1
|
Gao L, Wang W, Ma H, Yin M, Yang X, Han R, Ohara S, Kim D, Wang G. Bioinformatics analysis reveals SOD1 is a prognostic factor in lung adenocarcinoma. Transl Cancer Res 2024; 13:5522-5534. [PMID: 39525006 PMCID: PMC11543046 DOI: 10.21037/tcr-24-1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Background Lung cancer is a major cause of cancer-related deaths worldwide. Unfortunately, non-small cell lung cancer (NSCLC) often lacks clear clinical symptoms and molecular markers for early diagnosis, which can hinder the initiation of timely treatments. In this study, we conducted an extensive bioinformatics analysis of copper-zinc superoxide dismutase (SOD1), a molecule linked to lung adenocarcinoma (LUAD) to enhance early detection and treatment approaches for this condition. Methods A bioinformatics analysis was conducted using a dataset from The Cancer Genome Atlas (TCGA) database. Several analytical methods, such as a differential expression analysis, a Kaplan-Meier survival analysis, a clinicopathological analysis, an enrichment analysis, protein-protein interaction (PPI) network construction using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and an immunoreactivity analysis of SOD1 expression in LUAD using TIMER were employed. We further validated the expression of SOD1 in LUAD through in vitro experiments using quantitative polymerase chain reaction (qPCR) and Western blot. Results Our findings indicate that LUAD tissues exhibited significantly higher expression levels of SOD1 than healthy tissues. The univariate Cox analysis showed that the elevated level was linked to unfavorable overall survival (OS) rates. Further, the Cox regression analysis of multiple variables suggested that elevated SOD1 expression levels acted as an autonomous prognosticator for unfavorable OS. We also conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and a gene set enrichment analysis (GSEA) and observed differential pathway enrichment among patients with high SOD1 expression. In addition, a correlation between SOD1 and immune cell infiltration was found. The in vitro experiments confirmed that SOD1 expression was upregulated in LUAD. Conclusions SOD1 could serve as a reliable prognostic indicator in individuals diagnosed with LUAD. Our findings may prove valuable in the development of therapeutic and prognostic markers for LUAD. The potential clinical utility of SOD1 in LUAD requires further investigation.
Collapse
Affiliation(s)
- Ling Gao
- Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| | - Wei Wang
- Department of Neurosurgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| | - Haishan Ma
- Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| | - Minghui Yin
- Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| | - Xuejiao Yang
- Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| | - Ruihui Han
- Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Dohun Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungbuk National University and Chungbuk National University Hospital, Cheongju, Korea
| | - Guangyan Wang
- Clinical Laboratory, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, China
| |
Collapse
|
2
|
Lusk HJ, Haughan MA, Bergsten TM, Burdette JE, Sanchez LM. Branched-chain amino acid catabolism promotes ovarian cancer cell proliferation via phosphorylation of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618560. [PMID: 39464074 PMCID: PMC11507863 DOI: 10.1101/2024.10.15.618560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ovarian cancer is the sixth leading cause of cancer-related mortality among individuals with ovaries, and high-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype. Characterized by a distinct and aggressive metastatic pattern, HGSOC can originate in the fallopian tube with the transformation of fallopian tube epithelial (FTE) cells, which metastasize to the ovary and subsequently to the omentum and peritoneal cavity. The omentum is a privileged metastatic site, and the metabolic exchange underlying omental metastasis could provide enzyme or receptor targets to block spread. In this study, we adapted a mass spectrometry imaging (MSI) protocol to investigate spatial location of 3D cocultures of tumorigenic FTE cells when grown in proximity to murine omental explants as a model of early metastatic colonization. Our analysis revealed several altered metabolites in tumorigenic FTE/omentum cocultures, namely changes in branched-chain amino acids (BCAA), including valine. We quantified the heightened consumption of valine, other BCAAs, and other amino acid-derived metabolites in omental cocultures using LC-MS assays. Our analysis revealed that metabolite concentrations when monitored with MSI from cell culture media in living culture systems have notable considerations for how MSI data may produce signatures that induce ionization suppression. Supplementation with valine enhanced proliferation and mTOR signaling in tumorigenic FTE cells, suggesting the potential of BCAA's as a nutrient utilized by tumor cells during omental colonization and a possible target for metastasis.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064
| | - Monica A. Haughan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
3
|
Ohta T, Sugimoto M, Ito Y, Horikawa S, Okui Y, Sakaki H, Seino M, Sunamura M, Nagase S. Profiling of metabolic dysregulation in ovarian cancer tissues and biofluids. Sci Rep 2024; 14:21555. [PMID: 39285238 PMCID: PMC11405878 DOI: 10.1038/s41598-024-72938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer, mainly due to late diagnosis with widespread peritoneal spread at first presentation. We performed metabolomic analyses of ovarian and paired control tissues using capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry to understand its metabolomic dysregulation. Of the 130 quantified metabolites, 96 metabolites of glycometabolism, including glycolysis, tricarboxylic acid cycles, urea cycles, and one-carbon metabolites, showed significant differences between the samples. To evaluate the local and systemic metabolomic differences in OC, we also analyzed low or non-invasively available biofluids, including plasma, urine, and saliva collected from patients with OC and benign gynecological diseases. All biofluids and tissue samples showed consistently elevated concentrations of N1,N12-diacetylspermine compared to controls. Four metabolites, polyamines, and betaine, were significantly and consistently elevated in both plasma and tissue samples. These data indicate that plasma metabolic dysregulation, which the most reflected by those of OC tissues. Our metabolomic profiles contribute to our understanding of metabolomic abnormalities in OC and their effects on biofluids.
Collapse
Affiliation(s)
- Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan.
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yasufumi Ito
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Shota Horikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yosuke Okui
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Hirotsugu Sakaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Manabu Seino
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Makoto Sunamura
- Department of Intestinal Surgery Medical Center, Tokyo Medical University, Hachioji, Tokyo, 193-0998, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| |
Collapse
|
4
|
Uboveja A, Aird KM. Interplay between altered metabolism and DNA damage and repair in ovarian cancer. Bioessays 2024; 46:e2300166. [PMID: 38873912 DOI: 10.1002/bies.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes. We will also discuss relevant data from other cancers that could be used to inform ovarian cancer therapeutic strategies. Changes in the choice of DNA repair mechanism adopted by ovarian cancer are a major factor in promoting therapeutic resistance. Therefore, the impact of metabolic reprogramming on DNA repair mechanisms in ovarian cancer has major clinical implications for targeted combination therapies for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Hipólito A, Mendes C, Martins F, Lemos I, Francisco I, Cunha F, Almodôvar T, Albuquerque C, Gonçalves LG, Bonifácio VDB, Vicente JB, Serpa J. H 2S-Synthesizing Enzymes Are Putative Determinants in Lung Cancer Management toward Personalized Medicine. Antioxidants (Basel) 2023; 13:51. [PMID: 38247476 PMCID: PMC10812562 DOI: 10.3390/antiox13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Lung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (H2S) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. Selenium-chrysin (SeChry) was tested as a therapeutic alternative with the aim of having an effect on cysteine catabolism and showed promising results. NSCLC cell lines presented different cysteine metabolic patterns, with A549 and H292 presenting a higher reliance on cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) to maintain H2S levels, while the PC-9 cell line presented an adaptive behavior based on the use of mercaptopyruvate sulfurtransferase (MST) and cysteine dioxygenase (CDO1), both contributing to the role of cysteine as a pyruvate source. The analyses of human lung tumor samples corroborated this variability in profiles, meaning that the expression of certain genes may be informative in defining prognosis and new targets. Heterogeneity points out individual profiles, and the identification of new targets among metabolic players is a step forward in cancer management toward personalized medicine.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Cindy Mendes
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Inês Francisco
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Fernando Cunha
- Pathology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Teresa Almodôvar
- Pneumology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Luís G. Gonçalves
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Vasco D. B. Bonifácio
- IBB-Institute for Bioengineering and Biosciences, Associate Laboratory i4HB-Institute for Health and Bioeconomy, IST-Lisbon University, 1049-001 Lisbon, Portugal;
- Bioengineering Department, IST-Lisbon University, 1049-001 Lisbon, Portugal
| | - João B. Vicente
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| |
Collapse
|
6
|
Chen J, Yang S, Li Y, Ziwen X, Zhang P, Song Q, Yao Y, Pei H. De novo nucleotide biosynthetic pathway and cancer. Genes Dis 2023; 10:2331-2338. [PMID: 37554216 PMCID: PMC10404870 DOI: 10.1016/j.gendis.2022.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms. Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and proliferation. Thus, the dysregulation of the de novo nucleotide biosynthetic pathway contributes to the development of many human diseases, such as cancer. It has been shown that many enzymes in this pathway are overactivated in different cancers. In this review, we summarize and update the current knowledge on the de novo nucleotide biosynthetic pathway, regulatory mechanisms, its role in tumorigenesis, and potential targeting opportunities.
Collapse
Affiliation(s)
- Jie Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Siqi Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Xu Ziwen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Huadong Pei
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| |
Collapse
|
7
|
Honar YS, Javaher S, Soleimani M, Zarebkohan A, Farhadihosseinabadi B, Tohidfar M, Abdollahpour-Alitappeh M. Advanced stage, high-grade primary tumor ovarian cancer: a multi-omics dissection and biomarker prediction process. Sci Rep 2023; 13:17265. [PMID: 37828118 PMCID: PMC10570268 DOI: 10.1038/s41598-023-44246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Ovarian cancer (OC) incidence and mortality rates continue to escalate globally. Early detection of OC is challenging due to extensive metastases and the ambiguity of biomarkers in advanced High-Grade Primary Tumors (HGPTs). In the present study, we conducted an in-depth in silico analysis in OC cell lines using the Gene Expression Omnibus (GEO) microarray dataset with 53 HGPT and 10 normal samples. Differentially-Expressed Genes (DEGs) were also identified by GEO2r. A variety of analyses, including gene set enrichment analysis (GSEA), ChIP enrichment analysis (ChEA), eXpression2Kinases (X2K) and Human Protein Atlas (HPA), elucidated signaling pathways, transcription factors (TFs), kinases, and proteome, respectively. Protein-Protein Interaction (PPI) networks were generated using STRING and Cytoscape, in which co-expression and hub genes were pinpointed by the cytoHubba plug-in. Validity of DEG analysis was achieved via Gene Expression Profiling Interactive Analysis (GEPIA). Of note, KIAA0101, RAD51AP1, FAM83D, CEP55, PRC1, CKS2, CDCA5, NUSAP1, ECT2, and TRIP13 were found as top 10 hub genes; SIN3A, VDR, TCF7L2, NFYA, and FOXM1 were detected as predominant TFs in HGPTs; CEP55, PRC1, CKS2, CDCA5, and NUSAP1 were identified as potential biomarkers from hub gene clustering. Further analysis indicated hsa-miR-215-5p, hsa-miR-193b-3p, and hsa-miR-192-5p as key miRNAs targeting HGPT genes. Collectively, our findings spotlighted HGPT-associated genes, TFs, miRNAs, and pathways as prospective biomarkers, offering new avenues for OC diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Yousof Saeedi Honar
- Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Saleh Javaher
- Department of Plant Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Marziye Soleimani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Drug Applied Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran
| | | | - Masoud Tohidfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | | |
Collapse
|
8
|
Yan H, Ding M, Lin J, Zhao L, Han D, Hu Q. Folate-mediated one-carbon metabolism as a potential antifungal target for the sustainable cultivation of microalga Haematococcus pluvialis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:104. [PMID: 37330505 DOI: 10.1186/s13068-023-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Microalgae are widely considered as multifunctional cell factories that are able to transform the photo-synthetically fixed CO2 to numerous high-value compounds, including lipids, carbohydrates, proteins and pigments. However, contamination of the algal mass culture with fungal parasites continues to threaten the production of algal biomass, which dramatically highlights the importance of developing effective measures to control the fungal infection. One viable solution is to identify potential metabolic pathways that are essential for fungal pathogenicity but are not obligate for algal growth, and to use inhibitors targeting such pathways to restrain the infection. However, such targets remain largely unknown, making it challenging to develop effective measures to mitigate the infection in algal mass culture. RESULTS In the present study, we conducted RNA-Seq analysis for the fungus Paraphysoderma sedebokerense, which can infect the astaxanthin-producing microalga Haematococcus pluvialis. It was found that many differentially expressed genes (DEGs) related to folate-mediated one-carbon metabolism (FOCM) were enriched in P. sedebokerense, which was assumed to produce metabolites required for the fungal parasitism. To verify this hypothesis, antifolate that hampered FOCM was applied to the culture systems. Results showed that when 20 ppm of the antifolate co-trimoxazole were added, the infection ratio decreased to ~ 10% after 9 days inoculation (for the control, the infection ratio was 100% after 5 days inoculation). Moreover, application of co-trimoxazole to H. pluvialis mono-culture showed no obvious differences in the biomass and pigment accumulation compared with the control, suggesting that this is a potentially algae-safe, fungi-targeted treatment. CONCLUSIONS This study demonstrated that applying antifolate to H. pluvialis culturing systems can abolish the infection of the fungus P. sedebokerense and the treatment shows no obvious disturbance to the algal culture, suggesting FOCM is a potential target for antifungal drug design in the microalgal mass culture industry.
Collapse
Affiliation(s)
- Hailong Yan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Ding
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Juan Lin
- Poyang Lake Eco-Economy Research Center, Jiujiang University, Jiujiang, 332005, China
| | - Liang Zhao
- Demeter Bio-Tech Co., Ltd, Zhuhai, 519000, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Qiang Hu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Zhang H, Zhu S, Zhou H, Li R, Xia X, Xiong H. Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front Oncol 2023; 13:1098357. [PMID: 36726381 PMCID: PMC9885267 DOI: 10.3389/fonc.2023.1098357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Background Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a mitochondrial bifunctional enzyme encoded in the nucleus. It plays a significant role in the regulation of glucose, nucleic acid, and folate metabolism, and maintains redox balance in the cells. The present study aimed at elucidating the potential function and mechanisms of MTHFD2 and explored the correlation between ferroptosis and MTHFD2 in triple-negative breast cancer. Methods MTHFD2 expression, survival analysis, and clinical correlation were performed using data from various online databases including TCGA, GEO, HPA, GTEX, Kaplan-Meier Plotter, PrognoScan, and UALCAN databases. Genomic alterations and CNV analysis were performed using the cBioPortal and GSCA databases. Potential functions and mechanisms were explored by enrichment analysis. The tumor microenvironment was identified by the TIMER database. In vitro, RT-qPCR and western blot assays were utilized to identify the MTHFD2 expression and the knockdown effects in breast cancer. CCK8, cell wound healing, transwell, and flow cytometry assays were used to identify the potential function of MTHFD2 in TNBC cells. MDA, GSH detection, and flow cytometry assays were performed to identify ferroptosis. Western blot assays were performed to measure the protein expression of all target genes. Results MTHFD2 expression levels were up-regulated in the majority of cancers and particularly in TNBC, in which higher expression levels indicated a poorer prognosis. Enrichment analyses showed that MTHFD2 is involved in various tumor-related biological processes. MTHFD2 expression was found to strongly correlate with multiple immune cell infiltration. In vitro, the knockdown of MTHFD2 suppresses the proliferation, apoptosis, migration, and invasion in TNBC cells. In addition, the MTHFD2 knockdown significantly enhanced intracellular ROS and lipid peroxidation and decreased intracellular GSH. The expressions of SLC7A11, GPX4, and NRF2 were down-regulated by the MTHFD2 knockdown. Conclusion MTHFD2 could be a crucial molecular biomarker for predicting patient prognosis and a novel therapeutic target in TNBC. In addition, MTHFD2 is a potential ferroptosis regulatory gene in TNBC.
Collapse
|
10
|
Bae G, Berezhnoy G, Koch A, Cannet C, Schäfer H, Kommoss S, Brucker S, Beziere N, Trautwein C. Stratification of ovarian cancer borderline from high-grade serous carcinoma patients by quantitative serum NMR spectroscopy of metabolites, lipoproteins, and inflammatory markers. Front Mol Biosci 2023; 10:1158330. [PMID: 37168255 PMCID: PMC10166069 DOI: 10.3389/fmolb.2023.1158330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Traditional diagnosis is based on histology or clinical-stage classification which provides no information on tumor metabolism and inflammation, which, however, are both hallmarks of cancer and are directly associated with prognosis and severity. This project was an exploratory approach to profile metabolites, lipoproteins, and inflammation parameters (glycoprotein A and glycoprotein B) of borderline ovarian tumor (BOT) and high-grade serous ovarian cancer (HGSOC) for identifying additional useful serum markers and stratifying ovarian cancer patients in the future. Methods: This project included 201 serum samples of which 50 were received from BOT and 151 from high-grade serous ovarian cancer (HGSOC), respectively. All the serum samples were validated and phenotyped by 1H-NMR-based metabolomics with in vitro diagnostics research (IVDr) standard operating procedures generating quantitative data on 38 metabolites, 112 lipoprotein parameters, and 5 inflammation markers. Uni- and multivariate statistics were applied to identify NMR-based alterations. Moreover, biomarker analysis was carried out with all NMR parameters and CA-125. Results: Ketone bodies, glutamate, 2-hydroxybutyrate, glucose, glycerol, and phenylalanine levels were significantly higher in HGSOC, while the same tumors showed significantly lower levels of alanine and histidine. Furthermore, alanine and histidine and formic acid decreased and increased, respectively, over the clinical stages. Inflammatory markers glycoproteins A and B (GlycA and GlycB) increased significantly over the clinical stages and were higher in HGSOC, alongside significant changes in lipoproteins. Lipoprotein subfractions of VLDLs, IDLs, and LDLs increased significantly in HGSOC and over the clinical stages, while total plasma apolipoprotein A1 and A2 and a subfraction of HDLs decreased significantly over the clinical stages. Additionally, LDL triglycerides significantly increased in advanced ovarian cancer. In biomarker analysis, glycoprotein inflammation biomarkers behaved in the same way as the established clinical biomarker CA-125. Moreover, CA-125/GlycA, CA-125/GlycB, and CA-125/Glycs are potential biomarkers for diagnosis, prognosis, and treatment response of epithelial ovarian cancer (EOC). Last, the quantitative inflammatory parameters clearly displayed unique patterns of metabolites, lipoproteins, and CA-125 in BOT and HGSOC with clinical stages I-IV. Conclusion: 1H-NMR-based metabolomics with commercial IVDr assays could detect and identify altered metabolites and lipoproteins relevant to EOC development and progression and show that inflammation (based on glycoproteins) increased along with malignancy. As inflammation is a hallmark of cancer, glycoproteins, thereof, are promising future serum biomarkers for the diagnosis, prognosis, and treatment response of EOC. This was supported by the definition and stratification of three different inflammatory serum classes which characterize specific alternations in metabolites, lipoproteins, and CA-125, implicating that future diagnosis could be refined not only by diagnosed histology and/or clinical stages but also by glycoprotein classes.
Collapse
Affiliation(s)
- Gyuntae Bae
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - André Koch
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Stefan Kommoss
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Sara Brucker
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Christoph Trautwein,
| |
Collapse
|
11
|
He TT, Xiao H, Wusiman M, Yishake D, Fang AP, Luo Y, Liu XZ, Liu ZY, Zhu HL. Dietary intake of one-carbon metabolism-related nutrients and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. Food Funct 2022; 13:8081-8090. [DOI: 10.1039/d2fo00943a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary intake of one-carbon metabolism-related nutrients has been linked to cancer-related outcomes, but their effects on hepatocellular carcinoma (HCC) mortality are still unknown. The objective was to assess whether pre-diagnostic...
Collapse
|
12
|
Phillips-Chavez C, Coward J, Watson M, Schloss J. A Retrospective Cross-Sectional Cohort Trial Assessing the Prevalence of MTHFR Polymorphisms and the Influence of Diet on Platinum Resistance in Ovarian Cancer Patients. Cancers (Basel) 2021; 13:5215. [PMID: 34680361 PMCID: PMC8533864 DOI: 10.3390/cancers13205215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Ovarian cancer has the lowest survival rate in gynaecologic malignancies with a 5-year survival rate of 43%. Platinum resistance is one of the main drivers of ovarian cancer mortality, of which aberrant methylation has been cited as a significant contributor. Understanding the essential role of the methylenetetrahydrofolate reductase enzyme (MTHFR) on DNA synthesis and repair, and how nutrient status can vastly affect its performance, led to the investigation of MTHFR status and dietary influence on platinum response in epithelial ovarian cancer (EOC) patients. Twenty-five adult female patients who completed first-line platinum-based chemotherapy for primary ovarian cancer were selected from Icon Cancer Centres in Australia. Participants were grouped based on platinum response. A full medical and family history, food frequency questionnaire and single blood test were completed, testing for MTHFR polymorphisms, serum folate, serum and active B12 and homocysteine levels. Nineteen of twenty-five participants had an MTHFR polymorphism. Of those, 20% were compound heterozygous, 12% were heterozygous C677T (CT), 4% homozygous C677T, 12% homozygous A1298C and 28% were heterozygous A1298C (AC). Statistically significant associations were found between dietary zinc (p = 0.0086; 0.0030; 0.0189) and B12 intakes in CT genotypes (p = 0.0157; 0.0030; 0.0068) indicating that zinc or vitamin B12 intakes below RDI were associated with this genotype. There were strong associations of vitamin B6 intakes in AC genotypes (p = 0.0597; 0.0547; 0.0610), and dietary folate in compound heterozygotes with sensitive and partially sensitive disease (p = 0.0627; 0.0510). There were also significant associations between serum folate (p = 0.0478) and dietary B12 (p = 0.0350) intakes above RDI and platinum sensitivity in wild-types as well as strong associations with homocysteine levels (p = 0.0886) and zinc intake (p = 0.0514). Associations with dietary B12 (p = 0.0514) and zinc intakes (p = 0.0731) were also strong in resistant wild types. Results indicate that dietary zinc, B12 and B6 intakes may be associated with platinum sensitivity dependent on MTHFR genotype. These results require further research to clarify the dosages necessary to elicit a response; however, they provide a novel foundation for acknowledging the role of diet on treatment response in EOC.
Collapse
Affiliation(s)
- Caitlin Phillips-Chavez
- Icon Cancer Centre, Queensland, Australia;
- Endeavour College of Natural Health, Brisbane, QLD 4006, Australia;
| | - Jermaine Coward
- Icon Cancer Centre, Queensland, Australia;
- School of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Michael Watson
- Endeavour College of Natural Health, Brisbane, QLD 4006, Australia;
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4006, Australia
| | - Janet Schloss
- NCNM, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
13
|
Zhang Z, Zhu H, Li Q, Gao W, Zang D, Su W, Yang R, Zhong J. Gene Expression Profiling of Tricarboxylic Acid Cycle and One Carbon Metabolism Related Genes for Prognostic Risk Signature of Colon Carcinoma. Front Genet 2021; 12:647152. [PMID: 34589110 PMCID: PMC8475515 DOI: 10.3389/fgene.2021.647152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors worldwide. Colon adenocarcinoma (COAD) is the most common pathological type of CRC and several biomarkers related to survival have been confirmed. Yet, the predictive effect of a single gene biomarker is not enough. The tricarboxylic acid (TCA) cycle and carbon metabolism play an important role in tumors. Thus, we aimed to identify new gene signatures from the TCA cycle and carbon metabolism to better predict the survival of COAD. This study performed mRNA expression profiling in large COAD cohorts (n = 417) from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression and multivariate Cox regression analysis were performed, and receiver operating characteristic (ROC) curve was used to screen the variable combinations model which is most relevant to patient prognosis survival mostly. Univariable or multivariate analysis results showed that SUCLG2, SUCLG1, ACLY, SUCLG2P2, ATIC and ACO2 have associations with survival in COAD. Combined with clinical variables, we confirmed model 1 (AUC = 0.82505), most relevant to patient prognosis survival. Model 1 contains three genes: SUCLG2P2, SUCLG2 and ATIC, in which SUCLG2P2 and SUCLG2 were low-expressed in COAD, however, ATIC was highly expressed, and the expressions above are related to stages of CRC. Pearson analysis showed that SUCLG2P2, SUCLG2 and ATIC were correlated in normal COAD tissues, while only SUCLG2P2 and SUCLG2 were correlated in tumor tissues. Finally, we verified the expressions of these three genes in COAD samples. Our study revealed a possible connection between the TCA cycle and carbon metabolism and prognosis and showed a TCA cycle and carbon metabolism related gene signature which could better predict survival in COAD patients.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Huifang Zhu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qian Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wuji Gao
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Rui Yang
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Gu Y, Zeng J, Zou Y, Liu C, Fu H, Chang H. Folate Intake and Risk of Urothelial Carcinoma: A Systematic Review and Meta-Analysis of Epidemiological Studies. Nutr Cancer 2021; 74:1593-1605. [PMID: 34472414 DOI: 10.1080/01635581.2021.1973518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We aimed to investigate the association between folate intake and the risk of urothelial carcinoma (UC). A systematic literature search using Pubmed and EMBASE databases was performed to find prospective cohort studies, population-based case-control study or hospital-based case-control study investigating the association of folate intake and the risk of UC. A total of 19 studies involving 11,175 cases and 656,161 individuals were included. High intake of folate was associated with a decreased risk of UC, with a pooled OR of 0.78 (95% CI: 0.66-0.93, P = 0.006) for the highest category of intake vs. the lowest. The data suggested that folate may contribute to the prevention of urothelial cancer. However, the association was observed only in case-control studies (OR = 0.56, 95% CI: 0.39-0.79, P = 0.001), but not in cohort studies (RR = 0.97, 95% CI: 0.87-1.09, P = 0.638). Dose-response meta-analysis showed that an increment of folate intake (100 μg/day) corresponded to an 8% deceased risk of invasive UC (RR = 0.92, 95% CI: 0.87-0.98, P = 0.004). High folate intake might be inversely associated with risk of UC particularly invasive UC, which needs to be confirmed.
Collapse
Affiliation(s)
- Yi Gu
- College of Food Science, Southwest University, Chongqing, China
| | - Jie Zeng
- College of Food Science, Southwest University, Chongqing, China
| | - Yixin Zou
- College of Food Science, Southwest University, Chongqing, China
| | - Chang Liu
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjuan Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Molina AM, Abril N, Lora AJ, Huertas-Abril PV, Ayala N, Blanco C, Moyano MR. Proteomic profile of the effects of low-dose bisphenol A on zebrafish ovaries. Food Chem Toxicol 2021; 156:112435. [PMID: 34302887 DOI: 10.1016/j.fct.2021.112435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/27/2022]
Abstract
Human exposure to bisphenol-A (BPA) is largely unavoidable because BPA is an environmental contaminant found in soil, water, food and indoor dust. The safety of authorized BPA amounts in consumer products is under question because new studies have reported adverse effects of BPA at doses far below that previously established by the NOAEL (50 μg/kg per day). To protect public health, the consequences of low-dose BPA exposure in different organs and organismal functions must be further studied to generate relevant data. This study attempted to investigate the effects and potential molecular mechanisms of short-term exposure to 1 μg/L BPA on zebrafish ovarian follicular development. We observed only minor changes at the histopathological level with a small (3 %) increase in follicular atresia. However, a shotgun proteomics approach indicated deep alterations in BPA-exposed ovarian cells, including induction of the oxidative stress response, metabolic shifts and degradome perturbations, which could drive oocytes towards premature maturation. Based on these results, it could be suggested that inadvertent exposure to small concentrations of BPA on a continuous basis causes alteration in biological processes that are essential for healthy reproduction.
Collapse
Affiliation(s)
- Ana M Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain.
| | - Antonio J Lora
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain.
| | - Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Nahum Ayala
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - Carmen Blanco
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - M Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| |
Collapse
|
16
|
Li Q, Yang F, Shi X, Bian S, Shen F, Wu Y, Zhu C, Fu F, Wang J, Zhou J, Chen Y. MTHFD2 promotes ovarian cancer growth and metastasis via activation of the STAT3 signaling pathway. FEBS Open Bio 2021; 11:2845-2857. [PMID: 34231329 PMCID: PMC8487042 DOI: 10.1002/2211-5463.13249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a bifunctional enzyme located in the mitochondria. MTHFD2 has been reported to be overexpressed in several malignant tumors and is implicated in cancer development. This study aimed to investigate the effect of MTHFD2 on ovarian cancer progression. The expression of MTHFD2 was detected by bioinformatic analysis, immunohistochemistry, RT‐qPCR (real‐time quantitative PCR analysis), and western blot analysis. The effects of MTHFD2 depletion on cell proliferation, migration, and invasion were determined through in vitro experiments. Cell cycle progression and apoptosis were accessed by flow cytometry. The related signaling pathway protein expression was determined by western blot analysis. We found that MTHFD2 is highly expressed in both ovarian cancer tissues and cell lines. MTHFD2 deletion suppressed cell proliferation and metastasis. Knockdown of MTHFD2 induces cell apoptosis and G2/M arrest, whereas the number of cells in S phase increased with MTHFD2 overexpression. Mechanically, our results indicate that an inhibitory effect of MTHFD2 knockdown may be mediated by the downregulation of cyclin B1/Cdc2 complex and the inhibitory effect on its activity. Additionally, MTHFD2 could regulate cell growth and aggressiveness via activation of STAT3 and the STAT3‐induced epithelial–mesenchymal transition signaling pathway. These findings indicate that MTHFD2 is overexpressed in ovarian cancer and regulates cell proliferation and metastasis, presenting an attractive therapeutic target.
Collapse
Affiliation(s)
- Qiutong Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Fang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Shimin Bian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Yuhong Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Chenjie Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Fengqing Fu
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China.,Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
17
|
Fu H, Zeng J, Liu C, Gu Y, Zou Y, Chang H. Folate Intake and Risk of Pancreatic Cancer: A Systematic Review and Updated Meta-Analysis of Epidemiological Studies. Dig Dis Sci 2021; 66:2368-2379. [PMID: 32770489 DOI: 10.1007/s10620-020-06525-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the most fatal malignancies and primary prevention strategies are limited. Epidemiological studies focusing on the association between folate intake and pancreatic cancer risk have reported inconsistent findings. METHODS A systematic search of the literature was conducted using the PubMed and EMBASE databases. A systematic review and meta-analysis of eligible studies was performed to assess the association between folate intake and risk of pancreatic cancer. RESULTS A total of 16 studies involving 5654 cases and 1,009,374 individuals were included. The result showed a significant association of folate intake with a decreased risk of pancreatic cancer, with a pooled OR of 0.82 (95% CI: 0.69-0.97, P = 0.019) for the highest category of intake vs. the lowest. The data suggested that high intake of folate may contribute to the prevention of pancreatic cancer. However, the association was observed only in case-control studies (OR = 0.78, 95% CI: 0.65-0.93, P = 0.006), but not in cohort studies (RR = 0.85, 95% CI: 0.66-1.09, P = 0.244). Dose-response meta-analysis showed that an increment of folate intake (100 μg/day) was marginally associated with the risk of pancreatic cancer, with a pooled OR of 0.97 (95% CI: 0.93-1.00, P = 0.053). CONCLUSION High folate intake might be inversely associated with pancreatic cancer risk, which needs to be confirmed.
Collapse
Affiliation(s)
- Hongjuan Fu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Jie Zeng
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Chang Liu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yi Gu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Yixin Zou
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| |
Collapse
|
18
|
Heterocyclic Substitutions Greatly Improve Affinity and Stability of Folic Acid towards FRα. an In Silico Insight. Molecules 2021; 26:molecules26041079. [PMID: 33670773 PMCID: PMC7922218 DOI: 10.3390/molecules26041079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA–FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.
Collapse
|
19
|
Rizzo A, Satta A, Garrone G, Cavalleri A, Napoli A, Raspagliesi F, Figini M, De Cecco L, Iorio E, Tomassetti A, Mezzanzanica D, Bagnoli M. Choline kinase alpha impairment overcomes TRAIL resistance in ovarian cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:5. [PMID: 33390181 PMCID: PMC7780408 DOI: 10.1186/s13046-020-01794-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Background Choline kinase-α (ChoKα/CHKA) overexpression and hyper-activation sustain altered choline metabolism conferring the cholinic phenotype to epithelial ovarian cancer (OC), the most lethal gynecological tumor. We previously proved that CHKA down-modulation reduced OC cell aggressiveness and increased sensitivity to in vitro chemotherapeutics’ treatment also affecting intracellular content of one-carbon metabolites. In tumor types other than ovary, methionine decrease was shown to increase sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 triggering. These effects were suggestive of a potential role for ChoKα in regulating susceptibility to TRAIL cytokine. Methods The relationship between ChoKα/CHKA and TRAIL-receptor 2 (TRAIL-R2) expression was investigated in silico in OC patients’ GEO datasets and in vitro in a panel of OC cell lines upon transient CHKA silencing (siCHKA). The effect of siCHKA on metabolites content was assessed by LC-MS. The triggered apoptotic signalling was studied following soluble-TRAIL or anti-TRAIL-R2 agonist antibody treatment. Lipid rafts were isolated by Triton X-100 fractionation. Preclinical ex vivo studies were performed in OC cells derived from patients’ ascites using autologous PBLs as effectors and a bispecific anti-TRAIL-R2/anti-CD3 antibody as triggering agent. Results Here we demonstrate that siCHKA specifically overcomes resistance to TRAIL-mediated apoptosis in OC cells. Upon siCHKA we detected: a significant sensitization to caspase-dependent apoptosis triggered by both soluble TRAIL and anti-TRAIL-R2 agonist antibody, a specific increase of TRAIL-R2 expression and TRAIL-R2 relocation into lipid rafts. In siCHKA-OC cells the acquired TRAIL sensitivity was completely reverted upon recovery of ChoKα expression but, at variance of other tumor cell types, TRAIL sensitivity was not efficiently phenocopied by methionine deprivation. Of note, we were also able to show that siCHKA sensitized tumor cells derived ex vivo from OC patients’ ascites to the cytotoxic activity of autologous lymphocytes redirected by a bispecific anti-TRAIL-R2/anti-CD3 antibody. Conclusions Our findings suggest that ChoKα/CHKA impairment, by restoring drug-induced or receptor-mediated cell death, could be a suitable therapeutic strategy to be used in combination with chemotherapeutics or immunomodulators to improve OC patients’ outcome.
Collapse
Affiliation(s)
- Andrea Rizzo
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Satta
- Department of Applied Research and Technical Development, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Garrone
- Department of Research, Epidemiology and prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: UNITECH OMICS Platform, Università degli Studi di Milano, Milan, Italy
| | - Adalberto Cavalleri
- Department of Research, Epidemiology and prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Napoli
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milan, Italy
| | - Francesco Raspagliesi
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mariangela Figini
- Department of Applied Research and Technical Development, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Department of Applied Research and Technological Development, Integrated Biology Platform, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tomassetti
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Delia Mezzanzanica
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Marina Bagnoli
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
20
|
D’Onofrio N, Mele L, Martino E, Salzano A, Restucci B, Cautela D, Tatullo M, Balestrieri ML, Campanile G. Synergistic Effect of Dietary Betaines on SIRT1-Mediated Apoptosis in Human Oral Squamous Cell Carcinoma Cal 27. Cancers (Basel) 2020; 12:cancers12092468. [PMID: 32878301 PMCID: PMC7563158 DOI: 10.3390/cancers12092468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Betaines are important human nutrients widely distributed in plants, animals, and dietary sources. δ-valerobetaine (δVB) is a naturally occurring betaine with antioxidant, anti-inflammatory and anticancer activities. The aim of our study was to investigate the possible synergism between δVB and the structurally related γ-butyrobetaine (γBB) by testing the in vitro anticancer activity in head and neck squamous cell carcinomas. Combined δVB and γBB caused a marked inhibition of cell proliferation and induction of apoptosis in Cal 27 cells. The increased reactive oxygen species accumulation influenced the nuclear expression of SIRT1. Gene silencing with small interfering RNA confirmed the role of SIRT1 in the apoptotic cell death. Synergism of δVB and γBB is useful for novel strategies to optimize their content in meat, milk and dairy products to sustain human health and wellbeing. Abstract Betaines are food components widely distributed in plants, animals, microorganisms, and dietary sources. Among betaines, δ-valerobetaine (N,N,N-trimethyl-5-aminovaleric acid, δVB) shares a metabolic pathway common to γ-butyrobetaine (γBB). The biological properties of δVB are particularly attractive, as it possesses antioxidant, anti-inflammatory and anticancer activities. Here, we investigated the possible synergism between δVB and the structurally related γBB, to date unexplored, by testing the in vitro anticancer activity in head and neck squamous cell carcinoma cell lines, FaDu, UM-SCC-17A and Cal 27. Among cell lines tested, results indicated that betaines showed the highest effect in reducing Cal 27 cell proliferation up to 72 h (p < 0.01). This effect was enhanced when betaines were administered in combination (δVB plus γBB) (p < 0.001). Inhibition of cell growth by δVB plus γBB involved reactive oxygen species (ROS) accumulation, upregulation of sirtuin 1 (SIRT1), and apoptosis (p < 0.001). SIRT1 gene silencing by small interfering RNA decreased the apoptotic effect of δVB plus γBB by modulating downstream procaspase-3 and cyclin B1 (p < 0.05). These findings might have important implications for novel prevention strategies for tongue squamous cell carcinoma by targeting SIRT1 with naturally occurring betaines.
Collapse
Affiliation(s)
- Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (N.D.); (E.M.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (N.D.); (E.M.)
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (A.S.); (B.R.); (G.C.)
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (A.S.); (B.R.); (G.C.)
| | - Domenico Cautela
- Experimental Station for the Industry of the Essential Oils and Citrus Products (SSEA), Special Agency of the Chamber of Commerce in Reggio Calabria, Via G. Tommasini 2, 89125 Reggio Calabria, Italy;
| | - Marco Tatullo
- Marrelli Health—Tecnologica Research Institute, Biomedical Section, Via E. Fermi, 88900 Crotone, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (N.D.); (E.M.)
- Correspondence: ; Tel.: +39-081-566-5865; Fax: +39-081-566-5863
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (A.S.); (B.R.); (G.C.)
| |
Collapse
|
21
|
Piga I, Verza M, Montenegro F, Nardo G, Zulato E, Zanin T, Del Bianco P, Esposito G, Indraccolo S. In situ Metabolic Profiling of Ovarian Cancer Tumor Xenografts: A Digital Pathology Approach. Front Oncol 2020; 10:1277. [PMID: 32974128 PMCID: PMC7466758 DOI: 10.3389/fonc.2020.01277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Metabolic profiling of cancer is a rising interest in the field of biomarker development. One bottleneck of its clinical exploitation, however, is the lack of simple and quantitative techniques that enable to capture the key metabolic traits of tumor from archival samples. In fact, liquid chromatography associated with mass spectrometry is the gold-standard technique for the study of tumor metabolism because it has high levels of accuracy and precision. However, it requires freshly frozen samples, which are difficult to collect in large multi-centric clinical studies. For this reason, we propose here to investigate a set of established metabolism-associated protein markers by exploiting immunohistochemistry coupled with digital pathology. As case study, we quantified expression of MCT1, MCT4, GLS, PHGDH, FAS, and ACC in 17 patient-derived ovarian cancer xenografts and correlated it with survival. Among these markers, the glycolysis-associated marker MCT4 was negatively associated with survival of mice. The algorithm enabling a quantitative analysis of these metabolism-associated markers is an innovative research tool that can be exported to large sets of clinical samples and can remove the variability of individual interpretation of immunohistochemistry results.
Collapse
Affiliation(s)
- Ilaria Piga
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Martina Verza
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Francesca Montenegro
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Giorgia Nardo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Elisabetta Zulato
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Tiziana Zanin
- Pathology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padua, Italy
| |
Collapse
|
22
|
Zhang S, Xu Z, Cao X, Xie Y, Lin L, Zhang X, Zou B, Liu D, Cai Y, Liao Q, Xie Z. Shenling Baizhu San improves functional dyspepsia in rats as revealed by 1H-NMR based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2363-2375. [PMID: 32930262 DOI: 10.1039/d0ay00580k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional dyspepsia (FD), a common gastrointestinal disorder around the world, is driven by multiple factors, making prevention and treatment a major challenge. Shenling Baizhu San (SBS), a classical prescription of traditional Chinese medicine, has been proven to be effective in gastrointestinal disorders. However, studies on SBS improving FD are few. Thus, our study aimed to evaluate the effect of SBS on FD and further to explore the mechanism underlying the interactions between FD and SBS by the metabolomics approach. A FD rat model was induced by multiple forms of mild stimulation, and proton nuclear magnetic resonance (1H-NMR) spectroscopy and multivariate data analysis were used to profile the fecal and urinary metabolome in the FD rats during SBS intervention. Significant dyspeptic symptoms such as weight loss, poor appetite, reduced gastrointestinal motility and decreased absorptive capacity were observed in the FD rats, which were subsequently improved by SBS. Additionally, the levels of citrate, branched chain acids and pyruvate decreased, and the levels of choline, trimethylamine and taurine increased in the FD rats. Furthermore, the metabolic disorders were amended with SBS intervention mainly by modulating the metabolic pathways involved in energy metabolism, amino acid metabolism, and gut microbiota and host co-metabolism. Overall, our study highlighted the effect of SBS on the disturbed metabolic pathways in the FD rats, providing new insight into the mechanism of SBS treatment for FD from the perspective of metabolomics.
Collapse
Affiliation(s)
- Shaobao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xueqing Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yuzhen Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lei Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Xiao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Baorong Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| |
Collapse
|
23
|
Cruz A, Mota P, Ramos C, Pires RF, Mendes C, Silva JP, Nunes SC, Bonifácio VDB, Serpa J. Polyurea Dendrimer Folate-Targeted Nanodelivery of l-Buthionine sulfoximine as a Tool to Tackle Ovarian Cancer Chemoresistance. Antioxidants (Basel) 2020; 9:antiox9020133. [PMID: 32028640 PMCID: PMC7070262 DOI: 10.3390/antiox9020133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
: Ovarian cancer is a highly lethal disease, mainly due to chemoresistance. Our previous studies on metabolic remodeling in ovarian cancer have supported that the reliance on glutathione (GSH) bioavailability is a main adaptive metabolic mechanism, also accounting for chemoresistance to conventional therapy based on platinum salts. In this study, we tested the effects of the in vitro inhibition of GSH synthesis on the restoration of ovarian cancer cells sensitivity to carboplatin. GSH synthesis was inhibited by exposing cells to l-buthionine sulfoximine (l-BSO), an inhibitor of -glutamylcysteine ligase (GCL). Given the systemic toxicity of l-BSO, we developed a new formulation using polyurea (PURE) dendrimers nanoparticles (l-BSO@PUREG4-FA2), targeting l-BSO delivery in a folate functionalized nanoparticle.
Collapse
Affiliation(s)
- Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
| | - Pedro Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Rita F. Pires
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - José P. Silva
- Hospital Santo António dos Capuchos, Centro Hospitalar Lisboa Central, Alameda Santo António dos Capuchos, 1169-050 Lisboa, Portugal;
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (A.C.); (P.M.); (R.F.P.)
- Correspondence: (V.D.B.B.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (C.R.); (C.M.); (S.C.N.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (J.S.)
| |
Collapse
|
24
|
Adams CD, Neuhausen SL. Bi-directional Mendelian randomization of epithelial ovarian cancer and schizophrenia and uni-directional Mendelian randomization of schizophrenia on circulating 1- or 2-glycerophosphocholine metabolites. Mol Genet Metab Rep 2019; 21:100539. [PMID: 31844628 PMCID: PMC6895746 DOI: 10.1016/j.ymgmr.2019.100539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/22/2023] Open
Abstract
Most women with epithelial ovarian cancer (EOC) present with late-stage disease. As a result, globally, EOC is responsible for >150,000 deaths a year. Thus, a better understanding of risk factors for developing EOC is crucial for earlier screening and detection to improve survival. To that effort, there have been suggestions that there is an association of schizophrenia and cancer, possibly because metabolic changes are a hallmark of both cancer and schizophrenia (SZ). Perturbed choline metabolism has been documented in both diseases. Our objective was to use Mendelian randomization to evaluate whether SZ increased risk for developing EOC or the converse, and, whether SZ impacted 1- or 2-glycerophosphocholine (1- or 2-GPC) metabolites. We found that SZ conferred a weak but increased risk for EOC, but not the reverse (no evidence that EOC caused SZ). SZ was also causally associated with lower levels of two 1- or 2-GPC species and with suggestively lower levels in an additional three 1- or 2-GPCs. We postulate that perturbed choline metabolism in SZ may mimic or contribute to a "cholinic" phenotype, as observed in EOC cells.
Collapse
Affiliation(s)
- Charleen D. Adams
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | |
Collapse
|
25
|
Santos I, Ramos C, Mendes C, Sequeira CO, Tomé CS, Fernandes DGH, Mota P, Pires RF, Urso D, Hipólito A, Antunes AMM, Vicente JB, Pereira SA, Bonifácio VDB, Nunes SC, Serpa J. Targeting Glutathione and Cystathionine β-Synthase in Ovarian Cancer Treatment by Selenium-Chrysin Polyurea Dendrimer Nanoformulation. Nutrients 2019; 11:E2523. [PMID: 31635026 PMCID: PMC6836284 DOI: 10.3390/nu11102523] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the main cause of death from gynecological cancer, with its poor prognosis mainly related to late diagnosis and chemoresistance (acquired or intrinsic) to conventional alkylating and reactive oxygen species (ROS)-generating drugs. We and others reported that the availability of cysteine and glutathione (GSH) impacts the mechanisms of resistance to carboplatin in ovarian cancer. Different players in cysteine metabolism can be crucial in chemoresistance, such as the cystine/glutamate antiporter system Xc (xCT) and the H2S-synthesizing enzyme cystathionine β-synthase (CBS) in the pathway of cysteine catabolism. We hypothesized that, by disrupting cysteine metabolic flux, chemoresistance would be reverted. Since the xCT transporter is also able to take up selenium, we used selenium-containing chrysin (SeChry) as a plausible competitive inhibitor of xCT. For that, we tested the effects of SeChry on three different ovarian cancer cell lines (ES2, OVCAR3, and OVCAR8) and in two non-malignant cell lines (HaCaT and HK2). Results showed that, in addition to being highly cytotoxic, SeChry does not affect the uptake of cysteine, although it increases GSH depletion, indicating that SeChry might induce oxidative stress. However, enzymatic assays revealed an inhibitory effect of SeChry toward CBS, thus preventing production of the antioxidant H2S. Notably, our data showed that SeChry and folate-targeted polyurea dendrimer generation four (SeChry@PUREG4-FA) nanoparticles increased the specificity for SeChry delivery to ovarian cancer cells, reducing significantly the toxicity against non-malignant cells. Collectively, our data support SeChry@PUREG4-FA nanoparticles as a targeted strategy to improve ovarian cancer treatment, where GSH depletion and CBS inhibition underlie SeChry cytotoxicity.
Collapse
Affiliation(s)
- Inês Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Dalila G H Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Pedro Mota
- CQFM-IN and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Rita F Pires
- CQFM-IN and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Donato Urso
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Vasco D B Bonifácio
- CQFM-IN and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
26
|
Current Possibilities of Gynecologic Cancer Treatment with the Use of Immune Checkpoint Inhibitors. Int J Mol Sci 2019; 20:ijms20194705. [PMID: 31547532 PMCID: PMC6801535 DOI: 10.3390/ijms20194705] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the ongoing progress in cancer research, the global cancer burden has increased to 18.1 million new cases and 9.6 million deaths in 2018. Gynecological cancers, such as ovarian, endometrial, and cervical cancers, considerably contribute to global cancer burden, leading to $5,862.6, $2,945.7, and $1,543.9 million of annual costs of cancer care, respectively. Thus, the development of effective therapies against gynecological cancers is still a largely unmet medical need. One of the novel therapeutic approaches is to induce anti-cancer immunity by the inhibition of the immune checkpoint pathways using monoclonal antibodies. The molecular targets for monoclonal antibodies are cytotoxic T lymphocyte-associated protein-4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed death-ligand 1 (PD-L1). The rationale for the use of immune checkpoint inhibitors in patients with gynecological cancers was based on the immunohistological studies showing high expression levels of PD-1 and PD-L1 in those cancers. Currently available immune checkpoint inhibitors include nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab, and ipilimumab. The efficacy and safety of these inhibitors, used as monotherapy and with combination with chemotherapy, is being currently evaluated in several clinical studies. As the results are promising, more clinical trials are being planned, which may lead to the development of efficient therapies for gynecological cancer patients.
Collapse
|