1
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39480905 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
2
|
Qiu Y, Gan M, Wang X, Liao T, Tang Y, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Shen L, Zhu L. Whole transcriptome sequencing analysis reveals the effect of circZFYVE9/miR-378a-3p/IMMT axis on mitochondrial function in adipocytes. Int J Biol Macromol 2024; 281:136916. [PMID: 39490878 DOI: 10.1016/j.ijbiomac.2024.136916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Recent research highlights the complex regulation of lipid accumulation and mitochondrial function in adipocytes via non-coding RNAs like microRNAs and circular non-coding RNAs. Circular non-coding RNAs act as endogenous regulators, impacting lipid metabolism and mitochondrial function by interacting with miRNAs. Sequencing white and brown adipose tissues in mice revealed significant variations in 1936 mRNAs, 127 miRNAs, and 171 circRNAs. Analyses showed these RNAs' involvement in vital processes like mitochondrial biogenesis, oxidative phosphorylation, and the citric acid cycle, crucial for lipid metabolism. Focus on top differentially regulated miRNAs led to the construction of a regulatory network involving circRNAs, miRNAs, and mRNAs, illuminating the role of endogenous RNAs in lipid metabolism and mitochondrial function. The circZFYVE9/miR-378a-3p/IMMT axis was identified as influential in adipogenic differentiation of 3T3-L1 preadipocytes by regulating mitochondrial function. This study expands the understanding of non-coding RNAs in adipose tissue, particularly their connection to mitochondrial function and metabolism.
Collapse
Affiliation(s)
- Yanhao Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanling Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Lee-Martínez SN, Luzardo-Ocampo I, Vergara-Castañeda HA, Vasco-Leal JF, Gaytán-Martínez M, Cuellar-Nuñez ML. Native corn (Zea mays L., cv. 'Elotes Occidentales') polyphenols extract reduced total cholesterol and triglycerides levels, and decreased lipid accumulation in mice fed a high-fat diet. Biomed Pharmacother 2024; 180:117610. [PMID: 39447534 DOI: 10.1016/j.biopha.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Obesity is a complex disease with numerous molecular and metabolic implications that could be prevented through proper diet and lifestyle. Native corn is a promissory underutilized plant species containing bioactive compounds that could reduce the impact of obesity. This research aimed to characterize and evaluate the anti-obesogenic effect of a polyphenols-rich extract of native corn ('Elotes Occidentales') in HFD-fed mice. The powdered extract was administered using gelatins to C57BL/6 J mice randomly divided into four groups (n:8/group) for 13 weeks: standard diet (SD) group, HFD group, HFD+200 mg extract/kg body weight (BW), and HFD+400 mg extract/kg BW/day. Ellagic acid, chlorogenic acid, rutin, and kaempferol were the most abundant phenolics (2022.44-4028.43 µg/g). Among the HFD groups, the highest dose of the extracts promoted the lowest BW gain, and fasting triglycerides and cholesterol levels. Moreover, the HFD+400 mg/kg BW group showed the lowest epididymal and subcutaneous adipose tissue weight and adipocytes' diameter and area between the HFD-treated animals. The extract administration prevented hepatic lipid accumulation. Rutin demonstrated the highest in silico binding affinity with proteins from the AMPK pathway (ACACA, SIRT1, and SREBP1) (-6.70 to -8.70 kcal/mol). Results indicated beneficial effects in alleviating obesity-associated parameters in vivo due to bioactive compounds from native maize extracts.
Collapse
Affiliation(s)
- Sarah N Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, 64700 N. L., Mexico; Tecnologico de Monterrey, School of Enginering and Sciences, Av. Gral. Ramon Corona 2514, Zapopan, 45201 Jal., Mexico.
| | - Haydé A Vergara-Castañeda
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Jose F Vasco-Leal
- Posgrado de Gestión Tecnológica e Innovación, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - M Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México.
| |
Collapse
|
4
|
Huang Y, Li W, Sun H, Guo X, Zhou Y, Liu J, Liu F, Fan Y. Mitochondrial transfer in the progression and treatment of cardiac disease. Life Sci 2024; 358:123119. [PMID: 39395616 DOI: 10.1016/j.lfs.2024.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mitochondria are the primary site for energy production and play a crucial role in supporting normal physiological functions of the human body. In cardiomyocytes (CMs), mitochondria can occupy up to 30 % of the cell volume, providing sufficient energy for CMs contraction and relaxation. However, some pathological conditions such as ischemia, hypoxia, infection, and the side effect of drugs, can cause mitochondrial dysfunction in CMs, leading to various myocardial injury-related diseases including myocardial infarction (MI), myocardial hypertrophy, and heart failure. Self-control of mitochondria quality and conversion of metabolism pathway in energy production can serve as the self-rescue measure to avoid autologous mitochondrial damage. Particularly, mitochondrial transfer from the neighboring or extraneous cells enables to mitigate mitochondrial dysfunction and restore their biological functions in CMs. Here, we described the homeostatic control strategies and related mechanisms of mitochondria in injured CMs, including autologous mitochondrial quality control, mitochondrial energy conversion, and especially the exogenetic mitochondrial donation. Additionally, this review emphasizes on the therapeutic effects and potential application of utilizing mitochondrial transfer in reducing myocardial injury. We hope that this review can provide theoretical clues for the developing of advanced therapeutics to treat cardiac diseases.
Collapse
Affiliation(s)
- Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xin Guo
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
5
|
Aoi W, Koyama T, Honda A, Takagi T, Naito Y. Association of Serum Bile Acid Profile with Diet and Physical Activity Habits in Japanese Middle-Aged Men. Nutrients 2024; 16:3381. [PMID: 39408348 PMCID: PMC11478694 DOI: 10.3390/nu16193381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Circulating bile acid (BA) profiles change with lifestyle and are closely related to intestinal BA metabolisms such as deconjugation and conversion to secondary BAs. The composition of BA in the blood is involved in systemic nutrient metabolism and intestinal health. Herein, we explored the associations of lifestyle and physical fitness with the circulating BA profile of middle-aged men. METHODS Data of 147 male participants (aged 50-64 years; BMI < 26 kg/m2; no medication for diabetes or dyslipidemia) from the Japan Multi-Institutional Collaborative Cohort study were analyzed. Serum concentrations of 15 types of BAs were examined for associations with variables on dietary habits, physical-activity habits, and physical fitness. RESULTS Green tea intake was positively associated with the deconjugation ratio of total BAs (p = 0.028) and negatively associated with secondary BA levels (free deoxycholic acid [DCA] (p = 0.078), glyco-DCA (p = 0.048), and tauro-DCA (p = 0.037)). In contrast, physical activity was negatively associated with the deconjugation ratio (p = 0.029) and secondary BA levels (free DCA (p = 0.098), and free lithocholic acid (p = 0.009)). Grip strength was also negatively associated with secondary BA levels (tauro-DCA (p = 0.041)) but was not associated with the deconjugation ratio. Energy and fat intake and skeletal muscle mass were not associated with the deconjugation ratio or secondary BA levels. CONCLUSIONS The study findings suggest that lifestyle-associated changes in serum deconjugated and secondary BAs indicate improvements in nutrient metabolism and the intestinal environment.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki 3000395, Japan;
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| |
Collapse
|
6
|
Zhang G, Zeng C, Sun X, Zhang Q, Wang Y, Xia R, Mai Q, Xue G, Huang H, Wang F. Zearalenone modulates the function of goat endometrial cells via the mitochondrial quality control system. FASEB J 2024; 38:e23701. [PMID: 38941193 DOI: 10.1096/fj.202302198rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/30/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.
Collapse
Affiliation(s)
- Guomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Xuan Sun
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Qi Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yifei Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Rongxin Xia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Qingyang Mai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xue
- Yangtze River Delta White Goat Breeding Research Institute, Nantong, China
| | - Han Huang
- Mashan County Centre for Animal Disease Control and Prevention, Nanning, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Uprety LP, Lee CG, Oh KI, Jeong H, Yeo S, Yong Y, Seong JK, Kim IY, Go H, Park E, Jeong SY. Anti-obesity effects of Celosia cristata flower extract in vitro and in vivo. Biomed Pharmacother 2024; 176:116799. [PMID: 38805969 DOI: 10.1016/j.biopha.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.
Collapse
Affiliation(s)
- Laxmi Prasad Uprety
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, South Korea
| | - Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | | | - Subin Yeo
- Nine B Co., Ltd., Daejeon 34121, South Korea
| | | | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Il Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Hyesun Go
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| |
Collapse
|
8
|
Maruthiyodan S, Mumbrekar KD, Guruprasad KP. Involvement of mitochondria in Alzheimer's disease pathogenesis and their potential as targets for phytotherapeutics. Mitochondrion 2024; 76:101868. [PMID: 38462158 DOI: 10.1016/j.mito.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia around the globe. The disease's genesis is multifaceted, and its pathophysiology is complicated. Malfunction of mitochondria has been regarded as one of the intracellular events that are substantially damaged in the onset of AD and are likely a common trait of other neurodegenerative illnesses. Several mitochondrial characteristics begin to diminish with age, eventually reaching a state of significant functional failure concurrent with the beginning of neurodegenerative diseases, however, the exact timing of these processes is unknown. Mitochondrial malfunction has a multitude of negative repercussions, including reduced calcium buffering and secondary excitotoxicity contributing to synaptic dysfunction, also free radical production, and activation of the mitochondrial permeability transition. Hence mitochondria are considered a therapeutic target in neurodegenerative disorders such as Alzheimer's. Traditional medicinal systems practiced in different countries employing various medicinal plants postulated to have potential role in the therapy and management of memory impairment including amnesia, dementia as well as AD. Although, the preclinical and clinical studies using these medicinal plants or plant products have demonstrated the therapeutic efficacy for AD, the precise mechanism of action is still obscure. Therefore, this review discusses the contribution of mitochondria towards AD pathogenesis and considering phytotherapeutics as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Swathi Maruthiyodan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kanive Parashiva Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
9
|
Cao G, Zuo J, Wu B, Wu Y. Polyphenol supplementation boosts aerobic endurance in athletes: systematic review. Front Physiol 2024; 15:1369174. [PMID: 38651044 PMCID: PMC11033476 DOI: 10.3389/fphys.2024.1369174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In recent years, an increasing trend has been observed in the consumption of specific polyphenols, such as flavonoids and phenolic acids, derived from green tea, berries, and other similar sources. These compounds are believed to alleviate oxidative stress and inflammation resulting from exercise, potentially enhancing athletic performance. This systematic review critically examines the role of polyphenol supplementation in improving aerobic endurance among athletes and individuals with regular exercise habits. The review involved a thorough search of major literature databases, including PubMed, Web of Science, SCOPUS, SPORTDiscus, and Embase, covering re-search up to the year 2023. Out of 491 initially identified articles, 11 met the strict inclusion criteria for this review. These studies specifically focused on the incorporation of polyphenols or polyphenol-containing complexes in their experimental design, assessing their impact on aerobic endurance. The methodology adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the risk of bias was evaluated using the Cochrane bias risk assessment tool. While this review suggests that polyphenol supplementation might enhance certain aspects of aerobic endurance and promote fat oxidation, it is important to interpret these findings with caution, considering the limited number of studies available. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023453321.
Collapse
Affiliation(s)
- Gexin Cao
- Department of Exercise Physiology, School of Sports Science, Beijing Sports University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
| | - Jing Zuo
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
- Department of Anatomy Laboratory, School of Sports Science, Beijing Sports University, Beijing, China
| | - Baile Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sports University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
| | - Ying Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sports University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sports University, Beijing, China
| |
Collapse
|
10
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Zhou Y, Chen X, Su T, Yuan M, Sun X. Kiwifruit Peel Extract Improves the Alterations in Lipid Metabolism in High-fat Diet-fed Model Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:113-119. [PMID: 38200210 DOI: 10.1007/s11130-023-01132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Previous studies have demonstrated that the kiwifruit peel, which is usually discarded by consumers and factories, has the highest polyphenol content among all parts of the kiwifruit. To maximize the utilization of these waste resources, the aim of this study was to examine the regulatory effects of polyphenols extracted from kiwifruit peel (KPE) on lipid metabolism and investigate their underlying mechanisms. Thirty-two male Sprague‒Dawley rats were divided into four groups: those fed a normal diet, those fed a high-fat (HF) diet, and those fed a HF diet with a low dose of KPE solution (50 mg/kg) or a high dose of KPE (100 mg/kg) by gavage. The findings of the study revealed that KPE effectively reduced body weight gain and the increases in triglycerides and total cholesterol in serum induced by the HF diet (HFD). Additionally, KPE supplementation led to a significant decrease in hepatic fat accumulation, potentially by increasing hepatic oxidation abilities. Hepatic lipidomics demonstrated that KPE influenced various metabolic pathways, including linoleic acid metabolism, steroid biosynthesis, and the biosynthesis of unsaturated fatty acids in HFD-induced rats, which were associated with the downregulation of FATP2, ACC, FAS, GPAT, DGTA1, DGTA2, and PPARγ expression as well as the upregulation of AMPK, PGC-1α, CPT-1, and PPARα expression. These findings suggest that KPE has considerable regulatory effects in rats with dyslipidaemia, which may provide supporting information for the reuse of kiwifruit peel.
Collapse
Affiliation(s)
- Yan Zhou
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiao Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Tianxia Su
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Minlan Yuan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaohong Sun
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
12
|
Ferreira G, Vieira P, Alves A, Nunes S, Preguiça I, Martins-Marques T, Ribeiro T, Girão H, Figueirinha A, Salgueiro L, Pintado M, Gomes P, Viana S, Reis F. Effect of Blueberry Supplementation on a Diet-Induced Rat Model of Prediabetes-Focus on Hepatic Lipid Deposition, Endoplasmic Stress Response and Autophagy. Nutrients 2024; 16:513. [PMID: 38398840 PMCID: PMC10892331 DOI: 10.3390/nu16040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.
Collapse
Affiliation(s)
- Gonçalo Ferreira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Tânia Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.R.); (M.P.)
| | - Henrique Girão
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- CERES, Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.R.); (M.P.)
| | - Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sofia Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| |
Collapse
|
13
|
Bashir KMI, Kim JK, Chun YS, Choi JS, Ku SK. In Vitro Assessment of Anti-Adipogenic and Anti-Inflammatory Properties of Black Cumin ( Nigella sativa L.) Seeds Extract on 3T3-L1 Adipocytes and Raw264.7 Macrophages. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2028. [PMID: 38004077 PMCID: PMC10673321 DOI: 10.3390/medicina59112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 μg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 μg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 μg/mL. Notably, pre-treatment with BCS extract (30 μg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1β and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, Busan 46742, Republic of Korea
| | | | | | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
14
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Gallinat A, Vilahur G, Padro T, Badimon L. Effects of Antioxidants in Fermented Beverages in Tissue Transcriptomics: Effect of Beer Intake on Myocardial Tissue after Oxidative Injury. Antioxidants (Basel) 2023; 12:antiox12051096. [PMID: 37237963 DOI: 10.3390/antiox12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Fermented beverages, such as wine and beer, are rich in polyphenols that have been shown to have protective effects against oxidative stress. Oxidative stress plays a central role in the pathogenesis and progression of cardiovascular disease. However, the potential benefits of fermented beverages on cardiovascular health need to be fully investigated at a molecular level. In this study, we aimed at analyzing the effects of beer consumption in modulating the transcriptomic response of the heart to an oxidative stress challenge induced by myocardial ischemia (MI) in the presence of hypercholesterolemia in a pre-clinical swine model. Previous studies have shown that the same intervention induces organ protective benefits. We report a dose-dependent up-regulation of electron transport chain members and the down-regulation of spliceosome-associated genes linked to beer consumption. Additionally, low-dose beer consumption resulted in a down-regulation of genes associated with the immune response, that was not shown for moderate-dose beer consumption. These findings, observed in animals having demonstrated beneficial effects at the organ-level, indicate that the antioxidants in beer differentially affect the myocardial transcriptome in a dose-dependent manner.
Collapse
Affiliation(s)
- Alex Gallinat
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Padro
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, IIBSANTPAU, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
16
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
17
|
Degranulation of Murine Resident Cochlear Mast Cells: A Possible Factor Contributing to Cisplatin-Induced Ototoxicity and Neurotoxicity. Int J Mol Sci 2023; 24:ijms24054620. [PMID: 36902051 PMCID: PMC10003316 DOI: 10.3390/ijms24054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Permanent hearing loss is one of cisplatin's adverse effects, affecting 30-60% of cancer patients treated with that drug. Our research group recently identified resident mast cells in rodents' cochleae and observed that the number of mast cells changed upon adding cisplatin to cochlear explants. Here, we followed that observation and found that the murine cochlear mast cells degranulate in response to cisplatin and that the mast cell stabilizer cromoglicic acid (cromolyn) inhibits this process. Additionally, cromolyn significantly prevented cisplatin-induced loss of auditory hair cells and spiral ganglion neurons. Our study provides the first evidence for the possible mast cell participation in cisplatin-induced damage to the inner ear.
Collapse
|
18
|
Insights on Dietary Polyphenols as Agents against Metabolic Disorders: Obesity as a Target Disease. Antioxidants (Basel) 2023; 12:antiox12020416. [PMID: 36829976 PMCID: PMC9952395 DOI: 10.3390/antiox12020416] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Obesity is a condition that leads to increased health problems associated with metabolic disorders. Synthetic drugs are available for obesity treatment, but some of these compounds have demonstrated considerable side effects that limit their use. Polyphenols are vital phytonutrients of plant origin that can be incorporated as functional food ingredients. This review presents recent developments in dietary polyphenols as anti-obesity agents. Evidence supporting the potential application of food-derived polyphenols as agents against obesity has been summarized. Literature evidence supports the effectiveness of plant polyphenols against obesity. The anti-obesity mechanisms of polyphenols have been explained by their potential to inhibit obesity-related digestive enzymes, modulate neurohormones/peptides involved in food intake, and their ability to improve the growth of beneficial gut microbes while inhibiting the proliferation of pathogenic ones. Metabolism of polyphenols by gut microbes produces different metabolites with enhanced biological properties. Thus, research demonstrates that dietary polyphenols can offer a novel path to developing functional foods for treating obesity. Upcoming investigations need to explore novel techniques, such as nanocarriers, to improve the content of polyphenols in foods and their delivery and bioavailability at the target sites in the body.
Collapse
|
19
|
The Effect of a Hydroxytyrosol-Rich, Olive-Derived Phytocomplex on Aerobic Exercise and Acute Recovery. Nutrients 2023; 15:nu15020421. [PMID: 36678293 PMCID: PMC9864860 DOI: 10.3390/nu15020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
There is current scientific interest in naturally sourced phenolic compounds and their potential benefits to health, as well as the effective role polyphenols may provide in an exercise setting. This study investigated the chronic effects of supplementation with a biodynamic and organic olive fruit water phytocomplex (OliPhenolia® [OliP]), rich in hydroxytyrosol (HT), on submaximal and exhaustive exercise performance and respiratory markers of recovery. Twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m) consumed 2 × 28 mL∙d−1 of OliP or a taste- and appearance-matched placebo (PL) over 16 consecutive days. Participants completed a demanding, aerobic exercise protocol at ~75% maximal oxygen uptake (V˙O2max) for 65 min 24 h before sub- and maximal performance exercise tests prior to and following the 16-day consumption period. OliP reduced the time constant (τ) (p = 0.005) at the onset of exercise, running economy (p = 0.015) at lactate threshold 1 (LT1), as well as the rating of perceived exertion (p = 0.003) at lactate turnpoint (LT2). Additionally, OliP led to modest improvements in acute recovery based upon a shorter time to achieve 50% of the end of exercise V˙O2 value (p = 0.02). Whilst OliP increased time to exhaustion (+4.1 ± 1.8%), this was not significantly different to PL (p > 0.05). Phenolic compounds present in OliP, including HT and related metabolites, may provide benefits for aerobic exercise and acute recovery in recreationally active individuals. Further research is needed to determine whether dose-response or adjunct use of OliP alongside longer-term training programs can further modulate exercise-associated adaptations in recreationally active individuals, or indeed support athletic performance.
Collapse
|
20
|
Mirzababaei A, Taheri A, Rasaei N, Mehranfar S, Jamili S, Clark CCT, Mirzaei K. The relationship between dietary phytochemical index and resting metabolic rate mediated by inflammatory factors in overweight and obese women: a cross-sectional study. BMC Womens Health 2022; 22:313. [PMID: 35879706 PMCID: PMC9317090 DOI: 10.1186/s12905-022-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Unhealthy dietary patterns are the most important modifiable risk factors for obesity and overweight. This study aimed to examine the relationship between Dietary Phytochemical Index (DPI) and resting metabolic rate (RMR), mediated by inflammatory factors, in overweight and obese women.
Methods
A total of 404 women, aged 18–48 years, were included in the cross-sectional study. DPI was calculated using the 147-item food frequency questionnaire (FFQ). Anthropometric measurements, RMR, and blood biomarkers were assessed using standard protocols.
Results
There was marginally significant association between adherence to DPI and RMR status in the crude model (OR = 1.41, 95% CI 0.94–2.11, P = 0.09). After adjusting for potential confounders, a significant association was seen between the DPI and increase RMR.per.kg (OR = 2.77, 95% CI 0.98–7.82, P = 0.05). Our results indicated that plasminogen activator inhibitor-1 (PAI-1), transforming growth factor (TGF-β), and monocyte chemoattractant protein-1 (MCP-1) had a mediatory effect on the association between RMR and DPI (P > 0.05). Indeed, it was shown that, PAI-1, TGF-β, and MCP-1 destroyed the significance of this association and could be considered as mediating markers. However, no mediating effect was observed for high-sensitivity C reactive protein (hs-CRP).
Conclusions
Adherence to DPI can improve the RMR by reducing levels of inflammatory markers, and may be considered as a treatment for obesity. However, more long-term studies are recommended.
Collapse
|
21
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
22
|
Sun Q, Bravo Iniguez A, Tian Q, Du M, Zhu MJ. PGC-1α in mediating mitochondrial biogenesis and intestinal epithelial differentiation promoted by purple potato extract. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
The Flavone Cirsiliol from Salvia x jamensis Binds the F 1 Moiety of ATP Synthase, Modulating Free Radical Production. Cells 2022; 11:cells11193169. [PMID: 36231131 PMCID: PMC9562182 DOI: 10.3390/cells11193169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown that mammalian retinal rod outer segments (OS) are peculiar structures devoid of mitochondria, characterized by ectopic expression of the molecular machinery for oxidative phosphorylation. Such ectopic aerobic metabolism would provide the chemical energy for the phototransduction taking place in the OS. Natural polyphenols include a large variety of molecules having pleiotropic effects, ranging from anti-inflammatory to antioxidant and others. Our goal in the present study was to investigate the potential of the flavonoid cirsiliol, a trihydroxy-6,7-dimethoxyflavone extracted from Salvia x jamensis, in modulating reactive oxygen species production by the ectopic oxidative phosphorylation taking place in the OS. Our molecular docking analysis identified cirsiliol binding sites inside the F1 moiety of the nanomotor F1Fo-ATP synthase. The experimental approach was based on luminometry, spectrophotometry and cytofluorimetry to evaluate ATP synthesis, respiratory chain complex activity and H2O2 production, respectively. The results showed significant dose-dependent inhibition of ATP production by cirsiliol. Moreover, cirsiliol was effective in reducing the free radical production by the OS exposed to ambient light. We report a considerable protective effect of cirsiliol on the structural stability of rod OS, suggesting it may be considered a promising compound against oxidative stress.
Collapse
|
24
|
Li T, Bai H, Fang H, Yang L, Yan P. Growth hormone inhibits adipogenic differentiation and induces browning in bovine subcutaneous adipocytes. Growth Horm IGF Res 2022; 66:101498. [PMID: 36007464 DOI: 10.1016/j.ghir.2022.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It is well established that growth hormone (GH) has the ability to stimulate lipolysis. The effects of GH on adipocyte differentiation and browning have not been clearly described. Therefore, the present study aimed to elucidate the role of GH in the differentiation and browning of bovine subcutaneous adipocytes as well as its underlying molecular mechanisms. METHODS We first treated bovine subcutaneous preadipocytes with different concentrations (0, 10, 100, and 500 ng/mL) of GH for 8 days and measured lipid accumulation and gene expression. Afterward, we treated preadipocytes and mature adipocytes with 500 ng/mL GH and determined differentiation and browning-related indicators. Finally, we investigated the expression of STAT5B in both preadipocytes and mature adipocytes after GH treatment. RESULTS We demonstrated that GH inhibited lipid accumulation and decreased the expression levels of adipogenic key genes (SCD1, SREBP1, PPARγ, and CEBPα) during adipocyte differentiation. Moreover, we observed that the inhibitory effect of GH on the early stage of adipocyte differentiation (0-2 days) was stronger than that on the later stage of adipocyte differentiation (2-8 days). We also found that GH promoted the expression levels of browning-related genes such as uncoupling protein 1 (UCP1) in mature adipocytes. Concurrently, GH promoted mitochondrial biogenesis and increased the expression levels of mitochondrial biogenesis-related genes. In addition, GH promoted phosphorylation of signal transducers and activator of transcription 5 b (STAT5B) and contributed to translocation of STAT5B to nucleus. After blocking the expression of STAT5B protein, GH weakened the inhibition of adipogenic key genes and reduced the promotion of browning-related genes in bovine subcutaneous adipocytes. CONCLUSIONS GH can inhibit adipocyte differentiation and promote adipocyte browning by regulating STAT5B in bovine subcutaneous adipocytes.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyuan Fang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Khot M, Sood A, Tryphena KP, Khan S, Srivastava S, Singh SB, Khatri DK. NLRP3 inflammasomes: A potential target to improve mitochondrial biogenesis in Parkinson's disease. Eur J Pharmacol 2022; 934:175300. [PMID: 36167151 DOI: 10.1016/j.ejphar.2022.175300] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative condition for which no approved treatment exists to prevent collective neuronal death. There is ample evidence that mitochondrial dysfunction, reactive oxygen species (ROS), and associated caspase activity underlie the pathology observed. Neurons rely on mitochondrial activity since they have such high energy consumption. Therefore, it is not surprising that mitochondrial alterations favour neuronal degeneration. In particular, mitochondrial dysregulation contributes to PD, based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Also, it is known that inflammatory cytokine-mediated neuroinflammation is the key pathogenic mechanism in neuronal loss. In recent years, the research has focussed on mitochondria being the platform for nucleotide-binding oligomerization domain-like receptors 3 (NLRP3) inflammasome activation. Mitochondrial dysfunction and NLRP3 activation are emerging as critical players in inducing and sustaining neuroinflammation. Moreover, mitochondrial-derived ROS and mitochondrial DNA (mtDNA) could serve as the priming signal for forming inflammasome complexes responsible for the activation, maturation, and release of pro-inflammatory cytokines, including interleukin-1(IL-1) and interleukin-18 (IL-18). The current review takes a more comprehensive approach to elucidating the link between mitochondrial dysfunction and aberrant NLRP3 activation in PD. In addition, we focus on some inhibitors of NLRP3 inflammatory pathways to alleviate the progression of PD.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
26
|
Gu Y, Bai J, Zhang J, Zhao Y, Pan R, Dong Y, Cui H, Meng R, Xiao X. Lactiplantibacillus plantarum fermented barley extracts ameliorate high-fat-diet-induced muscle dysfunction via mitophagy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5261-5271. [PMID: 35307832 DOI: 10.1002/jsfa.11879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A reduced level of fatty acid oxidation (FAO) by skeletal muscle leads to the accumulation of intermuscular fat (IMF), which is linked to impaired exercise capacity. Previously, we have reported that Lactiplantibacillus plantarum fermented barley extract (LFBE) has effective anti-obesity properties. In this study, the effects of LFBE on muscle were investigated. RESULTS LFBE improved running endurance and muscle strength, which was caused by the elevation of FAO in muscle. In addition, LFBE renovated muscle regeneration through the upregulation of paired box 7 and myogenic differentiation 1 expression avoiding the injury of skeletal muscle fibers. Furthermore, total polyphenol isolated from LFBE (FTP) reinforced mobility and showed a significant protective effect on maintaining muscle fiber morphogenesis in Caenorhabditis elegans. Transmission electron microscope observation suggested FTP induced mitophagy in C. elegans body wall muscle, which was strongly connected with enhanced FAO in mitochondria. CONCLUSIONS Our findings highlighted the beneficial bioactivities of FTP and its potential application for stimulating mitophagy and muscle function in obese individuals. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaoguang Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruirong Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Henglin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ranhui Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Jiangnan Biotechnology Co. LTD, Zhenjiang, China
| |
Collapse
|
27
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
28
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
29
|
Li X, Wang X, Zhang C, Wang J, Wang S, Hu L. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif 2022; 55:e13191. [PMID: 35088483 PMCID: PMC8891618 DOI: 10.1111/cpr.13191] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Evidences have suggested that the metabolic function is the key regulator to the fate of MSCs, but its function in senescence of MSC and the underlying mechanism is unclear. Therefore, the purpose of this study was to investigate the metabolic activity of MSCs and its possible mechanism during aging. Materials and Methods We used the Seahorse XF24 Analyzer to understand OCR and ECAR in BMSCs and used RT‐PCR to analyze the gene expression of mitochondrial biogenesis and key enzymes in glycolysis. We analyzed BMSC mitochondrial activity by MitoTracker Deep Red and JC‐1 staining, and detected NAD+/NADH ratio and ATP levels in BMSCs. Microarray and proteomic analyses were performed to detect differentially expressed genes and proteins in BMSCs. The impact of aging on BMSCs through mitochondrial electron transport chain (ETC) was evaluated by Rotenone and Coenzyme Q10. Results Our results demonstrated that the oxidative phosphorylation and glycolytic activity of BMSCs in aged mice were significantly decreased when compared with young mice. BMSCs in aged mice had lower mitochondrial membrane potential, NAD+/NADH ratio, and ATP production than young mice. FABP4 may play a key role in BMSC senescence caused by fatty acid metabolism disorders. Conclusions Taken together, our results indicated the dysfunction of the metabolic activity of BMSCs in aged mice, which would play the important role in the impaired biological properties. Therefore, the regulation of metabolic activity may be a potential therapeutic target for enhancing the regenerative functions of BMSCs.
Collapse
Affiliation(s)
- Xiaoyu Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Xue Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
30
|
Alia F, Putri M, Anggraeni N, Syamsunarno MRAA. The Potency of Moringa oleifera Lam. as Protective Agent in Cardiac Damage and Vascular Dysfunction. Front Pharmacol 2022; 12:724439. [PMID: 35140601 PMCID: PMC8818947 DOI: 10.3389/fphar.2021.724439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiac damage and vascular dysfunction due to underlying diseases, such as hypertension and cardiac thrombosis, or side effects from certain drugs may lead to critical illness conditions and even death. The phytochemical compounds in natural products are being prospected to protect the heart and vascular system from further damage. Moringa genus is a subtropical tree native to Asia and Africa, which includes 13 species; Moringa oleifera Lam. (MO) is the most cultivated for its beneficial uses. MO is also known as the “miracle tree” because it has been used traditionally as a food source and medicine to treat various diseases such as anemia, diabetes, and infectious or cardiovascular diseases. The phytochemical compounds identified in MO with functional activities associated with cardiovascular diseases are N,α-L-rhamnopyranosyl vincosamide, isoquercetin, quercetin, quercetrin, and isothiocyanate. This study aims to investigate the potency of the phytochemical compounds in MO as a protective agent to cardiac damage and vascular dysfunction in the cardiovascular disease model. This is a scoping review by studying publications from the reputed database that assessed the functional activities of MO, which contribute to the improvement of cardiac and vascular dysfunctions. Studies show that the phytochemical compounds, for example, N,α-L-rhamnopyranosyl vincosamide and quercetin, have the molecular function of antioxidant, anti-inflammation, and anti-apoptosis. These lead to improving cardiac contractility and protecting cardiac structural integrity from damage. These compounds also act as natural vasorelaxants and endothelium protective agents. Most of the studies were conducted on in vivo studies; therefore, further studies should be applied in a clinical setting.
Collapse
Affiliation(s)
- Fenty Alia
- Study Program of Biomedical Engineering, School of Electrical Engineering, Telkom University, Bandung, Indonesia
| | - Mirasari Putri
- Department of Biochemistry, Nutrition, and Biomolecular, Faculty of Medicine, Universitas Islam Bandung, Bandung, Indonesia
| | - Neni Anggraeni
- Medical Laboratory Technologist, Bakti Asih School of Analyst, Bandung, Indonesia
| | - Mas Rizky A. A Syamsunarno
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
- *Correspondence: Mas Rizky A. A Syamsunarno,
| |
Collapse
|
31
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
32
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
33
|
Nunes S, Viana SD, Preguiça I, Alves A, Fernandes R, Teodoro JS, Matos P, Figueirinha A, Salgueiro L, André A, Silva S, Jarak I, Carvalho RA, Cavadas C, Rolo AP, Palmeira CM, Pintado MM, Reis F. Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients 2021; 13:4192. [PMID: 34959746 PMCID: PMC8706913 DOI: 10.3390/nu13124192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022] Open
Abstract
The paramount importance of a healthy diet in the prevention of type 2 diabetes is now well recognized. Blueberries (BBs) have been described as attractive functional fruits for this purpose. This study aimed to elucidate the cellular and molecular mechanisms pertaining to the protective impact of blueberry juice (BJ) on prediabetes. Using a hypercaloric diet-induced prediabetic rat model, we evaluated the effects of BJ on glucose, insulin, and lipid profiles; gut microbiota composition; intestinal barrier integrity; and metabolic endotoxemia, as well as on hepatic metabolic surrogates, including several related to mitochondria bioenergetics. BJ supplementation for 14 weeks counteracted diet-evoked metabolic deregulation, improving glucose tolerance, insulin sensitivity, and hypertriglyceridemia, along with systemic and hepatic antioxidant properties, without a significant impact on the gut microbiota composition and related mechanisms. In addition, BJ treatment effectively alleviated hepatic steatosis and mitochondrial dysfunction observed in the prediabetic animals, as suggested by the amelioration of bioenergetics parameters and key targets of inflammation, insulin signaling, ketogenesis, and fatty acids oxidation. In conclusion, the beneficial metabolic impact of BJ in prediabetes may be mainly explained by the rescue of hepatic mitochondrial bioenergetics. These findings pave the way to support the use of BJ in prediabetes to prevent diabetes and its complications.
Collapse
Affiliation(s)
- Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy/Biomedical Laboratory Sciences, 3046-854 Coimbra, Portugal;
| | - Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - João S. Teodoro
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre Research Center, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre Research Center, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Alexandra André
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy/Biomedical Laboratory Sciences, 3046-854 Coimbra, Portugal;
| | - Sara Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.M.P.)
| | - Ivana Jarak
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Rui A. Carvalho
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Associated Laboratory for Green Chemistry-Clean Technologies and Processes, REQUIMTE, Faculty of Sciences and Technology, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Cavadas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (A.F.); (L.S.)
| | - Anabela P. Rolo
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria M. Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.M.P.)
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| |
Collapse
|
34
|
Naoi M, Maruyama W, Shamoto-Nagai M. Disease-modifying treatment of Parkinson's disease by phytochemicals: targeting multiple pathogenic factors. J Neural Transm (Vienna) 2021; 129:737-753. [PMID: 34654977 DOI: 10.1007/s00702-021-02427-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is characterized by typical motor symptoms, loss of dopamine neurons in the substantia nigra, and accumulation of Lewy body composed of mutated α-synuclein. However, now it is considered as a generalized disease with multiple pathological features. Present available treatments can ameliorate symptoms at least for a while, but only a few therapies could delay progressive neurodegeneration of dopamine neurons. Lewy body accumulates in peripheral tissues many years before motor dysfunction becomes manifest, suggesting that disease-modifying therapy should start earlier during the premotor stage. Long-termed regulation of lifestyle, diet and supplement of nutraceuticals may be possible ways for the disease-modification. Diet can reduce the incidence of Parkinson's disease and phytochemicals, major bioactive ingredients of herbs and plant food, modulate multiple pathogenic factors and exert neuroprotective effects in preclinical studies. This review presents mechanisms underlying neuroprotection of phytochemicals against neuronal cell death and α-synuclein toxicity in Parkinson's disease. Phytochemicals are antioxidants, maintain mitochondrial function and homeostasis, prevent intrinsic apoptosis and neuroinflammation, activate cellular signal pathways to induce anti-apoptotic and pro-survival genes, such as Bcl-2 protein family and neurotrophic factors, and promote cleavage of damaged mitochondria and α-synuclein aggregates. Phytochemicals prevent α-synuclein oligomerization and aggregation, and dissolve preformed α-synuclein aggregates. Novel neuroprotective agents are expected to develop based on the scaffold of phytochemicals permeable across the blood-brain-barrier, to increase the bioavailability, ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
35
|
Sun L, Tian H, Xue S, Ye H, Xue X, Wang R, Liu Y, Zhang C, Chen Q, Gao S. Circadian Clock Genes REV-ERBs Inhibits Granulosa Cells Apoptosis by Regulating Mitochondrial Biogenesis and Autophagy in Polycystic Ovary Syndrome. Front Cell Dev Biol 2021; 9:658112. [PMID: 34422794 PMCID: PMC8374745 DOI: 10.3389/fcell.2021.658112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy with complex pathophysiology that is a common cause of anovulatory infertility in women. Although the disruption of circadian rhythms is indicated in PCOS, the role of the clock in the etiology of these pathologies has yet to be appreciated. The nuclear receptors REV-ERBα and REV-ERBβ are core modulators of the circadian clock and participate in the regulation of a diverse set of biological functions. However, in PCOS, the expression of REV-ERBs and their effects remain unclear. Here, we demonstrate that the levels of REV-ERBα and REV-ERBβ expression were lower in the granulosa cells of PCOS patients than in control subjects. In vitro, we found that the overexpression of REV-ERBα and REV-ERBβ, and their agonist SR9009, promoted the expression of mitochondrial biosynthesis genes PGC-1α, NRF1, and TFAM and inhibited autophagy in KGN cells. Our results also indicate that REV-ERBα and REV-ERBβ can inhibit apoptosis in granulosa cells and promote proliferation. Importantly, the REV-ERB agonist SR9009 ameliorates abnormal follicular development by promoting mitochondrial biosynthesis and inhibiting autophagy in a mouse PCOS model. This allows us to speculate that SR9009 has potential as a therapeutic agent for the treatment of PCOS.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Reproductive Medicine Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Tian
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songguo Xue
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongjuan Ye
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue Xue
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongxiang Wang
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caixia Zhang
- Department of Reproductive Medicine Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth Peoples Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
37
|
Bourebaba N, Kornicka-Garbowska K, Marycz K, Bourebaba L, Kowalczuk A. Laurus nobilis ethanolic extract attenuates hyperglycemia and hyperinsulinemia-induced insulin resistance in HepG2 cell line through the reduction of oxidative stress and improvement of mitochondrial biogenesis - Possible implication in pharmacotherapy. Mitochondrion 2021; 59:190-213. [PMID: 34091077 DOI: 10.1016/j.mito.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
The aim of this study was to establish the potential effect of Laurus nobilis ethanolic extract on improving insulin sensitivity and protecting liver cells from apoptosis, mitochondrial dysfunction, oxidative stress (OS), and inflammation; all of which considered as major alterations occurring during insulin resistance (IR) as well as diabetes onset, in hyperinsulinemic and hyperglycemic-induced HepG2 cell line. Thereby, L. nobilis ethanolic extract has been first chemically characterized using LC-MS/MS technique. Subsequently, HepG2 cells were pre-treated with an optimal concentration of L. nobilis ethanolic extract for 24 h, and then, subjected to 30 mM D-glucose and 500 nM insulin mixture for another 24 h in order to induce hyperinsulinemia and hyperglycaemia (HI/HG) status. Several parameters such as biocompatibility, hepatotoxicity, reactive oxygen species (ROS), mitochondrial transmembrane potential, dynamics, and metabolism, multicaspase activity, glucose uptake, in addition to genes and proteins expression levels were investigated. The obtained results showed that the bioactive extract of Laurus nobilis increased the number of living cells and their proliferation rate, significantly attenuated apoptosis by modulating pro-apoptotic pathways (p21, p53 and Bax genes), allowed a relative normalization of caspases-activity, and decreased the expression of inflammatory markers including c-Jun, NF-κB and Tlr4 transcripts. L. Nobilis ethanolic extract reduced considerably total intracellular ROS levels in challenged HepG2 cells, and regulated the mitochondrial OXPHOS pathway, demonstrating the potential antioxidant effect of the plant. Ethanolic plant extract increased insulin sensitivity, since an elevated expression of master transcripts responsible for insulin sensitivity including IRS1, IRS2, INSR was found. Taken together, obtained data suggest that L. nobilis ethanolic extract offers new insights in the development of potential antioxidant, insulin sensitizing as well as hepatoprotective drugs.
Collapse
Affiliation(s)
- Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa 11, Malin 55-114 Wisznia Mała, Poland.
| | - Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
38
|
Dilberger B, Weppler S, Eckert GP. Phenolic acid metabolites of polyphenols act as inductors for hormesis in C. elegans. Mech Ageing Dev 2021; 198:111518. [PMID: 34139214 DOI: 10.1016/j.mad.2021.111518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Aging represents a major risk factors for metabolic diseases, such as diabetes, obesity, or neurodegeneration. Polyphenols and their metabolites, especially simple phenolic acids, gained growing attention as a preventive strategy against age-related, non-communicable diseases, due to their hormetic potential. Using Caenorhabditis elegans (C. elegans) we investigate the effect of protocatechuic, gallic, and vanillic acid on mitochondrial function, health parameters, and the induction of potential hormetic pathways. METHODS Lifespan, heat-stress resistance and chemotaxis of C. elegans strain P X 627, a specific model for aging, were assessed in 2-day and 10-day old nematodes. Mitochondrial membrane potential (ΔΨm) and ATP generation were measured. mRNA expression levels of longevity and energy metabolism-related genes were determined using qRT-PCR. RESULTS All phenolic acids were able to significantly increase the nematodes lifespan, heat-stress resistance and chemotaxis at micromolar concentrations. While ΔΨm was only affected by age, vanillic acid (VA) significantly decreased ATP concentrations in aged nematodes. Longevity pathways, were activated by all phenolic acids, while VA also induced glycolytic activity and response to cold. CONCLUSION While life- and health span parameters are positively affected by the investigated phenolic acids, the concentrations applied were unable to affect mitochondrial performance. Therefore we suggest a hormetic mode of action, especially by activation of the sirtuin-pathway.
Collapse
Affiliation(s)
- Benjamin Dilberger
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Selina Weppler
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Gunter P Eckert
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
39
|
Ramirez LA, Quezada J, Duarte L, Concha F, Escobillana L, Rincon-Cervera MA, Perez-Bravo F, Elorza AA, Bravo-Sagua R, Garcia-Diaz DF. The administration of an extract from Berberis microphylla stimulates energy expenditure, thermogenesis and mitochondrial dynamics in mice brown adipose tissue. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Syamsunarno MRAA, Alia F, Anggraeni N, Sumirat VA, Praptama S, Atik N. Ethanol extract from Moringa oleifera leaves modulates brown adipose tissue and bone morphogenetic protein 7 in high-fat diet mice. Vet World 2021; 14:1234-1240. [PMID: 34220125 PMCID: PMC8243698 DOI: 10.14202/vetworld.2021.1234-1240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/26/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND AIM Brown adipose tissue's (BAT) ability to increase energy expenditure has become a new focus in obesity research. The amount and activity of BAT are inversely correlated with body-mass index and body fat percentage. Bone morphogenetic protein 7 (BMP7) plays a role in the differentiation and development of BAT, which can be increased by bioactive compounds from several medicinal plants. Moringa oleifera (MO) leaves are rich with vitamin, minerals, and bioactive compounds and have been used for treating obesity-related diseases in the past. The aim of this study was to explore the potency of MO leaf extract (MOLE) to modulate BAT differentiation in mice fed a high-fat diet (HFD). MATERIALS AND METHODS Twenty-four, 5-week-old male Deutsche Denken Yoken mice (Mus musculus) were randomly divided into four groups: The normal chow diet group was fed a normal diet, the HFD group was fed a HFD, the HFD+MOLE1, and the HFD+MOLE2 groups were fed HFD and MOLE in a dose of 280 and 560 mg/kg body weight (BW)/day, respectively. The experiment was performed for 7 weeks. At the end of the experiment, histological analysis was performed on the interscapular BAT, and blood was drawn for BMP7 protein levels. RESULTS After 7 weeks, BAT weight in the HFD group was nearly twice in the weight of the HFD+MOLE1 group (125±13.78 mg vs. 75±13.78 mg; p<0.001). There was also a significant increase in BAT cell density in the HFD+MOLE1 group. BMP7 serum protein levels were significantly higher in the HFD+MOLE1 group compared to the HFD group. CONCLUSIONS The administration of MOLE in a dose of 280 mg/kg BW/day in HFD-mice induces BAT differentiation and proliferation by upregulating BMP7 protein levels.
Collapse
Affiliation(s)
- Mas Rizky A. A. Syamsunarno
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, 45363, Indonesia
- Working Group of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, 45363, Indonesia
| | - Fenty Alia
- Study Program of Biomedical Engineering, School of Electrical Engineering, Telkom University, 40257, Indonesia
| | - Neni Anggraeni
- Medical Laboratory Technologist, Bakti Asih School of Analyst, Bandung, 40192, Indonesia
| | - Vanessa Ayu Sumirat
- Medical Laboratory Technologist, Bakti Asih School of Analyst, Bandung, 40192, Indonesia
- Study Program of Magister of Biotechnology, Postgraduate School, Universitas Padjadjaran, 40132, Indonesia
| | - Suhendra Praptama
- Working Group of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, 45363, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, 45363, Indonesia
| |
Collapse
|
41
|
Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants (Basel) 2021; 10:antiox10050708. [PMID: 33946864 PMCID: PMC8146040 DOI: 10.3390/antiox10050708] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
It is generally accepted that gut microbiota, inflammation and obesity are linked to the development of cardiovascular diseases and other chronic/non-communicable pathological conditions, including cancer, neurodegenerative diseases and ageing-related disorders. In this scenario, oxidative stress plays a pivotal role. Evidence suggests that the global dietary patterns may represent a tool in counteracting oxidative stress, thus preventing the onset of diseases related to oxidative stress. More specifically, dietary patterns based on the regular consumption of fruits and vegetables (i.e., Mediterranean diet) have been licensed by various national nutritional guidelines in many countries for their health-promoting effects. Such patterns, indeed, result in being rich in specific components, such as fiber, minerals, vitamins and antioxidants, whose beneficial effects on human health have been widely reported. This suggests a potential nutraceutical power of specific dietary components. In this manuscript, we summarize the most relevant evidence reporting the impact of dietary antioxidants on gut microbiota composition, inflammation and obesity, and we underline that antioxidants are implicated in a complex interplay between gut microbiota, inflammation and obesity, thus suggesting their possible role in the development and modulation of chronic diseases related to oxidative stress and in the maintenance of wellness. Do all roads lead to Rome?
Collapse
|
42
|
Akter R, Chowdhury MAR, Rahman MH. Flavonoids and Polyphenolic Compounds as Potential Talented Agents for the Treatment of Alzheimer's Disease and their Antioxidant Activities. Curr Pharm Des 2021; 27:345-356. [PMID: 33138754 DOI: 10.2174/1381612826666201102102810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/29/2020] [Indexed: 11/22/2022]
Abstract
Aging is a normal human cycle and the most important risk factor for neurodegenerative diseases. Alternations in cells due to aging contribute to loss of the nutrient-sensing, cell function, increased oxidative stress, loss of the homeostasis cell, genomic instability, the build-up of malfunctioning proteins, weakened cellular defenses, and a telomere split. Disturbance of these essential cellular processes in neuronal cells can lead to life threats including Alzheimer's disease (AD), Huntington's disease (HD), Lewy's disease, etc. The most common cause of death in the elderly population is AD. Specific therapeutic molecules were created to alleviate AD's social, economic, and health burden. In clinical practice, almost every chemical compound was found to relieve symptoms only in palliative treatment. The reason behind these perfect medicines is that the current medicines are not effective in targeting the cause of this disease. In this paper, we explored the potential role of flavonoid and polyphenolic compounds, which could be the most effective preventative anti-Alzheimer's strategy.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | | | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, South Korea
| |
Collapse
|
43
|
Ilyich T, Kovalenia T, Lapshina E, Stępniak A, Palecz B, Zavodnik I. Thermodynamic parameters and mitochondrial effects of supramolecular complexes of quercetin with β-cyclodextrins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Salazar J, Cano C, Pérez JL, Castro A, Díaz MP, Garrido B, Carrasquero R, Chacín M, Velasco M, D Marco L, Rojas-Quintero J, Bermúdez V. Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review. Curr Pharm Des 2021; 26:4444-4460. [PMID: 32611294 DOI: 10.2174/1381612826666200701211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas, Venezuela
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia, Espana
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
45
|
Bennett JP, Onyango IG. Energy, Entropy and Quantum Tunneling of Protons and Electrons in Brain Mitochondria: Relation to Mitochondrial Impairment in Aging-Related Human Brain Diseases and Therapeutic Measures. Biomedicines 2021; 9:225. [PMID: 33671585 PMCID: PMC7927033 DOI: 10.3390/biomedicines9020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Adult human brains consume a disproportionate amount of energy substrates (2-3% of body weight; 20-25% of total glucose and oxygen). Adenosine triphosphate (ATP) is a universal energy currency in brains and is produced by oxidative phosphorylation (OXPHOS) using ATP synthase, a nano-rotor powered by the proton gradient generated from proton-coupled electron transfer (PCET) in the multi-complex electron transport chain (ETC). ETC catalysis rates are reduced in brains from humans with neurodegenerative diseases (NDDs). Declines of ETC function in NDDs may result from combinations of nitrative stress (NS)-oxidative stress (OS) damage; mitochondrial and/or nuclear genomic mutations of ETC/OXPHOS genes; epigenetic modifications of ETC/OXPHOS genes; or defects in importation or assembly of ETC/OXPHOS proteins or complexes, respectively; or alterations in mitochondrial dynamics (fusion, fission, mitophagy). Substantial free energy is gained by direct O2-mediated oxidation of NADH. Traditional ETC mechanisms require separation between O2 and electrons flowing from NADH/FADH2 through the ETC. Quantum tunneling of electrons and much larger protons may facilitate this separation. Neuronal death may be viewed as a local increase in entropy requiring constant energy input to avoid. The ATP requirement of the brain may partially be used for avoidance of local entropy increase. Mitochondrial therapeutics seeks to correct deficiencies in ETC and OXPHOS.
Collapse
Affiliation(s)
| | - Isaac G. Onyango
- International Clinical Research Center, St. Anne’s University Hospital, CZ-65691 Brno, Czech Republic;
| |
Collapse
|
46
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|
47
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
48
|
Yan W, Diao S, Fan Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Res Ther 2021; 12:140. [PMID: 33597020 PMCID: PMC7890860 DOI: 10.1186/s13287-021-02194-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that show self-renewal, multi-directional differentiation, and paracrine and immune regulation. As a result of these properties, the MSCs have great clinical application prospects, especially in the regeneration of injured tissues, functional reconstruction, and cell therapy. However, the transplanted MSCs are prone to ageing and apoptosis and have a difficult to control direction differentiation. Therefore, it is necessary to effectively regulate the functions of the MSCs to promote their desired effects. In recent years, it has been found that mitochondria, the main organelles responsible for energy metabolism and adenosine triphosphate production in cells, play a key role in regulating different functions of the MSCs through various mechanisms. Thus, mitochondria could act as effective targets for regulating and promoting the functions of the MSCs. In this review, we discuss the research status and current understanding of the role and mechanism of mitochondrial energy metabolism, morphology, transfer modes, and dynamics on MSC functions.
Collapse
Affiliation(s)
- Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Diao
- Department of Pediatric dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China. .,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
49
|
Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int J Mol Sci 2021; 22:ijms22041786. [PMID: 33670130 PMCID: PMC7916866 DOI: 10.3390/ijms22041786] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is important in the pathophysiology of obesity, altering regulatory factors of mitochondrial activity, modifying the concentration of inflammation mediators associated with a large number and size of adipocytes, promoting lipogenesis, stimulating differentiation of preadipocytes to mature adipocytes, and regulating the energy balance in hypothalamic neurons that control appetite. This review discusses the participation of oxidative stress in obesity and the important groups of compounds found in plants with antioxidant properties, which include (a) polyphenols such as phenolic acids, stilbenes, flavonoids (flavonols, flavanols, anthocyanins, flavanones, flavones, flavanonols, and isoflavones), and curcuminoids (b) carotenoids, (c) capsaicinoids and casinoids, (d) isothiocyanates, (e) catechins, and (f) vitamins. Examples are analyzed, such as resveratrol, quercetin, curcumin, ferulic acid, phloretin, green tea, Hibiscus Sabdariffa, and garlic. The antioxidant activities of these compounds depend on their activities as reactive oxygen species (ROS) scavengers and on their capacity to prevent the activation of NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells), and reduce the expression of target genes, including those participating in inflammation. We conclude that natural compounds have therapeutic potential for diseases mediated by oxidative stress, particularly obesity. Controlled and well-designed clinical trials are still necessary to better know the effects of these compounds.
Collapse
|
50
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|