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Min Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Daojun Zhu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Anlong Yao
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Wei Bao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Qun Zhang
- Department of Medical Oncology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu China
| | - Xingming Tang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002 Jiangsu, China
| |
Collapse
|
13
|
Karabacak NM, Zheng Y, Dubash TD, Burr R, Micalizzi DS, Wittner BS, Lin M, Wiley D, Comaills V, Emmons E, Niederhoffer K, Ho U, Ukleja J, Che D, Stowe H, Nieman L, Haas W, Stott SL, Lawrence MS, Ting DT, Miyamoto DT, Haber DA, Toner M, Maheswaran S. Differential Kinase Activity Across Prostate Tumor Compartments Defines Sensitivity to Target Inhibition. Cancer Res 2022; 82:1084-1097. [PMID: 35045985 PMCID: PMC8930560 DOI: 10.1158/0008-5472.can-21-2609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.
Collapse
Affiliation(s)
- Nezihi Murat Karabacak
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Hospital for Children, Boston, MA 02114
| | - Yu Zheng
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Taronish D. Dubash
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Risa Burr
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Douglas S. Micalizzi
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Ben S. Wittner
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Maoxuan Lin
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Devon Wiley
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Valentine Comaills
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Erin Emmons
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Kira Niederhoffer
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Uyen Ho
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Jacob Ukleja
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Dante Che
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Hannah Stowe
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Hospital for Children, Boston, MA 02114
| | - Linda Nieman
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Wilhelm Haas
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Shannon L. Stott
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Michael S. Lawrence
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - David T. Ting
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - David T. Miyamoto
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Daniel A. Haber
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
- Howard Hughes Medical Institute, Bethesda, MD, 20815
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School
- Shriners Hospital for Children, Boston, MA 02114
| | - Shyamala Maheswaran
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| |
Collapse
|
14
|
Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, Yu-Lee LY, Lin SH. Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene 2022; 41:757-769. [PMID: 34845375 PMCID: PMC8818031 DOI: 10.1038/s41388-021-02131-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted bone morphogenetic protein 4 (BMP4). Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion, and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (Isobaric Tags for Relative and Absolute Quantitation) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced OSBs was confirmed by immunohistochemistry of MDA PCa-118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC-neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while the addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC-overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5β1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ming Zhu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Feng W, He M, Jiang X, Liu H, Xie T, Qin Z, Huang Q, Liao S, Lin C, He J, Xu J, Ma J, Liu Y, Wei Q. Single-Cell RNA Sequencing Reveals the Migration of Osteoclasts in Giant Cell Tumor of Bone. Front Oncol 2021; 11:715552. [PMID: 34504794 PMCID: PMC8421549 DOI: 10.3389/fonc.2021.715552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Giant cell tumor of bone (GCTB) is benign tumor that can cause significant osteolysis and bone destruction at the epiphysis of long bones. Osteoclasts are thought to be highly associated with osteolysis in GCTB. However, the migration of osteoclasts in GCTB remains unclear. A deeper understanding of the complex tumor microenvironment is required in order to delineate the migration of osteoclasts in GCTB. In this study, samples were isolated from one patient diagnosed with GCTB. Single-cell RNA sequencing (scRNA-seq) was used to detect the heterogeneity of GCTB. Multiplex immunofluorescence staining was used to evaluate the cell subtypes identified by scRNA-seq. A total of 8,033 cells were obtained from one patient diagnosed with GCTB, which were divided into eight major cell types as depicted by a single-cell transcriptional map. The osteoclasts were divided into three subsets, and their differentiation trajectory and migration status were further analyzed. Osteoclast migration may be regulated via a series of genes associated with cell migration. Furthermore, four signaling pathways (RANKL, PARs, CD137 and SMEA3 signaling pathway) were found to be highly associated with osteoclast migration. This comprehensive single-cell transcriptome analysis of GCTB identified a series of genes associated with cell migration as well as four major signaling pathways that were highly related to the migration of osteoclasts in GCTB. Our findings broaden the understanding of GCTB bionetworks and provides a theoretical basis for anti-osteolysis therapy against GCTB in the future.
Collapse
Affiliation(s)
- Wenyu Feng
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopedic, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Huijiang Liu
- Department of Orthopedics, The First People's Hospital of Nanning, Nanning, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaojie Qin
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang He
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Liu
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Liu Y, Feng W, Dai Y, Bao M, Yuan Z, He M, Qin Z, Liao S, He J, Huang Q, Yu Z, Zeng Y, Guo B, Huang R, Yang R, Jiang Y, Liao J, Xiao Z, Zhan X, Lin C, Xu J, Ye Y, Ma J, Wei Q, Mo Z. Single-Cell Transcriptomics Reveals the Complexity of the Tumor Microenvironment of Treatment-Naive Osteosarcoma. Front Oncol 2021; 11:709210. [PMID: 34367994 PMCID: PMC8335545 DOI: 10.3389/fonc.2021.709210] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma (OS), which occurs most commonly in adolescents, is associated with a high degree of malignancy and poor prognosis. In order to develop an accurate treatment for OS, a deeper understanding of its complex tumor microenvironment (TME) is required. In the present study, tissues were isolated from six patients with OS, and then subjected to single-cell RNA sequencing (scRNA-seq) using a 10× Genomics platform. Multiplex immunofluorescence staining was subsequently used to validate the subsets identified by scRNA-seq. ScRNA-seq of six patients with OS was performed prior to neoadjuvant chemotherapy, and data were obtained on 29,278 cells. A total of nine major cell types were identified, and the single-cell transcriptional map of OS was subsequently revealed. Identified osteoblastic OS cells were divided into five subsets, and the subsets of those osteoblastic OS cells with significant prognostic correlation were determined using a deconvolution algorithm. Thereby, different transcription patterns in the cellular subtypes of osteoblastic OS cells were reported, and key transcription factors associated with survival prognosis were identified. Furthermore, the regulation of osteolysis by osteoblastic OS cells via receptor activator of nuclear factor kappa-B ligand was revealed. Furthermore, the role of osteoblastic OS cells in regulating angiogenesis through vascular endothelial growth factor-A was revealed. C3_TXNIP+ macrophages and C5_IFIT1+ macrophages were found to regulate regulatory T cells and participate in CD8+ T cell exhaustion, illustrating the possibility of immunotherapy that could target CD8+ T cells and macrophages. Our findings here show that the role of C1_osteoblastic OS cells in OS is to promote osteolysis and angiogenesis, and this is associated with survival prognosis. In addition, T cell depletion is an important feature of OS. More importantly, the present study provided a valuable resource for the in-depth study of the heterogeneity of the OS TME.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyu Feng
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Dai
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaojie Qin
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang He
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Yu
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Binqian Guo
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Rong Huang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zengming Xiao
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Ye
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Spinal Bone Disease, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Ylitalo EB, Thysell E, Landfors M, Brattsand M, Jernberg E, Crnalic S, Widmark A, Hultdin M, Bergh A, Degerman S, Wikström P. A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer. Clin Epigenetics 2021; 13:133. [PMID: 34193246 PMCID: PMC8244194 DOI: 10.1186/s13148-021-01119-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with metastatic prostate cancer (PC) are treated with androgen deprivation therapy (ADT) that initially reduces metastasis growth, but after some time lethal castration-resistant PC (CRPC) develops. A better understanding of the tumor biology in bone metastases is needed to guide further treatment developments. Subgroups of PC bone metastases based on transcriptome profiling have been previously identified by our research team, and specifically, heterogeneities related to androgen receptor (AR) activity have been described. Epigenetic alterations during PC progression remain elusive and this study aims to explore promoter gene methylation signatures in relation to gene expression and tumor AR activity. MATERIALS AND METHODS Genome-wide promoter-associated CpG methylation signatures of a total of 94 tumor samples, including paired non-malignant and malignant primary tumor areas originating from radical prostatectomy samples (n = 12), and bone metastasis samples of separate patients with hormone-naive (n = 14), short-term castrated (n = 4) or CRPC (n = 52) disease were analyzed using the Infinium Methylation EPIC arrays, along with gene expression analysis by Illumina Bead Chip arrays (n = 90). AR activity was defined from expression levels of genes associated with canonical AR activity. RESULTS Integrated epigenome and transcriptome analysis identified pronounced hypermethylation in malignant compared to non-malignant areas of localized prostate tumors. Metastases showed an overall hypomethylation in relation to primary PC, including CpGs in the AR promoter accompanied with induction of AR mRNA levels. We identified a Methylation Classifier for Androgen receptor activity (MCA) signature, which separated metastases into two clusters (MCA positive/negative) related to tumor characteristics and patient prognosis. The MCA positive metastases showed low methylation levels of genes associated with canonical AR signaling and patients had a more favorable prognosis after ADT. In contrast, MCA negative patients had low AR activity associated with hypermethylation of AR-associated genes, and a worse prognosis after ADT. CONCLUSIONS A promoter methylation signature classifies PC bone metastases into two groups and predicts tumor AR activity and patient prognosis after ADT. The explanation for the methylation diversities observed during PC progression and their biological and clinical relevance need further exploration.
Collapse
Affiliation(s)
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopedics, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
18
|
Predictive Value of the Spinal Instability Neoplastic Score for Survival and Ambulatory Function After Surgery for Metastatic Spinal Cord Compression in 110 Patients with Prostate Cancer. Spine (Phila Pa 1976) 2021; 46:550-558. [PMID: 33273445 DOI: 10.1097/brs.0000000000003835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We retrospectively analyzed Spinal Instability Neoplastic Score (SINS) in 110 patients with prostate cancer operated for metastatic spinal cord compression (MSCC). OBJECTIVE We aimed to investigate the association between SINS and clinical outcomes after surgery for MSCC in patients with prostate cancer. SUMMARY OF BACKGROUND DATA The SINS is a useful tool for assessing tumor-related spinal instability, but its prognostic value regarding survival and neurological outcome is still controversial. METHODS We analyzed 110 consecutive patients with prostate cancer who underwent surgery for MSCC. The patients were categorized according to their SINS. Patients with castration-resistant prostate cancer (CRPC, n = 84) and those with hormone-naïve disease (n = 26) were analyzed separately. RESULTS In total, 106 of 110 patients met the SINS criteria for potential instability or instability (scores 7-18). The median SINS was 10 (range 6-15) for patients with CRPC and 9 (7-16) for hormone-naïve patients. In the CRPC group, the SINS was classified as stable (score 0-6) in 4 patients, as potentially unstable (score 7-12) in 70 patients, and as unstable (score 13-18) in 10 patients. In the hormone-naïve group, 22 patients met the SINS criteria for potential instability and 4 patients for instability. There was no statistically significant difference in the overall risk for death between the SINS potentially unstable and unstable categories (adjusted hazard ratio 1.3, P = 0.4), or in the risk of loss of ambulation 1 month after surgery (adjusted odds ratio 1.4, P = 0.6). CONCLUSION The SINS is helpful in assessing spinal instability when selecting patients for surgery, but it does not predict survival or neurological outcomes. Patients with a potential spinal instability benefit equally from surgery for MSCC as do patients with spinal instability.Level of Evidence: 3.
Collapse
|
19
|
MPscore: A Novel Predictive and Prognostic Scoring for Progressive Meningioma. Cancers (Basel) 2021; 13:cancers13051113. [PMID: 33807688 PMCID: PMC7961759 DOI: 10.3390/cancers13051113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Subtyping for meningioma is urgently required to stratify the patients with high risks of recurrence and progression due to the intertumoral heterogeneity in meningioma. Here, we performed a consensus clustering of 179 meningiomas and identified progressive subtype (subtype 3) based the transcriptome profiles. Loss of chromosome 1q along with Neurofibromin 2 (NF2) mutation or loss of chromosome 22p is exclusively presented in subtype 3 meningioma. DNA methylation analyses of meningioma subtypes also suggested hypermethylation was observed in subtype 3 meningioma. Our findings identified low expression of Alkaline Phosphatase (ALPL) is the most significant feature in progressive subtype of meningioma. We constructed and validated a meningioma progression score (MPscore) to characterize the progressive phenotype in meningioma. The predictive accuracy has also been validated in three independent cohorts. Therefore, MPscore can be potentially useful for meningioma recurrence prediction and stratification. Abstract Meningioma is the most common tumor in central nervous system (CNS). Although most cases of meningioma are benign (WHO grade I) and curable by surgical resection, a few tumors remain diagnostically and therapeutically challenging due to the frequent recurrence and progression. The heterogeneity of meningioma revealed by DNA methylation profiling suggests the demand of subtyping for meningioma. Therefore, we performed a clustering analyses to characterize the progressive features of meningioma and constructed a meningioma progression score to predict the risk of the recurrence. A total of 179 meningioma transcriptome from RNA sequencing was included for progression subtype clustering. Four biologically distinct subtypes (subtype 1, subtype 2, subtype 3 and subtype 4) were identified. Copy number alternation and genomewide DNA methylation of each subtype was also characterized. Immune cell infiltration was examined by the microenvironment cell populations counter. All anaplastic meningiomas (7/7) and most atypical meningiomas (24/32) are enriched in subtype 3 while no WHO II or III meningioma presents in subtype 1, suggesting subtype 3 meningioma is a progressive subtype. Stemness index and immune response are also heterogeneous across four subtypes. Monocytic lineage is the most immune cell type in all meningiomas, except for subtype 1. CD8 positive T cells are predominantly observed in subtype 3. To extend the clinical utility of progressive meningioma subtyping, we constructed the meningioma progression score (MPscore) by the signature genes in subtype 3. The predictive accuracy and prognostic capacity of MPscore has also been validated in three independent cohort. Our study uncovers four biologically distinct subtypes in meningioma and the MPscore is potentially helpful in the recurrence risk prediction and response to treatments stratification in meningioma.
Collapse
|
20
|
Thakur N, Hamidi A, Song J, Itoh S, Bergh A, Heldin CH, Landström M. Smad7 Enhances TGF-β-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells. iScience 2020; 23:101470. [PMID: 32888405 PMCID: PMC7520897 DOI: 10.1016/j.isci.2020.101470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β (TGF-β) enhances migration and invasion of cancer cells, causing life-threatening metastasis. Smad7 expression is induced by TGF-β to control TGF-β signaling in a negative feedback manner. Here we report an additional function of Smad7, i.e., to enhance TGF-β induction of c-Jun and HDAC6 via binding to their regulatory regions, promoting migration and invasion of prostate cancer cells. Lysine 102 in Smad7 is crucial for binding to specific consensus sites in c-Jun and HDAC6, even when endogenous Smad2, 3, and 4 were silenced by siRNA. A correlation between the mRNA expression of Smad7 and HDAC6, Smad7 and c-Jun, and c-Jun and HDAC6 was found in public databases from analyses of prostate cancer tissues. High expression of Smad7, HDAC6, and c-Jun correlated with poor prognosis for patients with prostate cancer. The knowledge that Smad7 can activate transcription of proinvasive genes leading to prostate cancer progression provides clinically relevant information.
Collapse
Affiliation(s)
- Noopur Thakur
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
| | - Anahita Hamidi
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Jie Song
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Anders Bergh
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Maréne Landström
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
21
|
Chen JF, Lin PW, Tsai YR, Yang YC, Kang HY. Androgens and Androgen Receptor Actions on Bone Health and Disease: From Androgen Deficiency to Androgen Therapy. Cells 2019; 8:cells8111318. [PMID: 31731497 PMCID: PMC6912771 DOI: 10.3390/cells8111318] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Androgens are not only essential for bone development but for the maintenance of bone mass. Therefore, conditions with androgen deficiency, such as male hypogonadism, androgen-insensitive syndromes, and prostate cancer with androgen deprivation therapy are strongly associated with bone loss and increased fracture risk. Here we summarize the skeletal effects of androgens—androgen receptors (AR) actions based on in vitro and in vivo studies from animals and humans, and discuss bone loss due to androgens/AR deficiency to clarify the molecular basis for the anabolic action of androgens and AR in bone homeostasis and unravel the functions of androgen/AR signaling in healthy and disease states. Moreover, we provide evidence for the skeletal benefits of androgen therapy and elucidate why androgens are more beneficial than male sexual hormones, highlighting their therapeutic potential as osteoanabolic steroids in improving bone fracture repair. Finally, the application of selective androgen receptor modulators may provide new approaches for the treatment of osteoporosis and fractures as well as building stronger bones in diseases dependent on androgens/AR status.
Collapse
Affiliation(s)
- Jia-Feng Chen
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
| | - Pei-Wen Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Center for Menopause and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Center for Menopause and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung 802, Taiwan
| | - Yi-Chien Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (P.-W.L.); (Y.-R.T.); (Y.-C.Y.)
- Center for Menopause and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang-Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8898)
| |
Collapse
|
22
|
Thysell E, Vidman L, Ylitalo EB, Jernberg E, Crnalic S, Iglesias-Gato D, Flores-Morales A, Stattin P, Egevad L, Widmark A, Rydén P, Bergh A, Wikström P. Gene expression profiles define molecular subtypes of prostate cancer bone metastases with different outcomes and morphology traceable back to the primary tumor. Mol Oncol 2019; 13:1763-1777. [PMID: 31162796 PMCID: PMC6670017 DOI: 10.1002/1878-0261.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the lethal end-stage of prostate cancer (PC), but the biology of bone metastases is poorly understood. The overall aim of this study was therefore to explore molecular variability in PC bone metastases of potential importance for therapy. Specifically, genome-wide expression profiles of bone metastases from untreated patients (n = 12) and patients treated with androgen-deprivation therapy (ADT, n = 60) were analyzed in relation to patient outcome and to morphological characteristics in metastases and paired primary tumors. Principal component analysis and unsupervised classification were used to identify sample clusters based on mRNA profiles. Clusters were characterized by gene set enrichment analysis and related to histological and clinical parameters using univariate and multivariate statistics. Selected proteins were analyzed by immunohistochemistry in metastases and matched primary tumors (n = 52) and in transurethral resected prostate (TUR-P) tissue of a separate cohort (n = 59). Three molecular subtypes of bone metastases (MetA-C) characterized by differences in gene expression pattern, morphology, and clinical behavior were identified. MetA (71% of the cases) showed increased expression of androgen receptor-regulated genes, including prostate-specific antigen (PSA), and glandular structures indicating a luminal cell phenotype. MetB (17%) showed expression profiles related to cell cycle activity and DNA damage, and a pronounced cellular atypia. MetC (12%) exhibited enriched stroma-epithelial cell interactions. MetB patients had the lowest serum PSA levels and the poorest prognosis after ADT. Combined analysis of PSA and Ki67 immunoreactivity (proliferation) in bone metastases, paired primary tumors, and TUR-P samples was able to differentiate MetA-like (high PSA, low Ki67) from MetB-like (low PSA, high Ki67) tumors and demonstrate their different prognosis. In conclusion, bone metastases from PC patients are separated based on gene expression profiles into molecular subtypes with different morphology, biology, and clinical outcome. These findings deserve further exploration with the purpose of improving treatment of metastatic PC.
Collapse
Affiliation(s)
- Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Linda Vidman
- Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
| | | | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Sead Crnalic
- Department of Surgical and Perioperative Sciences, Orthopaedics, Umeå University, Sweden
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Amilcar Flores-Morales
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Pär Stattin
- Department of Surgical Sciences, Uppsala University, Sweden
| | - Lars Egevad
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| |
Collapse
|
23
|
Yang Z, Chen G, Cui Y, Su T, Yu J, Xiao G, Han Y, Jin L. Iodine-125 seed implantation combined with arterial chemoembolization therapy for pain palliation in metastatic bone cancer: a retrospective study. Cancer Biol Ther 2018; 20:212-218. [PMID: 30296196 DOI: 10.1080/15384047.2018.1523847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bone metastases are the most common sites for malignant tumors. Patients who failed to respond to initial first-line treatment with bisphosphonates usually suffer from extreme pain. The aim of this study was to observe the efficacy of arterial chemoembolization combined with Iodine-125 seed implantation in the treatment of bone metastatic cancer pain. All 14 patients with metastatic bone tumor wo failed first-line treatment underwent arterial chemoembolization the day before the implantation of the particles. A computer stereoscopic TPS was used to design the treatment plans, the number and dose of particles required for implantation. Pain relief was evaluated using several parameters such as Visual Analog Scale (VAS) and Verbal Rating Scales (VRS). Pain intensity was measured pre-operation and 1-week, 1-month, 3-month after the treatment. Meanwhile, we also assessed tumor size using computer tomography (CT). Pain palliation was observed in 35.7% (5/14), 57.1% (8/14), and 78.6% (11/14) of all patients at 1-week, 1-month and 3-month post treatment. Likewise, our analysis showed that the combination therapy resulted in a significant decrease of VAS score (6.71 ± 0.49 before treatment vs 3.36 ± 0.40 at 3 month post treatment) and overall responding rate of 92.0% using VRS pain assessment. Consistently, tumor size was reduced from 42.16 ± 10.32 before treatment to 29.11 ± 8.73 at 3 months post treatment. No serious complications were detected. Our study demonstrate that the combination of arterial chemoembolization and 125I particles resulted in evident pain relief and reduction of tumor burden, suggesting that the combination treatment could be a feasible and promising therapy for bone tumor management.
Collapse
Affiliation(s)
- Zeran Yang
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Guang Chen
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Ye Cui
- b The Department of Immunology, School of Basic Medical Sciences , Capital Medical University , Beijing , China
| | - Tianhao Su
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Jianan Yu
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Guowen Xiao
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Yanjing Han
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| | - Long Jin
- a Interventional Radiology, Beijing Friendship Hospital , Capital Medical University , Beijing , China
| |
Collapse
|