1
|
Bristow P, Schantz K, Moosbrugger Z, Martin K, Liebenberg H, Steimle S, Xiao Q, Percec V, Wilner SE. Aptamer-Targeted Dendrimersomes Assembled from Azido-Modified Janus Dendrimers "Clicked" to DNA. Biomacromolecules 2024; 25:1541-1549. [PMID: 38394608 PMCID: PMC10934268 DOI: 10.1021/acs.biomac.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Amphiphilic Janus dendrimers (JDs), synthetic alternatives to lipids, have the potential to expand the scope of nanocarrier delivery systems. JDs self-assemble into vesicles called dendrimersomes, encapsulate both hydrophobic cargo and nucleic acids, and demonstrate enhanced stability in comparison to lipid nanoparticles (LNPs). Here, we report the ability to enhance the cellular uptake of Janus dendrimersomes using DNA aptamers. Azido-modified JDs were synthesized and conjugated to alkyne-modified DNAs using copper-catalyzed azide alkyne cycloaddition. DNA-functionalized JDs form nanometer-sized dendrimersomes in aqueous solution via thin film hydration. These vesicles, now displaying short DNAs, are then hybridized to transferrin receptor binding DNA aptamers. Aptamer-targeted dendrimersomes show improved cellular uptake as compared to control vesicles via fluorescence microscopy and flow cytometry. This work demonstrates the versatility of using click chemistry to conjugate functionalized JDs with biologically relevant molecules and the feasibility of targeting DNA-modified dendrimersomes for drug delivery applications.
Collapse
Affiliation(s)
- Paige Bristow
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Kyle Schantz
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Zoe Moosbrugger
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Kailey Martin
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Haley Liebenberg
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Stefan Steimle
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Qi Xiao
- Roy
& Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Virgil Percec
- Roy
& Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Samantha E. Wilner
- Department
of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
2
|
Yang H, Duan Z, Liu F, Zhao Z, Liu S. Cucurbit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Lett 2023; 12:295-301. [PMID: 36779651 DOI: 10.1021/acsmacrolett.2c00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Nanodrug delivery systems for the delivery of combination therapeutics have shown their exceptionally potential clinical application by facilitating better synergistic anticancer effects. Herein, we developed a universal strategy to fabricate supramolecular DNA nanogels from DNA tetrahedron skeleton and cucurbit[7]uril-based host-guest interaction for codelivery the chemo and photodynamic therapy drugs. The constructed supramolecular DNA nanogels showed the size tunability, host-guest competition and DNA enzyme responsibility. The cell uptake and MTT experiments demonstrated that the nanogel has excellent biocompatibility and specificity, and achieved the enrichment and slow release of drug in cells. Finally, the combined chemo/photodynamic therapy was realized by coloading doxorubicin hydrochloride and methylene blue. It was proven to be a better stragety to promote apoptosis of cancer cells compared to single chemotherapy or photodynamic therapy. These results suggest that our proposed supramolecular nanogels have provided an effective nanoplatform for drug delivery in the combinational therapy for cancer.
Collapse
Affiliation(s)
- Hai Yang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zongze Duan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fengbo Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiyong Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
3
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
4
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022; 34:70-77. [PMID: 35357155 PMCID: PMC9854621 DOI: 10.1021/acs.bioconjchem.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland,
| |
Collapse
|
5
|
Rubio-Sánchez R, Fabrini G, Cicuta P, Di Michele L. Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chem Commun (Camb) 2021; 57:12725-12740. [PMID: 34750602 PMCID: PMC8631003 DOI: 10.1039/d1cc04311k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
DNA nanotechnology enables the construction of sophisticated biomimetic nanomachines that are increasingly central to the growing efforts of creating complex cell-like entities from the bottom-up. DNA nanostructures have been proposed as both structural and functional elements of these artificial cells, and in many instances are decorated with hydrophobic moieties to enable interfacing with synthetic lipid bilayers or regulating bulk self-organisation. In this feature article we review recent efforts to design biomimetic membrane-anchored DNA nanostructures capable of imparting complex functionalities to cell-like objects, such as regulated adhesion, tissue formation, communication and transport. We then discuss the ability of hydrophobic modifications to enable the self-assembly of DNA-based nanostructured frameworks with prescribed morphology and functionality, and explore the relevance of these novel materials for artificial cell science and beyond. Finally, we comment on the yet mostly unexpressed potential of amphiphilic DNA-nanotechnology as a complete toolbox for bottom-up synthetic biology - a figurative and literal scaffold upon which the next generation of synthetic cells could be built.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Giacomo Fabrini
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
6
|
Zhai F, Guan Y, Zhu B, Chen S, He R. Intraparticle and Interparticle Transferable DNA Walker Supported by DNA Micelles for Rapid Detection of MicroRNA. Anal Chem 2021; 93:12346-12352. [PMID: 34469684 DOI: 10.1021/acs.analchem.1c02104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic DNA walkers are artificially designed DNA self-assemblies with the capability of performing quasi-mechanical movement at the micro/nanoscale and have shown extensive promise in biosensing, intracellular imaging, and drug delivery. However, DNA walkers are usually constructed by covalently or coordinately binding DNA strands specifically to hard surfaces, thereby greatly limiting their movement efficiency. Herein, we report an intraparticle and interparticle transferable DNA walker (dynamic micelle-supported DNA walker, DM-walker) constructed by immobilizing walking tracks and walking arms onto the corona of DNA micelles according to the principle of Watson-Crick base pairing. The DNAzyme-powered walking arm can drive the intraparticle and interparticle movements of the DM-walker due to the fact that the dynamic structure of the DNA micelle helps overcome the spatial barrier between the arms and tracks in the system, resulting in high walking efficiency. Moreover, the whole DM-walker can be constructed by self-assembly, getting rid of the tedious process and low efficiency of fixing DNA strands on hard surfaces. Taking miRNA-10b as a model target, the DM-walker demonstrates high walking efficiency (reaction duration of 20 min) and high sensitivity (LOD of 87 pM). The proposed DM-walker provides an avenue to develop novel DNA walkers on dynamic interfaces and holds great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Fuheng Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yufei Guan
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Binbing Zhu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ronghuan He
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
7
|
Feng L, Li J, Sun J, Wang L, Fan C, Shen J. Recent Advances of DNA Nanostructure-Based Cell Membrane Engineering. Adv Healthc Mater 2021; 10:e2001718. [PMID: 33458966 DOI: 10.1002/adhm.202001718] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Indexed: 01/30/2023]
Abstract
Materials that can regulate the composition and structure of the cell membrane to fabricate engineered cells with defined functions are in high demand. Compared with other biomolecules, DNA has unique advantages in cell membrane engineering due to its excellent programmability and biocompatibility. Especially, the near-atomic scale precision of DNA nanostructures facilitates the investigation of structure-property relations on the cell membrane. In this review, first the state of the art of functional DNA nanostructures is summarized, and then the overview of the use of DNA nanostructures to engineer the cell membrane is presented. Subsequently, applications of DNA nanostructures in modifying cell membrane morphology, controlling ions transport, and synthesizing high precise liposomes are highlighted. Finally, the challenges and outlook on using DNA nanostructures for cell membrane engineering are discussed.
Collapse
Affiliation(s)
- Lingyu Feng
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiang Li
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Lihua Wang
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
8
|
Xiao F, Chen Z, Wei Z, Tian L. Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001048. [PMID: 32832360 PMCID: PMC7435255 DOI: 10.1002/advs.202001048] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
The comprehensive understanding and proper use of supramolecular interactions have become critical for the development of functional materials, and so is the biomedical application of nucleic acids (NAs). Relatively rare attention has been paid to hydrophobic interaction compared with hydrogen bonding and electrostatic interaction of NAs. However, hydrophobic interaction shows some unique properties, such as high tunability for application interest, minimal effect on NA functionality, and sensitivity to external stimuli. Therefore, the widespread use of hydrophobic interaction has promoted the evolution of NA-based biomaterials in higher-order self-assembly, drug/gene-delivery systems, and stimuli-responsive systems. Herein, the recent progress of NA-based biomaterials whose fabrications or properties are highly determined by hydrophobic interactions is summarized. 1) The hydrophobic interaction of NA itself comes from the accumulation of base-stacking forces, by which the NAs with certain base compositions and chain lengths show properties similar to thermal-responsive polymers. 2) In conjugation with hydrophobic molecules, NA amphiphiles show interesting self-assembly structures with unique properties in many new biosensing and therapeutic strategies. 3) The working-mechanisms of some NA-based complex materials are also dependent on hydrophobic interactions. Moreover, in recent attempts, NA amphiphiles have been applied in organizing macroscopic self-assembly of DNA origami and controlling the cell-cell interactions.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- School of Materials Science and EngineeringHarbin Institute of TechnologyNangang DistrictHarbin150001P. R. China
| | - Zhe Chen
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- Cancer Centre and Centre of ReproductionDevelopment and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078P. R. China
| | - Zixiang Wei
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
- Cancer Centre and Centre of ReproductionDevelopment and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078P. R. China
| | - Leilei Tian
- Department of Materials Science and EngineeringSouthern University of Science and Technology1088 Xueyuan Blvd.Nanshan DistrictShenzhenGuangdong518055P. R. China
| |
Collapse
|
9
|
Li Y, Yue S, Cao J, Zhu C, Wang Y, Hai X, Song W, Bi S. pH-responsive DNA nanomicelles for chemo-gene synergetic therapy of anaplastic large cell lymphoma. Am J Cancer Res 2020; 10:8250-8263. [PMID: 32724469 PMCID: PMC7381733 DOI: 10.7150/thno.45803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-gene therapy is an emerging synergetic modality for the treatment of cancers. Herein, we developed pH-responsive multifunctional DNA nanomicelles (DNMs) as delivery vehicles for controllable release of doxorubicin (Dox) and anaplastic lymphoma kinase (ALK)-specific siRNA for the chemo-gene synergetic therapy of anaplastic large cell lymphoma (ALCL). Methods: DNMs were synthesized by performing in situ rolling circle amplification (RCA) on the amphiphilic primer-polylactide (PLA) micelles, followed by functionalization of pH-responsive triplex DNA via complementary base pairing. The anticancer drug Dox and ALK-specific siRNA were co-loaded to construct Dox/siRNA/DNMs for chemo-gene synergetic cancer therapy. When exposed to the acidic microenvironment (pH below 5.0), C-G·C+ triplex structures were formed, leading to the release of Dox and siRNA for gene silencing to enhance the chemosensitivity in ALCL K299 cells. The chemo-gene synergetic anticancer effect of Dox/siRNA/DNMs on ALCL was evaluated in vitro and in vivo. Results: The pH-responsive DNMs exhibited good monodispersity at different pH values, good biocompatibility, high drug loading capacity, and excellent stability even in the human serum. With the simultaneous release of anticancer drug Dox and ALK-specific siRNA in response to pH in the tumor microenvironment, the Dox/siRNA/DNMs demonstrated significantly higher treatment efficacy for ALCL compared with chemotherapy alone, because the silencing of ALK gene expression mediated by siRNA increased the chemosensitivity of ALCL cells. From the pathological analysis of tumor tissue, the Dox/siRNA/DNMs exhibited the superiority in inhibiting tumor growth, low toxic side effects and good biosafety. Conclusion: DNMs co-loaded with Dox and ALK-specific siRNA exhibited significantly enhanced apoptosis of ALCL K299 cells in vitro and effectively inhibited tumor growth in vivo without obvious toxicity, providing a potential strategy in the development of nanomedicines for synergetic cancer therapy.
Collapse
|
10
|
Yuan W, Ma J, Zhao Z, Liu S. Self-Assembly of Supramolecular DNA Amphiphiles through Host-Guest Interaction and Their Stimuli-Responsiveness. Macromol Rapid Commun 2020; 41:e2000022. [PMID: 32196823 DOI: 10.1002/marc.202000022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
Smart DNA nanostructures have found potential application in material science and biomedicine. Most building blocks are DNA amphiphiles covalently synthesized from DNA and hydrophobic molecules. Here, the noncovalent approach based on the host-guest interaction between cucurbit[7]uril (CB[7]) and two hydrophobic guests with different topologies is utilized to modularly construct supramolecular DNA amphiphiles including DNA-CB[7]/ferrocene derivative and DNA-CB[7]/adamantine derivative. Both of the supramolecular DNA amphiphiles assemble into uniform spherical micelles, which can encapsulate hydrophobic Nile Red molecules and anchor gold nanoparticles through DNA hybridization. In addition, 1-adamantanamine hydrochloride, a competitive guest with a strong binding constant with CB[7], induces the dissociation of DNA-CB[7]/ferrocene derivative micelles. More importantly, the redox properties of ferrocene induce reversible morphology changes between the spherical micelles and the dissociated state. These stimuli-responsive DNA supra-amphiphilic micelles, as novel vehicles, expand the family of smart DNA nanostructures.
Collapse
Affiliation(s)
- Wei Yuan
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiahui Ma
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
11
|
Xiao F, Wei Z, Wang M, Hoff A, Bao Y, Tian L. Oligonucleotide-Polymer Conjugates: From Molecular Basics to Practical Application. Top Curr Chem (Cham) 2020; 378:24. [PMID: 32064539 DOI: 10.1007/s41061-020-0286-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
DNA exhibits many attractive properties, such as programmability, precise self-assembly, sequence-coded biomedical functions, and good biocompatibility; therefore, DNA has been used extensively as a building block to construct novel nanomaterials. Recently, studies on oligonucleotide-polymer conjugates (OPCs) have attracted increasing attention. As hybrid molecules, OPCs exhibit novel properties, e.g., sophisticated self-assembly behaviors, which are distinct from the simple combination of the functions of DNA and polymer, making OPCs interesting and useful. The synthesis and applications of OPCs are highly dependent on the choice of the polymer block, but a systematic summary of OPCs based on their molecular structures is still lacking. In order to design OPCs for further applications, it is necessary to thoroughly understand the structure-function relationship of OPCs. In this review, we carefully categorize recently developed OPCs by the structures of the polymer blocks, and discuss the synthesis, purification, and applications for each category. Finally, we will comment on future prospects for OPCs.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, People's Republic of China.,School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin, 150001, People's Republic of China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Maggie Wang
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225-9150, USA
| | - Alexandra Hoff
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225-9150, USA
| | - Ying Bao
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225-9150, USA.
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Shin J, Li S. Utilization of a Multiple Cloning Site as a Versatile Platform for DNA Triblock Copolymer Synthesis. Bioconjug Chem 2019; 30:2563-2572. [PMID: 31545903 DOI: 10.1021/acs.bioconjchem.9b00503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-containing block copolymers have utility in a wide range of biomedical applications. However, synthesis of these hybrid materials, especially ones with complex chain structures, remains to be a major challenge. Here, we report the use of a combination of restriction enzyme sites and ligation enzymes to synthesize DNA triblock copolymers. In contrast to triblock structures held together by DNA hybridization, the newly synthesized DNA triblocks have all blocks connected by covalent bonds. The improved stability of the triblocks against environmental factors such as urea denaturing is confirmed. Furthermore, we incorporate a multiple cloning site (MCS) into the DNA block copolymers and show that the restriction sites can be cut by their corresponding restriction enzymes, generating diblocks with different sticky ends. By utilizing these sticky ends of specific sequences, the cut diblocks are further ligated to create a variety of triblock copolymers with different DNA center blocks and synthetic polymer end blocks. This study presents a versatile platform based on MCS for the synthesis and regeneration of a range of DNA-containing block copolymers.
Collapse
Affiliation(s)
- Jeehae Shin
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| |
Collapse
|
13
|
Albert SK, Hu X, Park SJ. Dynamic Nanostructures from DNA-Coupled Molecules, Polymers, and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900504. [PMID: 30985085 DOI: 10.1002/smll.201900504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Indexed: 05/20/2023]
Abstract
Dynamic and reconfigurable systems that can sense and react to physical and chemical signals are ubiquitous in nature and are of great interest in diverse areas of science and technology. DNA is a powerful tool for fabricating such smart materials and devices due to its programmable and responsive molecular recognition properties. For the past couple of decades, DNA-based self-assembly is actively explored to fabricate various DNA-organic and DNA-inorganic hybrid nanostructures with high-precision structural control. Building upon past development, researchers have recently begun to design and assemble dynamic nanostructures that can undergo an on-demand transformation in the structure, properties, and motion in response to various external stimuli. In this Review, recent advances in dynamic DNA nanostructures, focusing on hybrid structures fabricated from DNA-conjugated molecules, polymers, and nanoparticles, are introduced, and their potential applications and future perspectives are discussed.
Collapse
Affiliation(s)
- Shine K Albert
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaole Hu
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
14
|
Fakih HH, Fakhoury JJ, Bousmail D, Sleiman HF. Minimalist Design of a Stimuli-Responsive Spherical Nucleic Acid for Conditional Delivery of Oligonucleotide Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13912-13920. [PMID: 30720262 DOI: 10.1021/acsami.8b18790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we report a component-minimal spherical nucleic acid (SNA) from monodisperse DNA-polymer conjugates that can load and release nucleic acid therapeutics in a stimuli-responsive manner. We show that this vehicle assembles from only four strands, and conditional release of its antisense therapeutic cargo can be induced upon recognition of specific oligonucleotide triggers via strand displacement. The latter (triggers) may be a microRNA that offers additional synergistic therapy, in addition to the previously shown ability of the SNA to load hydrophobic drugs. The SNA is easy to prepare, has dynamic character, releases its cargo only upon the presence of both triggers, and can survive biological conditions while protecting its cargo. The gene silencing potency of the cargo was tested in live cells and shown to be suppressed when loaded in the SNA, and its activity was restored only upon release with the two triggers. This vehicle has the essential characteristics of versatility, ease of synthesis, low cost, highly responsive behavior, and ability to support combination therapies, making it a promising candidate for cell-selective drug delivery and clinical transition.
Collapse
Affiliation(s)
- Hassan H Fakih
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Johans J Fakhoury
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Danny Bousmail
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Hanadi F Sleiman
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| |
Collapse
|
15
|
Vybornyi M, Vyborna Y, Häner R. DNA-inspired oligomers: from oligophosphates to functional materials. Chem Soc Rev 2019; 48:4347-4360. [DOI: 10.1039/c8cs00662h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Replacement of the natural nucleotides in DNA by non-nucleosidic building blocks leads to phosphodiester-linked oligomers with a high functional diversity.
Collapse
Affiliation(s)
- Mykhailo Vybornyi
- Laboratoire de Biochimie (LBC)
- ESPCI Paris
- PSL Research University
- CNRS UMR8231 Chimie Biologie Innovation
- 75005 Paris
| | - Yuliia Vyborna
- Sorbonne Université
- Laboratoire Jean Perrin
- 75005 Paris
- France
| | - Robert Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Freiestrasse 3
- Switzerland
| |
Collapse
|