1
|
Allerton TD, Stampley JE, Li Z, Yu X, Quiariate H, Doiron JE, White G, Wigger Z, Gartia MR, Lefer DJ, Soto P, Irving BA. Nitric oxide donors rescue metabolic and mitochondrial dysfunction in obese Alzheimer's model. Sci Rep 2024; 14:26118. [PMID: 39478095 PMCID: PMC11525932 DOI: 10.1038/s41598-024-75870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Reduced nitric oxide (NO) bioavailability is a pathological link between obesity and Alzheimer's disease (AD). Obesity-associated metabolic and mitochondrial bioenergetic dysfunction are key drivers of AD pathology. The hypothalamus is a critical brain region during the development of obesity and dysfunction is an area implicated in the development of AD. NO is an essential mediator of blood flow and mitochondrial bioenergetic function, but the role of NO in obesity-AD is not entirely clear. We investigated diet-induced obesity in female APPswe/PS1dE9 (APP) mouse model of AD, which we treated with two different NO donors (sodium nitrite or L-citrulline). After 26 weeks of a high-fat diet, female APP mice had higher adiposity, insulin resistance, and mitochondrial dysfunction (hypothalamus) than non-transgenic littermate (wild type) controls. Treatment with either sodium nitrite or L-citrulline did not reduce adiposity but improved whole-body energy expenditure, substrate oxidation, and insulin sensitivity. Notably, both NO donors restored hypothalamic mitochondrial respiration in APP mice. Our findings suggest that NO is an essential mediator of whole-body metabolism and hypothalamic mitochondrial function, which are severely impacted by the dual insults of obesity and AD pathology.
Collapse
Affiliation(s)
- Timothy D Allerton
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - James E Stampley
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaoman Yu
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heather Quiariate
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Jake E Doiron
- Vascular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Ginger White
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Zach Wigger
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Brian A Irving
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
2
|
Wen W, Huang SM, Zhang B. Mechanisms Underlying Obesity-induced Aβ Accumulation in Alzheimer's Disease: A Qualitative Review. J Integr Neurosci 2024; 23:163. [PMID: 39344225 DOI: 10.31083/j.jin2309163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/01/2024] Open
Abstract
Epidemiological studies show that individuals with obesity are more likely to develop Alzheimer's disease (AD) than those who do not have obesity. However, the mechanisms underlying the relationship between obesity and AD are not entirely unclear. Here, we have reviewed and analyzed relevant articles published in the literature and found that obesity has correlation or potential increase in the levels of β-amyloid (Aβ) protein, which may explain why people with obesity are more likely to suffer from AD. Additionally, the published findings point to the roles of obesity-related metabolic disorders, such as diabetes, inflammation, oxidative stress, and imbalance in gut microbiota in Aβ accumulation caused by obesity. Therefore, in-depth experimental and clinical studies on these mechanisms in the future may help shed light on appropriate prevention and treatment strategies for AD, such as dietary changes and regular exercise to reverse or prevent obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Wei Wen
- Department of Pharmacology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Mengr A, Strnadová V, Strnad Š, Vrkoslav V, Pelantová H, Kuzma M, Comptdaer T, Železná B, Kuneš J, Galas MC, Pačesová A, Maletínská L. Feeding High-Fat Diet Accelerates Development of Peripheral and Central Insulin Resistance and Inflammation and Worsens AD-like Pathology in APP/PS1 Mice. Nutrients 2023; 15:3690. [PMID: 37686722 PMCID: PMC10490051 DOI: 10.3390/nu15173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disorder characterized by extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles formed by hyperphosphorylated Tau protein and neuroinflammation. Previous research has shown that obesity and type 2 diabetes mellitus, underlined by insulin resistance (IR), are risk factors for neurodegenerative disorders. In this study, obesity-induced peripheral and central IR and inflammation were studied in relation to AD-like pathology in the brains and periphery of APP/PS1 mice, a model of Aβ pathology, fed a high-fat diet (HFD). APP/PS1 mice and their wild-type controls fed either a standard diet or HFD were characterized at the ages of 3, 6 and 10 months by metabolic parameters related to obesity via mass spectroscopy, nuclear magnetic resonance, immunoblotting and immunohistochemistry to quantify how obesity affected AD pathology. The HFD induced substantial peripheral IR leading to central IR. APP/PS1-fed HFD mice had more pronounced IR, glucose intolerance and liver steatosis than their WT controls. The HFD worsened Aβ pathology in the hippocampi of APP/PS1 mice and significantly supported both peripheral and central inflammation. This study reveals a deleterious effect of obesity-related mild peripheral inflammation and prediabetes on the development of Aβ and Tau pathology and neuroinflammation in APP/PS1 mice.
Collapse
Affiliation(s)
- Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Štěpán Strnad
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20 Prague, Czech Republic; (H.P.); (M.K.)
| | - Marek Kuzma
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20 Prague, Czech Republic; (H.P.); (M.K.)
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (T.C.); (M.-C.G.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20 Prague, Czech Republic
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (T.C.); (M.-C.G.)
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, Prague 6, 166 10 Prague, Czech Republic; (A.M.); (V.S.); (Š.S.); (V.V.); (B.Ž.); (J.K.)
| |
Collapse
|
4
|
Balietti M, Casoli T, Giorgetti B, Colangeli R, Nicoletti C, Solazzi M, Pugliese A, Conti F. Generation and Characterization of the First Murine Model of Alzheimer's Disease with Mutated AβPP Inserted in a BALB/c Background (C.B6/J-APPswe). J Alzheimers Dis 2023:JAD230195. [PMID: 37182890 DOI: 10.3233/jad-230195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Numerous mouse models of Alzheimer's disease (AD) are available, but all suffer from certain limitations, thus prompting further attempts. To date, no one model exists with amyloidopathy in a BALB/c strain. OBJECTIVE To generate and characterize the C.B6/J-APPswe mouse, a model of AD with a mutated human gene for the amyloid-β protein precursor (AβPP) inserted in a BALB/c background. METHODS We analyzed five groups at different ages (3, 6, 9, 12, and 16-18 months) of C.B6/J-APPswe and wild-type mice (50% males and 50% females) for the main hallmarks of AD by western blotting, amyloid-β (Aβ) ELISA, immunocytochemistry, electrophysiology, and behavioral tests. RESULTS The C.B6/J-APPswe mouse displays early AβPP and Aβ production, late amyloid plaques formation, high level of tau phosphorylation, synaptic deficits (reduced density and functional impairment due to a reduced post-synaptic responsiveness), neurodegeneration caused by apoptosis and necroptosis/necrosis, microgliosis, astrocytic abnormalities, and sex-related differences in explorative behavior, anxiety-like behavior, and spatial long-term and working memories. Social housing is feasible despite the intra-cage aggressiveness of male animals. CONCLUSION C.B6/J-APPswe mice develop most of the distinctive features of AD and is a suitable model for the study of brain atrophy mechanisms and of the differences between males and females in the onset of cognitive/non-cognitive deficits.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | | | - Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Nicoletti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Moreno Solazzi
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
5
|
Yavari M, Ramalingam L, Harris BN, Kahathuduwa CN, Chavira A, Biltz C, Mounce L, Maldonado KA, Scoggin S, Zu Y, Kalupahana NS, Yosofvand M, Moussa H, Moustaid-Moussa N. Eicosapentaenoic Acid Protects against Metabolic Impairments in the APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Nutr 2023; 153:1038-1051. [PMID: 36781072 PMCID: PMC10273166 DOI: 10.1016/j.tjnut.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by amyloid-β (Aβ) plaques. Systemic inflammation and obesity may exacerbate AD pathogenesis. We previously reported anti-inflammatory and anti-obesity effects of EPA in mice. OBJECTIVES We aimed to determine whether EPA reduces obesity-associated metabolic dysfunctions and Aβ accumulation in AD amyloidogenic mice. METHODS Two-mo-old APPswe/PS1dE9 transgenic (TG) mice and non-TG littermates were randomly assigned to low fat (LF; 10% kcal fat), high fat (HF; 45% kcal fat), or EPA (36 g/kg)-supplemented HF diets. Body composition, glucose tolerance, and energy expenditure were measured, and serum and brain metabolic markers were tested 38 wk postintervention. Outcomes were statistically analyzed via 3-factor ANOVA, modeling genotype, sex, and diet interactions. RESULTS HF-fed males gained more weight than females (Δ = 61 mg; P < 0.001). Compared with LF, HF increased body weights of wild-type (WT) males (Δ = 31 mg; P < 0.001). EPA reduced HF-induced weight gain in WT males (Δ = 24 mg; P = 0.054) but not in females. HF mice showed decreased glucose clearance and respiratory energy compared with LF-fed groups (Δ = -1.31 g/dL; P < 0.001), with no significant effects of EPA. However, EPA conferred metabolic improvements by decreasing serum leptin and insulin (Δ = -2.51 g/mL and Δ = -0.694 ng/mL, respectively compared with HF, P ≤ 0.05) and increasing adiponectin (Δ = 21.6 ng/mL; P < 0.001). As we expected, TG mice expressed higher serum and brain Aβ than WT mice (Δ = 0.131 ng/mL; P < 0.001 and Δ = 0.56%; P < 0.01, respectively), and EPA reduced serum Aβ1-40 in TG males compared with HF (Δ = 0.053 ng/mL; P ≤ 0.05). CONCLUSIONS To our knowledge, this is the first report that EPA reduces serum Aβ1-40 in obese AD male mice, warranting further investigations into tissue-specific mechanisms of EPA in AD.
Collapse
Affiliation(s)
- Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Breanna N Harris
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chanaka Nadeeshan Kahathuduwa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Angela Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
6
|
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci 2022; 23:5202. [PMID: 35563589 PMCID: PMC9099768 DOI: 10.3390/ijms23095202] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide health problem, affecting many people due to excessive saturated fat consumption, lack of exercise, or a sedentary lifestyle. Leptin is an adipokine secreted by adipose tissue that increases in obesity and has central actions not only at the hypothalamic level but also in other regions and nuclei of the central nervous system (CNS) such as the cerebral cortex and hippocampus. These regions express the long form of leptin receptor LepRb, which is the unique leptin receptor capable of transmitting complete leptin signaling, and are the first regions to be affected by chronic neurocognitive deficits, such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD). In this review, we discuss different leptin resistance mechanisms that could be implicated in increasing the risk of developing AD, as leptin resistance is frequently associated with obesity, which is a chronic low-grade inflammatory state, and obesity is considered a risk factor for AD. Key players of leptin resistance are SOCS3, PTP1B, and TCPTP whose signalling is related to inflammation and could be worsened in AD. However, some data are controversial, and it is necessary to further investigate the underlying mechanisms of the AD-causing pathological processes and how altered leptin signalling affects such processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009 Sevilla, Spain; (J.A.F.-C.); (A.P.-P.); (C.J.-C.); (G.A.); (A.F.-B.)
| |
Collapse
|
7
|
Huang YC, Hsu SM, Shie FS, Shiao YJ, Chao LJ, Chen HW, Yao HH, Chien MA, Lin CC, Tsay HJ. Reduced mitochondria membrane potential and lysosomal acidification are associated with decreased oligomeric Aβ degradation induced by hyperglycemia: A study of mixed glia cultures. PLoS One 2022; 17:e0260966. [PMID: 35073330 PMCID: PMC8786178 DOI: 10.1371/journal.pone.0260966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/20/2021] [Indexed: 01/21/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer’s disease (AD), a chronic neurodegenerative disease. We and others have shown prediabetes, including hyperglycemia and obesity induced by high fat and high sucrose diets, is associated with exacerbated amyloid beta (Aβ) accumulation and cognitive impairment in AD transgenic mice. However, whether hyperglycemia reduce glial clearance of oligomeric amyloid-β (oAβ), the most neurotoxic Aβ aggregate, remains unclear. Mixed glial cultures simulating the coexistence of astrocytes and microglia in the neural microenvironment were established to investigate glial clearance of oAβ under normoglycemia and chronic hyperglycemia. Ramified microglia and low IL-1β release were observed in mixed glia cultures. In contrast, amoeboid-like microglia and higher IL-1β release were observed in primary microglia cultures. APPswe/PS1dE9 transgenic mice are a commonly used AD mouse model. Microglia close to senile plaques in APPswe/PS1dE9 transgenic mice exposed to normoglycemia or chronic hyperglycemia exhibited an amoeboid-like morphology; other microglia were ramified. Therefore, mixed glia cultures reproduce the in vivo ramified microglial morphology. To investigate the impact of sustained high-glucose conditions on glial oAβ clearance, mixed glia were cultured in media containing 5.5 mM glucose (normal glucose, NG) or 25 mM glucose (high glucose, HG) for 16 days. Compared to NG, HG reduced the steady-state level of oAβ puncta internalized by microglia and astrocytes and decreased oAβ degradation kinetics. Furthermore, the lysosomal acidification and lysosomal hydrolysis activity of microglia and astrocytes were lower in HG with and without oAβ treatment than NG. Moreover, HG reduced mitochondrial membrane potential and ATP levels in mixed glia, which can lead to reduced lysosomal function. Overall, continuous high glucose reduces microglial and astrocytic ATP production and lysosome activity which may lead to decreased glial oAβ degradation. Our study reveals diabetes-induced hyperglycemia hinders glial oAβ clearance and contributes to oAβ accumulation in AD pathogenesis.
Collapse
Affiliation(s)
- Yung-Cheng Huang
- Department of Physical Medicine and Rehabilitation, Cheng-Hsin General Hospital, Taipei, Taiwan, Republic of China
- National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan, R.O.C
| | - Shu-Meng Hsu
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Feng-Shiun Shie
- Center for Neuropsychiatric Research National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Li-Jung Chao
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Hui-Wen Chen
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Heng-Hsiang Yao
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Meng An Chien
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Chung-Chih Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Biophotonics Interdisciplinary Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- * E-mail: (CCL); (HJT)
| | - Huey-Jen Tsay
- Institute of Neuroscience, School of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- * E-mail: (CCL); (HJT)
| |
Collapse
|
8
|
Busquets O, Carrasco M, Espinosa-Jiménez T, Ettcheto M, Verdaguer E, Auladell C, Bullò M, Camins A, Pinent M, Rodríguez-Gallego E, Folch J. GSPE pre-treatment protects against long-term cafeteria diet-induced mitochondrial and inflammatory affectations in the hippocampus of rats. Nutr Neurosci 2021; 25:2627-2637. [PMID: 34789070 DOI: 10.1080/1028415x.2021.1995118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deregulations like the loss of sensitivity to insulin (insulin resistance) and chronic inflammation are alterations very commonly found in sporadic forms of neurodegenerative pathologies. Thus, finding strategies to protect against them, may lead to a reduction in the incidence and/or affectation of these pathologies. The grape seed-derived proanthocyanidins extract (GSPE) is a mixture of compounds highly enriched in polyphenols and flavonoids that have shown to have a wide range of therapeutic benefits due to their antioxidant and anti-inflammatory properties. OBJECTIVES This study aimed to assess the protective effects of a short pre-treatment of GSPE in the hippocampus against a prolonged feeding with cafeteria diet. METHODS GSPE was administered for 10 days followed by 12 weeks of cafeteria diet. We analyzed transcriptional activity of genes and protein expression of key mediators of neurodegeneration in brain samples. RESULTS Results indicated that GSPE was able to protect against cellular damage through the activation of AKT, as well as promote the maintenance of mitochondrial function by conserving the OXPHOS complexes and upregulating the antioxidant SOD. DISCUSSION We observed that GSPE decreased inflammatory activation as observed through the downregulation of JNK, IL6 and TNFα, just like the reduction in reactive profile of astrocytes. Overall, the data presented here offers an interesting and hopeful initial step for future long-term studies on the beneficial effects of a supplementation of common diets with polyphenol and flavonoid substances for the amelioration of typical early hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marina Carrasco
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ester Verdaguer
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, Barcelona, Spain
| | - Mònica Bullò
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) dirigido por Jordi Salas en la Fundación Instituto de Investigación Sanitaria Pere Virgili, Tarragona, Spain.,Fundació Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Fundació Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| |
Collapse
|
9
|
Energy homeostasis deregulation is attenuated by TUDCA treatment in streptozotocin-induced Alzheimer's disease mice model. Sci Rep 2021; 11:18114. [PMID: 34518585 PMCID: PMC8437965 DOI: 10.1038/s41598-021-97624-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. While cognitive deficits remain the major manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in food intake, body weight and energy balance are also present, both in AD patients and animal models. In this sense, the tauroursodeoxycholic acid (TUDCA) has shown beneficial effects both in reducing the central and cognitive markers of AD, as well as in attenuating the metabolic disorders associated with it. We previously demonstrated that TUDCA improves glucose homeostasis and decreases the main AD neuromarkers in the streptozotocin-induced AD mouse model (Stz). Besides that, TUDCA-treated Stz mice showed lower body weight and adiposity. Here, we investigated the actions of TUDCA involved in the regulation of body weight and adiposity in Stz mice, since the effects of TUDCA in hypothalamic appetite control and energy homeostasis have not yet been explored in an AD mice model. The TUDCA-treated mice (Stz + TUDCA) displayed lower food intake, higher energy expenditure (EE) and respiratory quotient. In addition, we observed in the hypothalamus of the Stz + TUDCA mice reduced fluorescence and gene expression of inflammatory markers, as well as normalization of the orexigenic neuropeptides AgRP and NPY expression. Moreover, leptin-induced p-JAK2 and p-STAT3 signaling in the hypothalamus of Stz + TUDCA mice was improved, accompanied by reduced acute food intake after leptin stimulation. Taken together, we demonstrate that TUDCA treatment restores energy metabolism in Stz mice, a phenomenon that is associated with reduced food intake, increased EE and improved hypothalamic leptin signaling. These findings suggest treatment with TUDCA as a promising therapeutic intervention for the control of energy homeostasis in AD individuals.
Collapse
|
10
|
Ettcheto M, Sánchez-Lopez E, Cano A, Carrasco M, Herrera K, Manzine PR, Espinosa-Jimenez T, Busquets O, Verdaguer E, Olloquequi J, Auladell C, Folch J, Camins A. Dexibuprofen ameliorates peripheral and central risk factors associated with Alzheimer's disease in metabolically stressed APPswe/PS1dE9 mice. Cell Biosci 2021; 11:141. [PMID: 34294142 PMCID: PMC8296685 DOI: 10.1186/s13578-021-00646-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies stablished a relationship between metabolic disturbances and Alzheimer´s disease (AD) where inflammation plays a pivotal role. However, mechanisms involved still remain unclear. In the present study, we aimed to evaluate central and peripheral effects of dexibuprofen (DXI) in the progression of AD in APPswe/PS1dE9 (APP/PS1) female mice, a familial AD model, fed with high fat diet (HFD). Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice, at 6 months. Moreover, mice were divided into subgroups to which were administered drinking water or water supplemented with DXI (20 mg kg-1 d-1) for 3 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-ITT) were performed to evaluate peripheral parameters and also behavioral tests to determine cognitive decline. Moreover, molecular studies such as Western blot and RT-PCR were carried out in liver to confirm metabolic effects and in hippocampus to analyze several pathways considered hallmarks in AD. RESULTS Our studies demonstrate that DXI improved metabolic alterations observed in transgenic animals fed with HFD in vivo, data in accordance with those obtained at molecular level. Moreover, an improvement of cognitive decline and neuroinflammation among other alterations associated with AD were observed such as beta-amyloid plaque accumulation and unfolded protein response. CONCLUSIONS Collectively, evidence suggest that chronic administration of DXI prevents the progression of AD through the regulation of inflammation which contribute to improve hallmarks of this pathology. Thus, this compound could constitute a novel therapeutic approach in the treatment of AD in a combined therapy.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
- Unitat de Farmacologia I Farmacognòsia, Facultat de Farmàcia I Ciències de L'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028, Barcelona, Spain.
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades - International University of Catalunya (UIC), Barcelona, Spain
| | - Marina Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira I Virgili, Reus, Spain
| | - Katherine Herrera
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Patricia R Manzine
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Triana Espinosa-Jimenez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City (10461), USA
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira I Virgili, Reus, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci 2021; 22:ijms22105365. [PMID: 34065168 PMCID: PMC8161294 DOI: 10.3390/ijms22105365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer’s disease (AD). Late AD is associated with amyloid (Aβ) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg5xFAD/5xFAD), heterozygous (Tg5xFAD/-), and non-transgenic (Non-Tg) littermates. Although histological analysis showed absence of Aβ plaques in the hypothalamus of 5xFAD mice, this brain region displayed increased protein levels of GFAP and IBA1 in both Tg5xFAD/- and Tg5xFAD/5xFAD mice and increased expression of IL-1β in Tg5xFAD/5xFAD mice, suggesting neuroinflammation. This condition was accompanied by decreased body weight, food intake, and energy expenditure in both Tg5xFAD/- and Tg5xFAD/5xFAD mice. Negative energy balance was associated with altered circulating levels of insulin, GLP-1, GIP, ghrelin, and resistin; decreased insulin and leptin hypothalamic signaling; dysregulation in main metabolic sensors (phosphorylated IRS1, STAT5, AMPK, mTOR, ERK2); and neuropeptides controlling energy balance (NPY, AgRP, orexin, MCH). These results suggest that glial activation and metabolic dysfunctions in the hypothalamus of a mouse model of AD likely result in negative energy balance, which may contribute to AD pathogenesis development.
Collapse
|
12
|
Lopez Trinidad LM, Martinez R, Kapravelou G, Galisteo M, Aranda P, Porres JM, Lopez-Jurado M. Caloric restriction, physical exercise, and CB1 receptor blockade as an efficient combined strategy for bodyweight control and cardiometabolic status improvement in male rats. Sci Rep 2021; 11:4286. [PMID: 33608628 PMCID: PMC7896079 DOI: 10.1038/s41598-021-83709-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is critically associated with the development of insulin resistance and related cardiovascular and kidney diseases. Several strategies for weight loss have been developed but most of them exhibit a post-intervention rebound effect. Here, we aimed to design combined weight-loss strategies of caloric restriction, physical exercise, and administration of a CB1 receptor blocker to inhibit food intake that also accomplish the objectives of lost-weight maintenance and improvement of cardiovascular and renal function. Diet-induced obesity (DIO) was generated in Sprague Dawley rats for 12 weeks to test the effects of single or combined strategies (i.e. caloric restriction, mixed training protocol, and/or administration of appetite suppressant) on caloric intake, body weight, cardiovascular and renal functionality resulting from a weight-loss intervention period of 3 weeks followed by 6 weeks of weight maintenance. Consumption of a high-fat diet (HFD) caused a significant increase in body weight (5th week of the experimental period) and led to the development of insulin resistance, cardiovascular, and renal alterations. The different interventions tested, resulted in a significant body weight loss and improved glucose metabolism, aerobic capacity, electrocardiographic parameters, vascular expression of adhesion molecules and inflammatory mediators, and renal functionality, reaching values similar to the control normocaloric group or even improving them. Successful maintenance of lost weight was achieved along a 6-week maintenance period in addition to adequate health status. In conclusion, the weight-loss and maintenance intervention strategies tested were efficient at reversing the obesity-related alterations in body weight, glucose metabolism, aerobic capacity, cardiovascular and renal functionality. The beneficial action was very consistent for caloric restriction and physical exercise, whereas administration of a CB1 receptor blocker complemented the effects of the prior interventions in some parameters like body weight or aerobic capacity, and showed specific actions in renal status, increasing glomerular filtration rate and diuresis. Overall, the novelty of our study relies on the easy implementation of combined strategies for effective weight management that resulted in significant health benefits.
Collapse
Affiliation(s)
- Luisa M. Lopez Trinidad
- grid.4489.10000000121678994Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research, Centre for Research in Sport and Health (IMUDS), Universidad de Granada, Avda. del Conocimiento S/N. Armilla (18100), Granada, Spain
| | - Rosario Martinez
- grid.4489.10000000121678994Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research, Centre for Research in Sport and Health (IMUDS), Universidad de Granada, Avda. del Conocimiento S/N. Armilla (18100), Granada, Spain
| | - Garyfallia Kapravelou
- grid.4489.10000000121678994Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research, Centre for Research in Sport and Health (IMUDS), Universidad de Granada, Avda. del Conocimiento S/N. Armilla (18100), Granada, Spain
| | - Milagros Galisteo
- grid.4489.10000000121678994Department of Pharmacology, School of Pharmacy, Biohealth Research Institute, Centre for Biomedical Research, Universidad de Granada, Granada, Spain
| | - Pilar Aranda
- grid.4489.10000000121678994Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research, Centre for Research in Sport and Health (IMUDS), Universidad de Granada, Avda. del Conocimiento S/N. Armilla (18100), Granada, Spain
| | - Jesus M. Porres
- grid.4489.10000000121678994Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research, Centre for Research in Sport and Health (IMUDS), Universidad de Granada, Avda. del Conocimiento S/N. Armilla (18100), Granada, Spain
| | - Maria Lopez-Jurado
- grid.4489.10000000121678994Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Centre for Biomedical Research, Centre for Research in Sport and Health (IMUDS), Universidad de Granada, Avda. del Conocimiento S/N. Armilla (18100), Granada, Spain
| |
Collapse
|
13
|
Guo Y, Ma X, Li P, Dong S, Huang X, Ren X, Yuan L. High-fat diet induced discrepant peripheral and central nervous systems insulin resistance in APPswe/PS1dE9 and wild-type C57BL/6J mice. Aging (Albany NY) 2020; 13:1236-1250. [PMID: 33291072 PMCID: PMC7835010 DOI: 10.18632/aging.202262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
This study was designed to examine whether AD pathological phenotype in APPswe/PS1dE9 (APP/PS1) mice exposed to continuous high-fat diet predispose these murine models to metabolic dysfunction and neuropathological impairments. One-month old male APP/PS1 and C57BL/6J mice were provided with 60% high-fat diet for 6.5 months. After dietary intervention, metabolic phenotyping, cognitive behaviors, AD-related brain pathological changes and insulin signaling were compared. high fat diet induced hyperglycemia, hypercholesterolemia, and aggravated inflammatory stress in both APP/PS1 and C57BL/6J mice. Compared with C57BL/6J control mice, APP/PS1 mice showed lower glucose transporter protein expression in liver, muscle, and brain. High-fat diet caused a decrease of glucose transporter protein expression in muscle and liver but increased cortical glucose transporter protein expression in APP/PS1 mice. High-fat diet-fed APP/PS1 mice demonstrated decreased cognitive function, as well as elevated cortical soluble amyloid-β levels and APP protein expression. Decrease in cortical IR, p-IR protein expression and p-GSK3β/GSK3β ratio were observed in high-fat diet-fed APP/PS1 mice. High-fat diet caused discrepant peripheral and central nervous system metabolic phenotype in APP/PS1 and C57BL/6J mice. AD pathological phenotype might accelerate metabolic changes and cognitive impairment in APP/PS1 mice treated with HFD.
Collapse
Affiliation(s)
- Yujie Guo
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Pengfei Li
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Shengqi Dong
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
14
|
Yu F, Jiang R, Han W, Zhan G, Xu X, Jiang X, Wang L, Xiang S, Zhou Q, Liu C, Zhu B, Hua F, Yang C. Gut microbiota transplantation from db/db mice induces diabetes-like phenotypes and alterations in Hippo signaling in pseudo germ-free mice. Aging (Albany NY) 2020; 12:24156-24167. [PMID: 33223509 PMCID: PMC7762484 DOI: 10.18632/aging.104101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related metabolic disease that is of increasing concern. Gut microbiota might have a critical role in the pathogenesis of T2DM. Additionally, Hippo signaling has been associated strongly with the progression of T2DM and the aging process. We adopted db/db male mice as a T2DM model, and the gut microbiota of db/db and m/m mice were transplanted successfully into pseudo germ-free mice. Furthermore, Hippo signaling, including mammalian sterile 20-like protein kinases 1 (MST1), large tumor suppressors 1 (LATS1), Yes-associated protein (YAP), and phosphorylation of YAP (p-YAP) in peripheral tissues were significantly altered and highly correlated with blood glucose in db/db mice. Interestingly, the host after gut microbiota transplantation from db/db mice showed decreased MST1 and LATS1 levels, and p-YAP/YAP ratio in the heart, liver, and kidney compared to those from m/m mice. Negative correlations between fasting blood glucose and Hippo signaling levels in selected peripheral tissues also were identified. These findings suggest that alterations in Hippo signaling in selected peripheral tissues may contribute to the development of T2DM, and that therapeutic interventions improving Hippo signaling by gut microbiota transplantation might be beneficial for the treatment of T2DM and other age-related metabolic diseases.
Collapse
Affiliation(s)
- Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Riyue Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Long Wang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Shoukui Xiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Qin Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cunming Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
15
|
Yu H, Thompson Z, Kiran S, Jones GL, Mundada L, Rubinstein M, Low MJ. Expression of a hypomorphic Pomc allele alters leptin dynamics during late pregnancy. J Endocrinol 2020; 245:115-127. [PMID: 32027603 DOI: 10.1530/joe-19-0576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) are essential for normal energy homeostasis. Maximal ARC Pomc transcription is dependent on neuronal Pomc enhancer 1 (nPE1), located 12 kb upstream from the promoter. Selective deletion of nPE1 in mice decreases ARC Pomc expression by 70%, sufficient to induce mild obesity. Because nPE1 is located exclusively in the genomes of placental mammals, we questioned whether its hypomorphic mutation would also alter placental Pomc expression and the metabolic adaptations associated with pregnancy and lactation. We assessed placental development, pup growth, circulating leptin and expression of Pomc, Agrp and alternatively spliced leptin receptor (LepR) isoforms in the ARC and placenta of Pomc∆1/∆1 and Pomc+/+ dams. Despite indistinguishable body weights, lean mass, food intake, placental histology and Pomc expression and overall pregnancy outcomes between the genotypes, Pomc ∆1/∆1 females had increased pre-pregnancy fat mass that paradoxically decreased to control levels by parturition. However, Pomc∆1/∆1 dams had exaggerated increases in circulating leptin, up to twice of that of the typically elevated levels in Pomc+/+ mice at the end of pregnancy, despite their equivalent fat mass. Pomc∆1/∆1dams also had increased placental expression of soluble leptin receptor (LepRe), although the protein levels of LEPRE in circulation were the same as Pomc+/+ controls. Together, these data suggest that the hypomorphic Pomc∆1/∆1 allele is responsible for the perinatal super hyperleptinemia of Pomc∆1/∆1 dams, possibly due to upregulated leptin secretion from individual adipocytes.
Collapse
Affiliation(s)
- Hui Yu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zoe Thompson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sylee Kiran
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,School of Literature, Science, and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Graham L Jones
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Lakshmi Mundada
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | -
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marcelo Rubinstein
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos, Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Zhang L, Zhou W, Zhan L, Hou S, Zhao C, Bi T, Lu X. Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging (Albany NY) 2020; 12:17480-17502. [PMID: 32920548 PMCID: PMC7521520 DOI: 10.18632/aging.103756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Obesity is one of the susceptibility factors for type 2 diabetes (T2DM), both of which could accelerate the aging of the body and bring many hazards. A causal relationship is present between intestinal microbiota and body metabolism, but how the microbiota play a role in the progression of obesity to T2DM has not been elucidated. In this study, we transplanted healthy or obese-T2DM intestinal microbiota to ZDF and LZ rats, and used 16S rRNA and targeted metabonomics to evaluate the directional effect of the microbiota on the susceptibility of obese rats to T2DM. The glycolipid metabolism phenotype could be changed bidirectionally in obese rats instead of in lean ones. One possible mechanism is that the microbiota and metabolites alter the structure of the intestinal tract, and improve insulin and leptin resistance through JAK2 / IRS / Akt pathway. It is worth noting that 7 genera, such as Lactobacillus, Clostridium and Roche, can regulate 15 metabolites, such as 3-indolpropionic acid, acetic acid and docosahexaenoic acid, and have a significant improvement on glycolipid metabolism phenotype. Attention to intestinal homeostasis may be the key to controlling obesity and preventing T2DM.
Collapse
Affiliation(s)
- Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shenglin Hou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian 116001, China
| |
Collapse
|
17
|
Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin Sci (Lond) 2020; 134:547-570. [PMID: 32167154 DOI: 10.1042/cs20191313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023]
Abstract
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
Collapse
|
18
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
19
|
Abstract
The regulation of glycemia is under a tight neuronal detection of glucose levels performed by the gut-brain axis and an efficient efferent neuronal message sent to the peripheral organs, as the pancreas to induce insulin and inhibit glucagon secretions. The neuronal detection of glucose levels is performed by the autonomic nervous system including the enteric nervous system and the vagus nerve innervating the gastro-intestinal tractus, from the mouth to the anus. A dysregulation of this detection leads to the one of the most important current health issue around the world i.e. diabetes mellitus. Furthemore, the consequences of diabetes mellitus on neuronal homeostasis and activities participate to the aggravation of the disease establishing a viscious circle. Prokaryotic cells as bacteria, reside in our gut. The strong relationship between prokaryotic cells and our eukaryotic cells has been established long ago, and prokaryotic and eukaryotic cells in our body have evolved synbiotically. For the last decades, studies demonstrated the critical role of the gut microbiota on the metabolic control and how its shift can induce diseases such as diabetes. Despite an important increase of knowledge, few is known about 1) how the gut microbiota influences the neuronal detection of glucose and 2) how the diabetes mellitus-induced gut microbiota shift observed participates to the alterations of autonomic nervous system and the gut-brain axis activity.
Collapse
Affiliation(s)
- Estelle Grasset
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden.
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Dyslipidemia', F-31432, Toulouse, Cedex 4, France
| |
Collapse
|
20
|
Yeh SHH, Shie FS, Liu HK, Yao HH, Kao PC, Lee YH, Chen LM, Hsu SM, Chao LJ, Wu KW, Shiao YJ, Tsay HJ. A high-sucrose diet aggravates Alzheimer's disease pathology, attenuates hypothalamic leptin signaling, and impairs food-anticipatory activity in APPswe/PS1dE9 mice. Neurobiol Aging 2019; 90:60-74. [PMID: 31879131 DOI: 10.1016/j.neurobiolaging.2019.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
High-fat and high-sugar diets contribute to the prevalence of type 2 diabetes and Alzheimer's disease (AD). Although the impact of high-fat diets on AD pathogenesis has been established, the effect of high-sucrose diets (HSDs) on AD pathogenesis remains unclear. This study sought to determine the impact of HSDs on AD-related pathologies. Male APPswe/PS1dE9 (APP/PS1) transgenic and wild-type mice were provided with HSD and their cognitive and hypothalamus-related noncognitive parameters, including feeding behaviors and glycemic regulation, were compared. HSD-fed APP/PS1 mice showed increased neuroinflammation, as well as increased cortical and serum levels of amyloid-β. HSD-fed APP/PS1 mice showed aggravated obesity, hyperinsulinemia, insulin resistance, and leptin resistance, but there was no induction of hyperphagia or hyperleptinemia. Leptin-induced phosphorylation of signal transducer and activator of transcription 3 in the dorsomedial and ventromedial hypothalamus was reduced in HSD-fed APP/PS1 mice, which might be associated with attenuated food-anticipatory activity, glycemic dysregulation, and AD-related noncognitive symptoms. Our study demonstrates that HSD aggravates metabolic stresses, increases AD-related pathologies, and attenuates hypothalamic leptin signaling in APP/PS1 mice.
Collapse
Affiliation(s)
| | - Feng-Shiun Shie
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan, Miaoli, Taiwan, R.O.C
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Heng-Hsiang Yao
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Pei-Chen Kao
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan, Miaoli, Taiwan, R.O.C
| | - Yi-Heng Lee
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, R.O.C
| | - Li-Min Chen
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Shu-Meng Hsu
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan, Miaoli, Taiwan, R.O.C.; Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Li-Jung Chao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Kuan-Wei Wu
- Institute of Biopharmaceutical Science, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Clinical Drug Development of Chinese Herbal Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C.; Institute of Biopharmaceutical Science, National Yang-Ming University, Taipei, Taiwan, R.O.C..
| | - Huey-Jen Tsay
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C..
| |
Collapse
|
21
|
Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging (Albany NY) 2019; 11:10454-10467. [PMID: 31760385 PMCID: PMC6914402 DOI: 10.18632/aging.102469] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
It is well recognized that type 2 diabetes mellitus (T2DM) is an age-related metabolic disease, emerging gradually as a major global health burden that has gained public attention. Meanwhile, increasing attention is paid to the crucial role of gut microbiota in the pathogenesis and therapeutic mechanisms of metabolic disorders, especially T2DM. In this study, we used C57 BL/KS db/db male mice as a T2DM murine model. We found that the β-diversity and relative abundances of gut bacteria were obviously altered in db/db mice, associated with a significant increase in Verrucomicrobia at six levels (phylum, class, order, etc.) and family S24-7 and a significant decrease in Bacteroidaceae at family, genus, and species levels, as well as Prevotellaceae at family and genus levels. Furthermore, fecal bacteria from db/db and m/m mice transplanted into pseudo-germ-free mice showed a significant change in the metabolic parameters, including the body weight, fasting blood glucose, fluid and food intake, and alterations in the composition of the gut microbiota. Taken together, these findings suggest that abnormalities in the composition of the gut microbiota might contribute to the development of T2DM and that potential therapeutic strategies improving gut microbiota might provide beneficial effects for individuals with T2DM and age-related glucose intolerance.
Collapse
|
22
|
Liu X, Wang W, Chen HL, Zhang HY, Zhang NX. Interplay between Alzheimer's disease and global glucose metabolism revealed by the metabolic profile alterations of pancreatic tissue and serum in APP/PS1 transgenic mice. Acta Pharmacol Sin 2019; 40:1259-1268. [PMID: 31089202 DOI: 10.1038/s41401-019-0239-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence suggests that there is a correlation between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD). Increased Aβ polypeptide production in AD patients would promote metabolic abnormalities, insulin signaling dysfunction and perturbations in glucose utilization, thus leading to the onset of T2D. However, the metabolic mechanisms underlying the interplay between AD and its diabetes-promoting effects are not fully elucidated. Particularly, systematic metabolomics analysis has not been performed for the pancreas tissues of AD subjects, which play key roles in the glucose metabolism of living systems. In the current study, we characterized the dynamic metabolic profile alterations of the serum and the pancreas of APP/PS1 double-transgenic mice (an AD mouse model) using the untargeted metabolomics approaches. Serum and pancreatic tissues of APP/PS1 transgenic mice and wild-type mice were extracted and subjected to NMR analysis to evaluate the functional state of pancreas in the progress of AD. Multivariate analysis of principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to define the global and the local (pancreas) metabolic features associated with the possible initiation of T2D in the progress of AD. Our results showed the onset of AD-induced global glucose metabolism disorders in AD mice. Hyperglycemia and its accompanying metabolic disorders including energy metabolism down-regulation and oxidative stress were observed in the serum of AD mice. Meanwhile, global disturbance of branched-chain amino acid (BCAA) metabolism was detected, and the change of BCAA (leucine) was positively correlated to the alteration of glucose. Moreover, increased level of glucose and enhanced energy metabolism were observed in the pancreas of AD mice. The results suggest that the diabetes-promoting effects accompanying the progress of AD are achieved by down-regulating the global utilization of glucose and interfering with the metabolic function of pancreas. Since T2D is a risk factor for the pathogenesis of AD, our findings suggest that targeting the glucose metabolism dysfunctions might serve as a supplementary therapeutic strategy for Alzheimer's disease.
Collapse
|