1
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2656-6. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
da Silva VL, Mota GAF, de Souza SLB, de Campos DHS, Melo AB, Vileigas DF, Coelho PM, Sant’Ana PG, Padovani C, Lima-Leopoldo AP, Bazan SGZ, Leopoldo AS, Cicogna AC. Aerobic Exercise Training Improves Calcium Handling and Cardiac Function in Rats with Heart Failure Resulting from Aortic Stenosis. Int J Mol Sci 2023; 24:12306. [PMID: 37569680 PMCID: PMC10418739 DOI: 10.3390/ijms241512306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic exercise training (AET) has been used to manage heart disease. AET may totally or partially restore the activity and/or expression of proteins that regulate calcium (Ca2+) handling, optimize intracellular Ca2+ flow, and attenuate cardiac functional impairment in failing hearts. However, the literature presents conflicting data regarding the effects of AET on Ca2+ transit and cardiac function in rats with heart failure resulting from aortic stenosis (AoS). This study aimed to evaluate the impact of AET on Ca2+ handling and cardiac function in rats with heart failure due to AoS. Wistar rats were distributed into two groups: control (Sham; n = 61) and aortic stenosis (AoS; n = 44). After 18 weeks, the groups were redistributed into: non-exposed to exercise training (Sham, n = 28 and AoS, n = 22) and trained (Sham-ET, n = 33 and AoS-ET, n = 22) for 10 weeks. Treadmill exercise training was performed with a velocity equivalent to the lactate threshold. The cardiac function was analyzed by echocardiogram, isolated papillary muscles, and isolated cardiomyocytes. During assays of isolated papillary muscles and isolated cardiomyocytes, the Ca2+ concentrations were evaluated. The expression of regulatory proteins for diastolic Ca2+ was assessed via Western Blot. AET attenuated the diastolic dysfunction and improved the systolic function. AoS-ET animals presented an enhanced response to post-rest contraction and SERCA2a and L-type Ca2+ channel blockage compared to the AoS. Furthermore, AET was able to improve aspects of the mechanical function and the responsiveness of the myofilaments to the Ca2+ of the AoS-ET animals. AoS animals presented an alteration in the protein expression of SERCA2a and NCX, and AET restored SERCA2a and NCX levels near normal values. Therefore, AET increased SERCA2a activity and myofilament responsiveness to Ca2+ and improved the cellular Ca2+ influx mechanism, attenuating cardiac dysfunction at cellular, tissue, and chamber levels in animals with AoS and heart failure.
Collapse
Affiliation(s)
- Vítor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Dijon Henrique Salomé de Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Alexandre Barroso Melo
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Priscila Murucci Coelho
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Carlos Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Ana Paula Lima-Leopoldo
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - André Soares Leopoldo
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| |
Collapse
|
3
|
Jiang J, Ni L, Zhang X, Gokulnath P, Vulugundam G, Li G, Wang H, Xiao J. Moderate-Intensity Exercise Maintains Redox Homeostasis for Cardiovascular Health. Adv Biol (Weinh) 2023; 7:e2200204. [PMID: 36683183 DOI: 10.1002/adbi.202200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Indexed: 01/24/2023]
Abstract
It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Peres Valgas Da Silva C, Shettigar VK, Baer LA, Abay E, Pinckard KM, Vinales J, Sturgill SL, Vidal P, Ziolo MT, Stanford KI. Exercise training after myocardial infarction increases survival but does not prevent adverse left ventricle remodeling and dysfunction in high-fat diet fed mice. Life Sci 2022; 311:121181. [PMID: 36372212 PMCID: PMC9712172 DOI: 10.1016/j.lfs.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
AIMS Aerobic exercise is an important component of rehabilitation after cardiovascular injuries including myocardial infarction (MI). In human studies, the beneficial effects of exercise after an MI are blunted in patients who are obese or glucose intolerant. Here, we investigated the effects of exercise on MI-induced cardiac dysfunction and remodeling in mice chronically fed a high-fat diet (HFD). MAIN METHODS C57Bl/6 male mice were fed either a standard (Chow; 21% kcal/fat) or HFD (60% kcal/fat) for 36 weeks. After 24 weeks of diet, the HFD mice were randomly subjected to an MI (MI) or a sham surgery (Sham). Following the MI or sham surgery, a subset of mice were subjected to treadmill exercise. KEY FINDINGS HFD resulted in obesity and glucose intolerance, and this was not altered by exercise or MI. MI resulted in decreased ejection fraction, increased left ventricle mass, increased end systolic and diastolic diameters, increased cardiac fibrosis, and increased expression of genes involved in cardiac hypertrophy and heart failure in the MI-Sed and MI-Exe mice. Exercise prevented HFD-induced cardiac fibrosis in Sham mice (Sham-Exe) but not in MI-Exe mice. Exercise did, however, reduce post-MI mortality. SIGNIFICANCE These data indicate that exercise significantly increased survival after MI in a model of diet-induced obesity independent of effects on cardiac function. These data have important translational ramifications because they demonstrate that environmental interventions, including diet, need to be carefully evaluated and taken into consideration to support the effects of exercise in the cardiac rehabilitation of patients who are obese.
Collapse
Affiliation(s)
- Carmem Peres Valgas Da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Jorge Vinales
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Sarah L Sturgill
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, United States of America; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
5
|
Guo C, Chen MJ, Zhao JR, Wu RY, Zhang Y, Li QQ, Zhao H, Dou JH, Song SF, Wei J. Exercise training differently improve cardiac function and regulate myocardial mitophagy in ischemic and pressure-overloaded heart failure mice. Exp Physiol 2022; 107:562-574. [PMID: 35365954 DOI: 10.1113/ep090374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The cardioprotective effects of different aerobic exercises on chronic heart failure with different etiologies and whether mitophagy is involved remain elusive. What is the main finding and its importance? Moderate-intensity continuous training may be the "optimum" modality for improving cardiac structure and function in ischemic heart failure, while both moderate-intensity continuous training and high-intensity interval training were suitable for pressure-overloaded heart failure. Various mitophagy pathways especially PRKN-dependent pathways participated in the protective effects of exercise on heart failure. ABSTRACT The cardioprotective effects of different aerobic exercises on chronic heart failure with different etiologies and whether mitophagy is involved remain elusive. In the current research, left anterior descending ligation and transverse aortic constriction surgeries were used to establish mice models of heart failure, followed by 8 weeks of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). The results showed that MICT significantly improved ejection fraction (P < 0.05) and fractional shortening (P < 0.05), mitigated left ventricular end-systolic dimension (P < 0.01), brain natriuretic peptide (P < 0.0001), and fibrosis (P < 0.0001), while HIIT only decreased brain natriuretic peptide (P < 0.0001) and fibrosis (P < 0.0001) for ischemic heart failure. Both MICT and HIIT significantly increased ejection fraction (P < 0.0001) and fractional shortening (MICT: P < 0.001, HIIT: P < 0.0001), reduced left ventricular end-diastolic and end-systolic dimension, brain natriuretic peptide (P < 0.0001), and fibrosis (MICT: P < 0.01, HIIT: P < 0.0001), even HIIT was better in reducing brain natriuretic peptide on pressure-overloaded heart failure. Myocardial autophagy and mitophagy were compromised in heart failure, exercises improved myocardial autophagic flux and mitophagy inconsistently in heart failure with different etiologies. Significant correlations were found between multiple mitophagy pathways and cardioprotection of exercises. Collectively, MICT may be the "optimum" modality for ischemic heart failure, both MICT and HIIT (especially HIIT) were suitable for pressure-overloaded heart failure. Exercises differently improved myocardial autophagy/mitophagy and multiple mitophagy-related pathways were closely implicated in cardioprotection of exercises for chronic heart failure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chen Guo
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Meng-Jie Chen
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jin-Rui Zhao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Rui-Yun Wu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yue Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Qiang-Qiang Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Hong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jia-Hao Dou
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Shou-Fang Song
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.,Clinical Research Center for Endemic Disease of Shaanxi Province, Shaanxi, China.,Key Laboratory of Trace Elements and Endemic Disease of Ministry of Health, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
6
|
Liu S, Meng X, Li G, Gokulnath P, Wang J, Xiao J. Exercise Training after Myocardial Infarction Attenuates Dysfunctional Ventricular Remodeling and Promotes Cardiac Recovery. Rev Cardiovasc Med 2022; 23:148. [PMID: 39076229 PMCID: PMC11273682 DOI: 10.31083/j.rcm2304148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 07/31/2024] Open
Abstract
Recent evidences have shown that exercise training not only plays a necessary role in maintaining cardiac homeostasis, but also promotes cardiac repair after myocardial infarction. Post-myocardial infarction, exercise training has been observed to effectively increase the maximum cardiac output, and protect myocardial cells against necrosis and apoptosis, thus leading to an improved quality of life of myocardial infarction patients. In fact, exercise training has received more attention as an adjunct therapeutic strategy for both treatment and prevention of myocardial infarction. This review summarizes the experimental evidence of the effects of exercise training in ventricular remodeling after myocardial infarction, and tries to provide theoretical basis along with suitable references for the exercise prescription aimed at prevention and therapy of myocardial infarction.
Collapse
Affiliation(s)
- Shuqing Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, 226011 Nantong, Jiangsu, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
7
|
Silva VLD, Souza SLBD, Mota GAF, Campos DHS, Melo AB, Vileigas DF, Sant’Ana PG, Coelho PM, Bazan SGZ, Leopoldo AS, Cicogna AC. Cenário Disfuncional dos Principais Componentes Responsáveis pelo Equilíbrio do Trânsito de Cálcio Miocárdico na Insuficiência Cardíaca Induzida por Estenose Aórtica. Arq Bras Cardiol 2021; 118:463-475. [PMID: 35262582 PMCID: PMC8856692 DOI: 10.36660/abc.20200618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
Fundamento O remodelamento cardíaco patológico se caracteriza por disfunção diastólica e sistólica, levando à insuficiência cardíaca. Neste contexto, o cenário disfuncional do trânsito de cálcio miocárdico (Ca2+) tem sido pouco estudado. Um modelo experimental de estenose aórtica tem sido extensamente utilizado para aprimorar os conhecimentos sobre os principais mecanismos do remodelamento patológico cardíaco. Objetivo Entender o processo disfuncional dos principais componentes responsáveis pelo equilíbrio do cálcio miocárdico e sua influência sobre a função cardíaca na insuficiência cardíaca induzida pela estenose aórtica. Métodos Ratos Wistar de 21 dias de idade foram distribuídos em dois grupos: controle (placebo; n=28) e estenose aórtica (EaO; n=18). A função cardíaca foi analisada com o ecocardiograma, músculo papilar isolado e cardiomiócitos isolados. No ensaio do músculo papilar, SERCA2a e a atividade do canal de Ca2+ do tipo L foram avaliados. O ensaio de cardiomiócitos isolados avaliou o trânsito de cálcio. A expressão proteica da proteínas do trânsito de cálcio foi analisada com o western blot. Os resultados foram estatisticamente significativos quando p <0,05. Resultados Os músculos papilares e cardiomiócitos dos corações no grupo EaO demonstraram falhas mecânicas. Os ratos com EaO apresentaram menor tempo de pico do Ca2+, menor sensibilidade das miofibrilas do Ca2+, prejuízos nos processos de entrada e recaptura de cálcio pelo retículo sarcoplasmático, bem como disfunção no canal de cálcio do tipo L (CCTL). Além disso, os animais com EaO apresentaram maior expressão de SERCA2a, CCTL e trocador de Na+/Ca2+. Conclusão Insuficiência cardíaca sistólica e diastólica devido à estenose aórtica supravalvular acarretou comprometimento da entrada de Ca2+ celular e inibição da recaptura de cálcio pelo retículo sarcoplasmático devido à disfunção no CCTL e SERCA2a, assim como mudanças no trânsito de cálcio e na expressão das principais proteínas responsáveis pela homeostase de Ca2+ celular.
Collapse
|
8
|
Böttner J, Werner S, Adams V, Knauth S, Kricke A, Thiele H, Büttner P. Structural and functional alterations in heart and skeletal muscle following severe TAC in mice: impact of moderate exercise training. Biol Res 2021; 54:31. [PMID: 34538250 PMCID: PMC8451113 DOI: 10.1186/s40659-021-00354-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Heart failure (HF) is the leading cause of death in western countries. Cardiac dysfunction is accompanied by skeletal alterations resulting in muscle weakness and fatigue. Exercise is an accepted interventional approach correcting cardiac and skeletal dysfunction, thereby improving mortality, re-hospitalization and quality of life. Animal models are used to characterize underpinning mechanisms. Transverse aortic constriction (TAC) results in cardiac pressure overload and finally HF. Whether exercise training improves cardiac remodeling and peripheral cachexia in the TAC mouse model was not analyzed yet. In this study, 2 weeks post TAC animals were randomized into two groups either performing a moderate exercise program (five times per week at 60% VO2 max for 40 min for a total of 8 weeks) or staying sedentary. Results In both TAC groups HF characteristics reduced ejection fraction (− 15% compared to sham, p < 0.001), cardiac remodeling (+ 22.5% cardiomyocyte cross sectional area compared to sham; p < 0.001) and coronary artery congestion (+ 34% diameter compared to sham; p = 0.008) were observed. Unexpectedly, peripheral cachexia was not detected. Furthermore, compared to sedentary group animals from the exercise group showed aggravated HF symptoms [heart area + 9% (p = 0.026), heart circumference + 7% (p = 0.002), right ventricular wall thickness − 30% (p = 0.003)] while muscle parameters were unchanged [Musculus soleus fiber diameter (p = 0.55), Musculus extensor digitorum longus contraction force (p = 0.90)]. Conclusion The severe TAC model is inappropriate to study moderate exercise effects in HF with respect to cardiac and skeletal muscle improvements. Further, the phenotype induced by different TAC procedures should be well documented and taken into account when planning experiments.
Collapse
Affiliation(s)
- Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Sarah Knauth
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Angela Kricke
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| |
Collapse
|
9
|
Daiber A, Kröller-Schön S, Oelze M, Hahad O, Li H, Schulz R, Steven S, Münzel T. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox Biol 2020; 34:101506. [PMID: 32371009 PMCID: PMC7327966 DOI: 10.1016/j.redox.2020.101506] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Environmental pollution and non-chemical stressors such as mental stress or traffic noise exposure are increasingly accepted as health risk factors with substantial contribution to chronic noncommunicable diseases (e.g. cardiovascular, metabolic and mental). Whereas the mechanisms of air pollution-mediated adverse health effects are well characterized, the mechanisms of traffic noise exposure are not completely understood, despite convincing clinical and epidemiological evidence for a significant contribution of environmental noise to overall mortality and disability. The initial mechanism of noise-induced cardiovascular, metabolic and mental disease is well defined by the „noise reaction model“ and consists of neuronal activation involving the hypothalamic-pituitary-adrenal (HPA) axis as well as the sympathetic nervous system, followed by a classical stress response via cortisol and catecholamines. Stress pathways are initiated by noise-induced annoyance and sleep deprivation/fragmentation. This review highlights the down-stream pathophysiology of noise-induced mental stress, which is based on an induction of inflammation and oxidative stress. We highlight the sources of reactive oxygen species (ROS) involved and the known targets for noise-induced oxidative damage. Part of the review emphasizes noise-triggered uncoupling/dysregulation of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and its central role for vascular dysfunction. Exposure to (traffic) noise causes non-auditory (indirect) cardiovascular and cerebral health harms via neuronal activation. Noise activates the HPA axis and sympathetic nervous system increasing levels of stress hormones, vasoconstrictors and ROS. Noise induces inflammation and stimulates several ROS sources leading to cerebral and cardiovascular oxidative damage. Noise leads to eNOS and nNOS uncoupling contributing to cardiometabolic disease and cognitive impairment.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Omar Hahad
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Sebastian Steven
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
10
|
Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20010187. [PMID: 30621010 PMCID: PMC6337296 DOI: 10.3390/ijms20010187] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Alina Hanf
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
11
|
Feng R, Wang L, Li Z, Yang R, Liang Y, Sun Y, Yu Q, Ghartey-Kwansah G, Sun Y, Wu Y, Zhang W, Zhou X, Xu M, Bryant J, Yan G, Isaacs W, Ma J, Xu X. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci 2018; 217:128-140. [PMID: 30517851 DOI: 10.1016/j.lfs.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is a major global cause of mortality, which has prompted numerous studies seeking to reduce the risk of heart failure and sudden cardiac death. While regular physical activity is known to improve CVD associated morbidity and mortality, the optimal duration, frequency, and intensity of exercise remains unclear. To address this uncertainty, various animal models have been used to study the cardioprotective effects of exercise and related molecular mechanism such as the mice training models significantly decrease size of myocardial infarct by affecting Kir6.1, VSMC sarc-KATP channels, and pulmonary eNOS. Although these findings cement the importance of animal models in studying exercise induced cardioprotection, the vast assortment of exercise protocols makes comparison across studies difficult. To address this issue, we review and break down the existent exercise models into categories based on exercise modality, intensity, frequency, and duration. The timing of sample collection is also compared and sorted into four distinct phases: pre-exercise (Phase I), mid-exercise (Phase II), exercise recovery (Phase III), and post-exercise (Phase IV). Finally, because the life-span of animals so are limited, small changes in animal exercise duration can corresponded to untenable amounts of human exercise. To address this limitation, we introduce the Life-Span Relative Exercise Time (RETlife span) as a method of accurately defining short-term, medium-term and long-term exercise relative to the animal's life expectancy. Systematic organization of existent protocols and this new system of defining exercise duration will allow for a more solid framework from which researchers can extrapolate animal model data to clinical application.
Collapse
Affiliation(s)
- Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhonguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yu Liang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Qiuxia Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Yanping Sun
- College of Pharmacy, Xi'an Medical University, Xi'an 710062, China
| | - Yajun Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Wei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD 21287, USA
| | - Guifang Yan
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - William Isaacs
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China.
| |
Collapse
|
12
|
Reyes DRA, Gomes MJ, Rosa CM, Pagan LU, Zanati SG, Damatto RL, Rodrigues EA, Carvalho RF, Fernandes AAH, Martinez PF, Lima ARR, Cezar MDM, Carvalho LEFM, Okoshi K, Okoshi MP. Exercise during transition from compensated left ventricular hypertrophy to heart failure in aortic stenosis rats. J Cell Mol Med 2018; 23:1235-1245. [PMID: 30456799 PMCID: PMC6349163 DOI: 10.1111/jcmm.14025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
We evaluated the influence of aerobic exercise on cardiac remodelling during the transition from compensated left ventricular (LV) hypertrophy to clinical heart failure in aortic stenosis (AS) rats. Eighteen weeks after AS induction, rats were assigned into sedentary (AS) and exercised (AS-Ex) groups. Results were compared to Sham rats. Exercise was performed on treadmill for 8 weeks. Exercise improved functional capacity. Echocardiogram showed no differences between AS-Ex and AS groups. After exercise, fractional shortening and ejection fraction were lower in AS-Ex than Sham. Myocyte diameter and interstitial collagen fraction were higher in AS and AS-Ex than Sham; however, myocyte diameter was higher in AS-Ex than AS. Myocardial oxidative stress, evaluated by lipid hydroperoxide concentration, was higher in AS than Sham and was normalized by exercise. Gene expression of the NADPH oxidase subunits NOX2 and NOX4, which participate in ROS generation, did not differ between groups. Activity of the antioxidant enzyme superoxide dismutase was lower in AS and AS-Ex than Sham and glutathione peroxidase was lower in AS-Ex than Sham. Total and reduced myocardial glutathione, which is involved in cellular defence against oxidative stress, was lower in AS than Sham and total glutathione was higher in AS-Ex than AS. The MAPK JNK was higher in AS-Ex than Sham and AS groups. Phosphorylated P38 was lower in AS-Ex than AS. Despite improving functional capacity, aerobic exercise does not change LV function in AS rats. Exercise restores myocardial glutathione, reduces oxidative stress, impairs JNK signalling and further induces myocyte hypertrophy.
Collapse
Affiliation(s)
- David R A Reyes
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila M Rosa
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Silmeia G Zanati
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Eder A Rodrigues
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Robson F Carvalho
- Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ana A H Fernandes
- Institute of Biosciences of Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luiz E F M Carvalho
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Department, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|