1
|
Shaw S, Mondal R, Dam P, Mandal A, Acharya R, Manna S, Gangopadhyay D, Mandal AK. Synthesis, characterization and application of silk sericin-based silver nanocomposites for antibacterial and food coating solutions. RSC Adv 2024; 14:33068-33079. [PMID: 39435006 PMCID: PMC11492224 DOI: 10.1039/d4ra07056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
The rising demand for fresh and safe food is driving advancements in preservation technologies, with nanoparticles offering a revolutionary solution. These particles extend shelf life, preserve nutritional value, and enhance food safety, aligning with present consumer expectations. This study explores the eco-friendly synthesis, characterization, and application of silk sericin-based silver nanoparticles (SS-AgNPs) for antibacterial and food coating purposes. Silk sericin, a byproduct of the silk industry, is typically discarded despite its valuable properties like biocompatibility, biodegradability, and antimicrobial activity. In this research, sericin from Bombyx mori cocoons was used as a reducing and stabilizing agent to synthesize SS-AgNPs. Characterization was performed using UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Antibacterial tests confirmed the efficacy of SS-AgNPs against Pseudomonas sp. and Staphylococcus sp., while food coating trials on tomatoes significantly reduced weight loss and microbial contamination. Biocompatibility was further verified through hemolysis and MTT assays, confirming SS-AgNPs' safety for biomedical and food-related uses. This study underscores the potential to convert sericin waste into a valuable resource, promoting sustainability and increasing the commercial value of sericulture.
Collapse
Affiliation(s)
- Shubhajit Shaw
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Paulami Dam
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Avijit Mandal
- Department of Life Sciences, Presidency University Kolkata 700073 India
| | - Ritwik Acharya
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Sanjeet Manna
- Central Instrumentation Facility, Odisha University of Agriculture and Technology Bhubaneswar 751003 Odisha India
| | | | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| |
Collapse
|
2
|
Ince JC, Duffy AR, Salim NV. Silver Coated Multifunctional Liquid Crystalline Elastomer Polymeric Composites as Electro-Responsive and Piezo-Resistive Artificial Muscles. Macromol Rapid Commun 2024; 45:e2400370. [PMID: 38873978 DOI: 10.1002/marc.202400370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Liquid crystalline elastomers (LCEs) are a class of shape-changing polymers with exceptional mechanical properties and potential as artificial muscles/polymer actuators. In this study, multifunctional LCE actuators with strain sensing and joule heating responsivity are developed. LCEs are successfully synthesized using the thiol-ene two-staged michael addition polymerization (TMAP) method. The LCE films are further functionalized via sequential polydopamine (PDA) and silver electroless coating. It is found that the PDA coating enabled the anchoring of the Ag particles to the LCE, thereby enabling the electrical conductivity of the Ag-LCEs (<0.1 Ω cm-1). The studies confirm that the Ag/PDA coated LCEs can sense up to ≈30% strain, sense their own actuation strokes, and actuate at a rate of 1.83% s-1 while lifting a weight ≈50 times its mass in response to a 12 V 2A DC current.
Collapse
Affiliation(s)
- Joshua C Ince
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Alan R Duffy
- Centre for Astronomy and Supercomputing, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Nisa V Salim
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Hawthorn, Melbourne, VIC, 3122, Australia
| |
Collapse
|
3
|
Monika P, Chandraprabha MN, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen 2024. [PMID: 39225112 DOI: 10.1111/wrr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization, and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity, and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - M N Chandraprabha
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Vivek Radhakrishnan
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Prathik Somayaji
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Leah Sabu
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
4
|
Monette A, Warren S, Barrett JC, Garnett-Benson C, Schalper KA, Taube JM, Topp B, Snyder A. Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee. J Immunother Cancer 2024; 12:e009427. [PMID: 39032943 PMCID: PMC11261685 DOI: 10.1136/jitc-2024-009427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapies targeting the programmed cell death protein-1/programmed death-ligand 1 (PD-L1) (abbreviated as PD-(L)1) axis are a significant advancement in the treatment of many tumor types. However, many patients receiving these agents fail to respond or have an initial response followed by cancer progression. For these patients, while subsequent immunotherapies that either target a different axis of immune biology or non-immune combination therapies are reasonable treatment options, the lack of predictive biomarkers to follow-on agents is impeding progress in the field. This review summarizes the current knowledge of mechanisms driving resistance to PD-(L)1 therapies, the state of biomarker development along this axis, and inherent challenges in future biomarker development for these immunotherapies. Innovation in the development and application of novel biomarkers and patient selection strategies for PD-(L)1 agents is required to accelerate the delivery of effective treatments to the patients most likely to respond.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | | | | | | | | | - Janis M Taube
- The Mark Foundation Center for Advanced Genomics and Imaging at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
5
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
6
|
Ning H, Zhang Y, Lu L, Pan L. Properties and release behavior of sodium alginate-based nanocomposite active films: Effects of particle size of IRMOF-3. Int J Biol Macromol 2024; 271:132488. [PMID: 38763248 DOI: 10.1016/j.ijbiomac.2024.132488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Nanoparticles are used as fillers to improve the properties of biopolymers, and their particle size is an important parameter. This work aims to investigate the effect of particle size of isoreticular metal-organic framework-3 (IRMOF-3) on the mechanical, physical, and release properties of sodium alginate (SA)-based composite active film. In our study, IRMOF-3 with six different particle sizes was synthesized by introducing additives. IRMOF-3 loading with carvacrol (IRMOF-3/CA nanoparticles) was incorporated into the SA matrix to prepare the composite film. The characterization and testing results of films showed that the particle size of nanoparticles affected the physical morphology and chemical structure of the film. Especially smaller nanoparticles uniformly dispersed into the SA matrix more easily, forming a denser and more stable spatial network structure with SA, which could more significantly improve the tensile strength, water vapor barrier, and hydrophobic properties of the film (P < 0.05). In addition, the CA release rate from the active film could be significantly reduced by about 33.90 % even when the smallest particle size of the IRMOF-3/CA nanoparticles was added. Therefore, when IRMOF-3/CA is used as the nano-filler to develop SA-based active film, its particle size has a potential influence on the properties of the film.
Collapse
Affiliation(s)
- Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuemei Zhang
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
| | - Liao Pan
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Muturi HT, Ghadieh HE, Asalla S, Lester SG, Verhulst S, Stankus HL, Zaidi S, Abdolahipour R, Belew GD, van Grunsven LA, Friedman SL, Schwabe RF, Hinds TD, Najjar SM. Conditional deletion of CEACAM1 causes hepatic stellate cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.586238. [PMID: 38617330 PMCID: PMC11014538 DOI: 10.1101/2024.04.02.586238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Objectives Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with MASH. Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcriptoin and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. Methods We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre+Cc1 fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. Results LratCre+Cc1 fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HDCs. This was inhibited by nicotinic acid treatment which stemmed the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. Conclusions Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.
Collapse
|
8
|
Santa-Cruz LA, Mantovi PS, Loguercio LF, Galvão RA, Navarro M, Passos STA, Neto BAD, Tavares FC, Torresi RM, Machado G. Gel Biopolymer Electrolytes Based on Saline Water and Seaweed to Support the Large-Scale Production of Sustainable Supercapacitors. CHEMSUSCHEM 2024; 17:e202300884. [PMID: 37707501 DOI: 10.1002/cssc.202300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Climate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high-power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources. Herein, a biopolymer agar-agar, extracted from red algae, is modified to increase gel viscosity up to 17-fold. This occurs due to alkaline treatment and an increase in the concentration of the agar-agar biopolymer, resulting in a strengthened gel with cohesive superfibres. The thermal degradation and agar modification mechanisms are explored. The electrolyte is applied to manufacture sustainable and flexible supercapacitors with satisfactory energy density (0.764 Wh kg-1 ) and power density (230 W kg-1 ). As an electrolyte, the aqueous gel promotes a long device cycle life (3500 cycles) for 1 A g-1 , showing good transport properties and low cost of acquisition and enabling the supercapacitor to be manufactured outside a glove box. These features decrease the cost of production and favor scale-up. To this end, this work provides eco-friendly electrolytes for the next generation of flexible energy storage devices.
Collapse
Affiliation(s)
- Larissa A Santa-Cruz
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, CEP 50740-560, PE, Brazil
- Laboratório de Materiais Nanoestruturados (LMNano), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, CEP 50740-545, PE, Brasil
| | - Primaggio S Mantovi
- Laboratório de Materiais Eletroativos, Universidade de São Paulo, São Paulo, CEP 05508-900, SP, Brazil
| | - Lara F Loguercio
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, CEP 90650-001, RS, Brazil
| | - Rhauane A Galvão
- Graduate School of Medicine, Science and Technology, Shinshu University, 380-0928, Nagano, Japan
| | - Marcelo Navarro
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, CEP 50740-560, PE, Brazil
| | - Saulo T A Passos
- Instituto de química e física, Universidade de Brasília, Brasília, CEP 70904-970, DF, Brazil
| | - Brenno A D Neto
- Instituto de química e física, Universidade de Brasília, Brasília, CEP 70904-970, DF, Brazil
| | - Fabiele C Tavares
- Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 25240-005, RJ, Brazil
| | - Roberto M Torresi
- Laboratório de Materiais Eletroativos, Universidade de São Paulo, São Paulo, CEP 05508-900, SP, Brazil
| | - Giovanna Machado
- Laboratório de Materiais Nanoestruturados (LMNano), Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, CEP 50740-545, PE, Brasil
| |
Collapse
|
9
|
Sun X, Liang H, Wang H, Meng N, Jin S, Zhou N. Silk fibroin/polyvinyl alcohol composite film loaded with antibacterial AgNP/polydopamine-modified montmorillonite; characterization and antibacterial properties. Int J Biol Macromol 2023; 251:126368. [PMID: 37591434 DOI: 10.1016/j.ijbiomac.2023.126368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
In this study, a kind of nanocomposite film was fabricated via combining silk fibroin, polyvinyl alcohol (SF/PVA) and AgNP/polydopamine-modified Montmorillonite (AgNP/PDA-Mt). The structural characteristics and properties of the SF/PVA/AgNP/PDA-Mt nanocomposites films were identified using X-ray diffraction (XRD), Thermal gravimetric analyzer (TGA), Fourier transform infrared spectroscopy (FTIR), EDS-mapping analyses and Scanning electron microscope (SEM). The results indicated enhanced thermal performance of SF/PVA/AgNP/PDA-Mt nanocomposites with increased AgNP/PDA-Mt weight. The nanocomposite film exhibited excellent antibacterial activity against E. coli and S. aureus. The 2 % SF/PVA/AgNP/PDA-Mt film showed the highest zone of inhibition with an average inhibition circle diameter of 26.1 mm against E. coli and 20.61 mm against S. aureus. Cytotoxicity test results indicated that the nanocomposites films were biocompatible with L929 cells with a 100 % survival rate, which can be considered as one of the advantages of new nanocomposites films. These findings suggest that SF/PVA/AgNP/PDA-Mt films have potential clinical applications in wound dressing and antibacterial biomedical applications.
Collapse
Affiliation(s)
- Xuemei Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Han Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Huiyan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china.
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china.
| | - Ninglin Zhou
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210046, China; Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
| |
Collapse
|
10
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
11
|
Summer M, Tahir HM, Ali S. Sonication and heat-mediated synthesis, characterization and larvicidal activity of sericin-based silver nanoparticles against dengue vector (Aedes aegypti). Microsc Res Tech 2023; 86:1363-1377. [PMID: 37119431 DOI: 10.1002/jemt.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Fabrication, characterization and evaluation of the larvicidal potential of novel silk protein (sericin)-based silver nanoparticles (Se-AgNPs) were the prime motives of the designed study. Furthermore, investigation of the sericin as natural reducing or stabilizing agent was another objective behind this study. Se-AgNPs were synthesized using sonication and heat. Fabricated Se-AgNPs were characterized using particle size analyzer, UV spectrophotometry, FTIR and SEM which confirmed the fabrication of the Se-AgNPs. Size of sonication-mediated Se-AgNPs was smaller (7.49 nm) than heat-assisted Se-AgNPs (53.6 nm). Being smallest in size, sonication-assisted Se-AgNPs revealed the significantly highest (F4,10 = 39.20, p = .00) larvicidal activity against fourth instar lab and field larvae (F4,10 = 1864, p = .00) of dengue vector (Aedes aegypti) followed by heat-assisted Se-AgNPs and positive control (temephos). Non-significant larvicidal activity was showed by silver (without sericin) which made the temperature stability of silver, debatable. Furthermore, findings of biochemical assays (glutathione-S transferase, esterase, and acetylcholinesterase) showed the levels of resistance in field strain larvae. Aforementioned findings of the study suggests the sonication as the best method for synthesis of Se-AgNPs while the larvicidal activity is inversely proportional to the size of Se-AgNPs, i.e., smallest the size, highest the larvicidal activity. Conclusively, status of the sericin as a natural reducing/stabilizing agent has been endorsed by the findings of this study. RESEARCH HIGHLIGHTS: Incorporation of biocompatible and inexpensive sericin as a capping/reducing agent for synthesis of Se-AgNPs. A novel sonication method was used for the fabrication of Se-AgNPs which were thoroughly characterized by particle size analyzer, UV-visible spectrophotometry, SEM and FTIR. Analysis of enzymatic (GSTs, ESTs) levels in field and lab strains of Aedes aegypti larvae for evaluation of insecticides resistance.
Collapse
Affiliation(s)
- Muhammad Summer
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Hafiz Muhammad Tahir
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Laboratory of Applied Entomology and Medical Toxicology, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
12
|
Summer M, Tahir HM, Ali S, Abaidullah R, Mumtaz S, Nawaz S, Azizullah. Bactericidal potential of different size sericin-capped silver nanoparticles synthesized by heat, light, and sonication. J Basic Microbiol 2023; 63:1016-1029. [PMID: 36879387 DOI: 10.1002/jobm.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Present study was aimed to assess the bactericidal potential of sericin-capped silver nanoparticles (Se-AgNPs) synthesized by heat, light, and sonication. Se-AgNPs were characterized by size analyzer, UV spectrophotometry, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Average size of Se-AgNPs synthesized by heat, light and sonication was 53.60, 78.12, and 7.49 nm, respectively. All (10) bacterial strains were exposed to Se-AgNPs prepared from different methods to compare their antibacterial potentials. Largest zone of inhibition (13 ± 1.15 mm) was observed for sonication-based nanoparticles (NPs) against Klebseilla pneumoniae while the smallest zone of light assisted NPs against Serratia rubidaea (5 ± 1 mm). Bacterial strains were also exposed to different concentrations (0.2%, 0.3%, and 0.6%) of Se-AgNPs which showed largest zone (12 ± 1 mm) of inhibition for 0.4% of Se-AgNPs against Protius mirabilis and smallest zone (5 ± 1.154 mm) for 0.3% of Se-AgNPs against Escherichia coli. Furthermore, effect of different temperatures (5°C, 37°C, and 60°C) and pH (3, 7, and 12) on the efficacy and stability of Se-AgNPs was also evaluated against different bacterial strains. Sonication mediated NPs showed highest bactericidal results against K. pneumoniae (F3,8 = 6.154; p = 0.018) with smallest size NPs (7.49 nm) while lowest bactericidal results against S. rubidaea (5 ± 1 mm) were shown with largest size (78.12 nm) NPs prepared by natural light. These variations of bactericidal activities of NPs with difference size endorse that the Se-AgNPs with smallest size have highest antibacterial activity than larger size NPs. Moreover, Se-AgNPs maintain their bactericidal potency at wide range of temperature and pH, hence seemed stable.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Azizullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
13
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
14
|
Kim JY, Kim SG, Garagiola U. Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol 2023; 45:6728-6742. [PMID: 37623245 PMCID: PMC10453912 DOI: 10.3390/cimb45080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The potential of sericin, a protein derived from silkworms, is explored in bone graft applications. Sericin's biocompatibility, hydrophilic nature, and cost-effectiveness make it a promising candidate for enhancing traditional graft materials. Its antioxidant, anti-inflammatory, and UV-resistant properties contribute to a healthier bone-healing environment, and its incorporation into 3D-printed grafts could lead to personalized medical solutions. However, despite these promising attributes, there are still gaps in our understanding. The precise mechanism through which sericin influences bone cell growth and healing is not fully understood, and more comprehensive clinical trials are needed to confirm its long-term biocompatibility in humans. Furthermore, the best methods for incorporating sericin into existing graft materials are still under investigation, and potential allergic reactions or immune responses to sericin need further study.
Collapse
Affiliation(s)
- Jwa-Young Kim
- Department of Oral and Maxillofacial Surgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul 07441, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea
| | - Umberto Garagiola
- Biomedical, Surgical and Oral Sciences Department, Maxillofacial and Dental Unit, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
15
|
Farazin A, Shirazi FA, Shafiei M. Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review. Int J Biol Macromol 2023:125454. [PMID: 37331533 DOI: 10.1016/j.ijbiomac.2023.125454] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Antibacterial hydrogels are a type of hydrogel that is designed to inhibit the growth of bacteria and prevent infections. These hydrogels typically contain antibacterial agents that are either integrated into the polymer network or coated onto the surface of the hydrogel. The antibacterial agents in these hydrogels can work through a variety of mechanisms, such as disrupting bacterial cell walls or inhibiting bacterial enzyme activity. Some examples of antibacterial agents that are commonly used in hydrogels include silver nanoparticles, chitosan, and quaternary ammonium compounds. Antibacterial hydrogels have a wide range of applications, including wound dressings, catheters, and medical implants. They can help to prevent infections, reduce inflammation, and promote tissue healing. In addition, they can be designed with specific properties to suit different applications, such as high mechanical strength or controlled release of antibacterial agents over time. Hydrogel wound dressings have come a long way in recent years, and the future looks very promising for these innovative wound care products. Overall, the future of hydrogel wound dressings is very promising, and we can expect to see continued innovation and advancement in this field in the years to come.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Chen J, Cai X, Zhang W, Zhu D, Ruan Z, Jin N. Fabrication of Antibacterial Sponge Microneedles for Sampling Skin Interstitial Fluid. Pharmaceutics 2023; 15:1730. [PMID: 37376179 DOI: 10.3390/pharmaceutics15061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) have recently garnered extensive interest concerning direct interstitial fluid (ISF) extraction or their integration into medical devices for continuous biomarker monitoring, owing to their advantages of painlessness, minimal invasiveness, and ease of use. However, micropores created by MN insertion may provide pathways for bacterial infiltration into the skin, causing local or systemic infection, especially with long-term in situ monitoring. To address this, we developed a novel antibacterial sponge MNs (SMNs@PDA-AgNPs) by depositing silver nanoparticles (AgNPs) on polydopamine (PDA)-coated SMNs. The physicochemical properties of SMNs@PDA-AgNPs were characterized regarding morphology, composition, mechanical strength, and liquid absorption capacity. The antibacterial effects were evaluated and optimized through agar diffusion assays in vitro. Wound healing and bacterial inhibition were further examined in vivo during MN application. Finally, the ISF sampling ability and biosafety of SMNs@PDA-AgNPs were assessed in vivo. The results demonstrate that antibacterial SMNs enable direct ISF extraction while preventing infection risks. SMNs@PDA-AgNPs could potentially be used for direct sampling or combined with medical devices for real-time diagnosis and management of chronic diseases.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy, Fujian Medical University, Putian 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Wenqin Zhang
- School of Pharmacy, Fujian Medical University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Danhong Zhu
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Nan Jin
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| |
Collapse
|
17
|
Batul R, Bhave M, Yu A. Investigation of Antimicrobial Effects of Polydopamine-Based Composite Coatings. Molecules 2023; 28:molecules28114258. [PMID: 37298735 DOI: 10.3390/molecules28114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Herein, polydopamine (PDA)-based antimicrobial coatings loaded with silver nanoparticles (Ag NPs) and gentamicin were designed and prepared on glass slides using two different approaches. To our knowledge, this study was performed for the first time with the aim to compare these methods (viz., in situ loading and physical adsorption method) regarding the loading and release behavior of payloads. In one method, gentamicin was in situ loaded on PDA-coated substrates during PDA polymerization followed by Ag NPs immobilization (named as Ag@Gen/PDA); for the second method, Ag NPs and gentamicin were simultaneously loaded onto PDA via physical adsorption by immersing pre-formed PDA coatings into a mixed solution of Ag NPs and gentamicin (named as Ag/Gen@PDA). The loading and release characteristics of these antimicrobial coatings were compared, and both gave variable outcomes. The in situ loading method consequently provided a relatively slow release of loaded antimicrobials, i.e., approx. 46% for Ag@Gen/PDA as compared to 92% from physically adsorbed Ag/GenPDA in an immersion period of 30 days. A similar trend was observed for gentamicin release, i.e., ~0.006 µg/mL from Ag@Gen/PDA and 0.02 µg/mL from Ag/Gen@PDA each day. The slower antimicrobial release from Ag@Gen/PDA coatings would ultimately provide an effective long-term antimicrobial property as compared to Ag/Gen@PDA. Finally, the synergistic antimicrobial activities of these composite coatings were assessed against two microbial species, namely, Staphylococcus aureus and Escherichia coli, hence providing evidence in the prevention of bacterial colonization.
Collapse
Affiliation(s)
- Rahila Batul
- Department of Chemistry and Biotechnology, School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 55211, Saudi Arabia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
18
|
Schäfer S, Aavani F, Köpf M, Drinic A, Stürmer EK, Fuest S, Grust ALC, Gosau M, Smeets R. Silk proteins in reconstructive surgery: Do they possess an inherent antibacterial activity? A systematic review. Wound Repair Regen 2023; 31:99-110. [PMID: 36106818 DOI: 10.1111/wrr.13049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The field of reconstructive surgery encompasses a wide range of surgical procedures and regenerative approaches to treat various tissue types. Every surgical procedure is associated with the risk of surgical site infections, which are not only a financial burden but also increase patient morbidity. The surgical armamentarium in this area are biomaterials, particularly natural, biodegradable, biocompatible polymers, including the silk proteins fibroin (SF) and sericin (SS). Silk is known to be derived from silkworms and is mainly composed of 60-80% fibroin, which provides the structural form, and 15-35% sericin, which acts as a glue-like substance for the SF threads. Silk proteins possess most of the desired properties for biomedical applications, including biocompatibility, biodegradability, minimal immunogenicity, and tunable biomechanical behaviour. In an effort to alleviate or even prevent infections associated with the use of biomaterials in surgery, antibacterial/antimicrobial properties have been investigated in numerous studies. In this systematic review, the following question was addressed: Do silk proteins, SF and SS, possess an intrinsic antibacterial property and how could these materials be tailored to achieve such a property?
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Centre, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Sun Y, Shi W, Zhang Q, Guo H, Dong Z, Zhao P, Xia Q. Multi-Omics Integration to Reveal the Mechanism of Sericin Inhibiting LPS-Induced Inflammation. Int J Mol Sci 2022; 24:ijms24010259. [PMID: 36613700 PMCID: PMC9820220 DOI: 10.3390/ijms24010259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sericin is a natural protein with high application potential, but the research on its efficacy is very limited. In this study, the anti-inflammatory mechanism of sericin protein was investigated. Firstly, the protein composition of sericin extracts was determined by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). This was then combined with Enzyme-linked Immunosorbent Assay (ELISA) and Quantitative Real-time PCR (qRT-PCR), and it was confirmed that the anti-inflammation ability of sericin was positively correlated with the purity of sericin 1 protein. Finally, RNA-seq was performed to quantify the inhibitory capacity of sericin sample SS2 in LPS-stimulated macrophages. The gene functional annotation showed that SS2 suppressed almost all PRRs signaling pathways activated by lipopolysaccharides (LPS), such as the Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways. The expression level of adaptor gene MyD88 and receptor gene NOD1 was significantly down-regulated after SS2 treatment. SS2 also reduced the phosphorylation levels of NF-κB P65, P38, and JNK, thereby reducing the expressions of IL-1β, IL-6, INOS, and other inflammatory cytokines. It was confirmed that sericin inhibited LPS-induced inflammation through MyD88/NF-κB pathway. This finding provides necessary theoretical support for sericin development and application.
Collapse
Affiliation(s)
- Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Wenyu Shi
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Haiqiong Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
- Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
20
|
Process optimization and characterization of composite biopolymer films obtained from fish scale gelatin, agar and chitosan using response surface methodology. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Xiong S, Li R, Ye S, Ni P, Shan J, Yuan T, Liang J, Fan Y, Zhang X. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings. Int J Biol Macromol 2022; 220:109-116. [PMID: 35970363 DOI: 10.1016/j.ijbiomac.2022.08.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Wound management requires the preparation of controllable, safe and effective dressings to isolate the wound from the external environment. Currently, widely used commercial dressings focus on the isolation effect rather than an environment conducive to wound healing. To provide the dressing with beneficial properties such as wetting and antioxidant and antibacterial activity, this study used polyvinyl alcohol (PVA) hydrogel as the base material and introduced chitosan (CS) and vanillin (V) to design a PVA/CS/V three-phase hydrogel dressing. The dressings were prepared using a freeze-thaw cycle to achieve properties. We conducted a comparative analysis of PVA/V and PVA/CS two-phase hydrogels. The PVA/CS/V (PCV) hydrogel dressing maintaining an elastic modulus at >5 kPa at 15-40 °C. An in vitro antibacterial assay showed the potent antibacterial ability of hydrogels against gram-positive and -negative bacteria, and cells in some PCV groups showed higher activity. The antioxidant results showed that PCV hydrogel had a potent scavenging effect on DPPH, ABTS+, and PTIO free radical. The antibacterial and antioxidant properties of three-phase hydrogel showed the best performance in all experimental groups. These results suggest that PCV hydrogel has value in commercial applications due to its simple preparation process and excellent biological properties.
Collapse
Affiliation(s)
- Shuting Xiong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Renpeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Sheng Ye
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Panxianzhi Ni
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Jing Shan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, 82 Qinglong Road, Chengdu, Sichuan, China.
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd., 29 Wangjiang Road, Chengdu, Sichuan, China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; Sichuan Testing Center for Biomaterials and Medical Devices Co., Ltd., 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Zeng Y, Yi T, Ma J, Han M, Xu X, Chen D, Chen X, Wang R, Zhan Y. Precisely controlled polydopamine-mediated antibacterial system: mathematical model of polymerization, prediction of antibacterial capacity, and promotion of wound healing. NANOTECHNOLOGY 2022; 33:455102. [PMID: 35917694 DOI: 10.1088/1361-6528/ac85f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the polydopamine (PDA)-mediated antibacterial system is synthesized to carry out antimicrobial activities in vitro and in vivo. First, to precisely control the surface modification of nanodiamonds (NDs), a mathematical kinetics model of PDA deposition is established, and the conditions of synthesis reaction are discussed including influencing factors such as the concentrations of dopamine, reaction time, and the kinetic constant k1, which is a function of several variables associated with the reaction temperature, light irradiance (especially at ultraviolet wavelengths), pH value and concentration of dissolved O2 in the solution. A simulated visualization demonstrates that the deposition thickness of PDA is positively correlated with temperature and light irradiance, and PDA is easier to deposit in an alkaline solution and will be terminated if the dissolved O2 is insufficient. Then, the precisely controlled thickness of PDA can control the growth of AgNPs, rendering the intensity of Raman peaks increased and providing a predictable antibacterial effect against E. coli in vitro. An optimized antibacterial hydrogel containing NDs-PDA/Ag is prepared and characterized by the Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Finally, the antibacterial experiments to promote wound healing in vivo are performed, which are verified by pathological and immunohistochemical-stained sections. This work provides a theoretical basis of predicting the PDA-assisted surface modification of NDs, giving a divinable antibacterial effect, and promoting wounds healing in vivo.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xinglong Sec. No. 266, Xi'an, 710126, CHINA
| | - Tong Yi
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi Province, 710126, CHINA
| | - Jingwen Ma
- Radiology Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, South Er-huan No.151, Xi'an, Shaanxi, 710054, CHINA
| | - Ming Han
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi, 710071, CHINA
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi, 710126, CHINA
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi Province, 710126, CHINA
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi, 710126, CHINA
| | - Risheng Wang
- Chemistry, Missouri University of S & T, 133 Schrenk Hall, Rolla, Missouri, 65409, UNITED STATES
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of education, School of Life Science and Technology, Xidian University, Xifeng Rd. Xilong Sec. No. 266, Xi'an, Shaanxi Province, 710071, CHINA
| |
Collapse
|
23
|
Zhang L, Wang Z, Jiao Y, Wang Z, Tang X, Du Z, Zhang Z, Lu S, Qiao C, Cui J. Biodegradable packaging films with ε-polylysine/ZIF-L composites. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Zou Y, Yan R, Wang H, Zhong K, Wang S. NIR‐Responsive Polyurethane Nanocomposites Based on PDA@FA Nanoparticles with Synergistic Antibacterial Effect. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuke Zou
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
| | - Rui Yan
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| | - Kai Zhong
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
| | - Shuang Wang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
26
|
Sau S, Kundu S. Variation in structure and properties of poly(vinyl alcohol) (PVA) film in the presence of silver nanoparticles grown under heat treatment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Cakir SN, Whitehead KM, Hendricks HKL, de Castro Brás LE. Novel Techniques Targeting Fibroblasts after Ischemic Heart Injury. Cells 2022; 11:cells11030402. [PMID: 35159212 PMCID: PMC8834471 DOI: 10.3390/cells11030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The great plasticity of cardiac fibroblasts allows them to respond quickly to myocardial injury and to contribute to the subsequent cardiac remodeling. Being the most abundant cell type (in numbers) in the heart, and a key participant in the several phases of tissue healing, the cardiac fibroblast is an excellent target for treating cardiac diseases. The development of cardiac fibroblast-specific approaches have, however, been difficult due to the lack of cellular specific markers. The development of genetic lineage tracing tools and Cre-recombinant transgenics has led to a huge acceleration in cardiac fibroblast research. Additionally, the use of novel targeted delivery approaches like nanoparticles and modified adenoviruses, has allowed researchers to define the developmental origin of cardiac fibroblasts, elucidate their differentiation pathways, and functional mechanisms in cardiac injury and disease. In this review, we will first characterize the roles of fibroblasts in the different stages of cardiac repair and then examine novel techniques targeting fibroblasts post-ischemic heart injury.
Collapse
Affiliation(s)
- Sirin N Cakir
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kaitlin M Whitehead
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Hanifah K L Hendricks
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
28
|
Zhang T, Zhang J, Wang Q, Zhang H, Wang Z, Wu Z. Evaluating of the performance of natural mineral vermiculite modified PVDF membrane for oil/water separation by membrane fouling model and XDLVO theory. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119886] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Mostafa M, Kandile NG, Mahmoud MK, Ibrahim HM. Synthesis and characterization of polystyrene with embedded silver nanoparticle nanofibers to utilize as antibacterial and wound healing biomaterial. Heliyon 2022; 8:e08772. [PMID: 35118204 PMCID: PMC8792089 DOI: 10.1016/j.heliyon.2022.e08772] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Herein, silver nanoparticles (Ag) embedded in polystyrene (PS) nanofiber composites have been prepared by an electrospinning technique using N, N-dimethylformamide (DMF) as a solvent and safe reducing agent. Electrospinning of polystyrene (PS) solutions is conducted using different electrospinning parameters such as polymer concentration in the electrospinning solution; solution feed rate, and electrical field strength. Then silver nanoparticles (AgNPs) were embedded into PS nanofibers to obtain an AgNPs-PS nanofiber composite as a powerful, cheap, and nontoxic bioactive material. PS nanofibers and AgNPs-PS nanofibers composite were characterized by using thermogravimetric analysis (TGA), X-ray diffraction, and scanning electron microscopy (SEM). Also, AgNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), and EDX analysis. Results showed that PS nanofibers were obtained with concentrations ranging from 10–30 wt.% in DMF solvent. Also, an AgNPs-PS nanofiber composite has been produced from its solutions by using DMF at the optimum value. The prepared AgNPs have a 21–40 nm particle size and a semi-spherical shape. In addition, the antibacterial activity of AgNPs-PS nanofibers towards both Gram-positive and Gram-negative bacteria has been increased. Therefore, this nanocomposite can be used as a powerful bioactive material in biomedical fields.
Collapse
Affiliation(s)
- Mayar Mostafa
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, 11757, Cairo, Egypt
| | - Nadia G Kandile
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, 11757, Cairo, Egypt
| | - Mahmoud K Mahmoud
- Housing and Building National Research Center, 87 El Tahrir St., Dokki, Giza, 1770, Egypt
| | - Hassan M Ibrahim
- Textile Research and Technology Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.) P.O.12622, Dokki, Giza, Egypt
| |
Collapse
|
30
|
Rozhin A, Batasheva S, Kruychkova M, Cherednichenko Y, Rozhina E, Fakhrullin R. Biogenic Silver Nanoparticles: Synthesis and Application as Antibacterial and Antifungal Agents. MICROMACHINES 2021; 12:1480. [PMID: 34945330 PMCID: PMC8708042 DOI: 10.3390/mi12121480] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
The importance and need for eco-oriented technologies has increased worldwide, which leads to an enhanced development of methods for the synthesis of nanoparticles using biological agents. This review de-scribes the current approaches to the preparation of biogenic silver nanoparticles, using plant extracts and filtrates of fungi and microorganisms. The peculiarities of the synthesis of particles depending on the source of biocomponents are considered as well as physico-morphological, antibacterial and antifungal properties of the resulting nanoparticles which are compared with such properties of silver nanoparticles obtained by chemical synthesis. Special attention is paid to the process of self-assembly of biogenic silver nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (A.R.); (S.B.); (M.K.); (Y.C.)
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (A.R.); (S.B.); (M.K.); (Y.C.)
| |
Collapse
|
31
|
Savencu I, Iurian S, Porfire A, Bogdan C, Tomuță I. Review of advances in polymeric wound dressing films. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03797-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Facile fabrication of antibacterial and antiviral perhydrolase-polydopamine composite coatings. Sci Rep 2021; 11:12410. [PMID: 34127732 PMCID: PMC8203652 DOI: 10.1038/s41598-021-91925-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
In situ generation of antibacterial and antiviral agents by harnessing the catalytic activity of enzymes on surfaces provides an effective eco-friendly approach for disinfection. The perhydrolase (AcT) from Mycobacterium smegmatis catalyzes the perhydrolysis of acetate esters to generate the potent disinfectant, peracetic acid (PAA). In the presence of AcT and its two substrates, propylene glycol diacetate and H2O2, sufficient and continuous PAA is generated over an extended time to kill a wide range of bacteria with the enzyme dissolved in aqueous buffer. For extended self-disinfection, however, active and stable AcT bound onto or incorporated into a surface coating is necessary. In the current study, an active, stable and reusable AcT-based coating was developed by incorporating AcT into a polydopamine (PDA) matrix in a single step, thereby forming a biocatalytic composite onto a variety of surfaces. The resulting AcT-PDA composite coatings on glass, metal and epoxy surfaces yielded up to 7-log reduction of Gram-positive and Gram-negative bacteria when in contact with the biocatalytic coating. This composite coating also possessed potent antiviral activity, and dramatically reduced the infectivity of a SARS-CoV-2 pseudovirus within minutes. The single-step approach enables rapid and facile fabrication of enzyme-based disinfectant composite coatings with high activity and stability, which enables reuse following surface washing. As a result, this enzyme-polymer composite technique may serve as a general strategy for preparing antibacterial and antiviral surfaces for applications in health care and common infrastructure safety, such as in schools, the workplace, transportation, etc.
Collapse
|
34
|
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. Int J Mol Sci 2021; 22:4595. [PMID: 33925617 PMCID: PMC8123905 DOI: 10.3390/ijms22094595] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| |
Collapse
|
35
|
Ren X, van der Mei HC, Ren Y, Busscher HJ, Peterson BW. Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112021. [PMID: 33812638 DOI: 10.1016/j.msec.2021.112021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Titanium is frequently used for dental implants, percutaneous pins and screws or orthopedic joint prostheses. Implant surfaces can become peri-operatively contaminated by surgically introduced bacteria during implantation causing lack of surface coverage by mammalian cells and subsequent implant failure. Especially implants that have to function in a bacteria-laden environment such as dental implants or percutaneous pins, cannot be surgically implanted while being kept sterile. Accordingly, contaminating bacteria adhering to implant surfaces hamper successful surface coverage by mammalian cells required for long-term functioning. Here, nanotubular titanium surfaces were prepared and loaded with Ag nanoparticles or gentamicin with the aim of killing contaminating bacteria in order to favor surface coverage by mammalian cells. In mono-cultures, unloaded nanotubules did not cause bacterial killing, but loading of Ag nanoparticles or gentamicin reduced the number of adhering Staphylococcus aureus or Pseudomonas aeruginosa CFUs. A gentamicin-resistant Staphylococcus epidermidis was only killed upon loading with Ag nanoparticles. However, unlike low-level gentamicin loading, loading with Ag nanoparticles also caused tissue-cell death. In bi-cultures, low-level gentamicin-loading of nanotubular titanium surfaces effectively eradicated contaminating bacteria favoring surface coverage by mammalian cells. Thus, care must be taken in loading nanotubular titanium surfaces with Ag nanoparticles, while low-level gentamicin-loaded nanotubular titanium surfaces can be used as a local antibiotic delivery system to negate failure of titanium implants due to peri-operatively introduced, contaminating bacteria without hampering surface coverage by mammalian cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Brandon W Peterson
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
36
|
Chien HW, Tsai MY, Kuo CJ, Lin CL. Well-Dispersed Silver Nanoparticles on Cellulose Filter Paper for Bacterial Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:595. [PMID: 33673629 PMCID: PMC7997195 DOI: 10.3390/nano11030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
In this study, a polydopamine (PDA) and polyethyleneimine (PEI)-assisted approach was developed to generate well-distributed PDA/PEI/silver (PDA/PEI/Ag) nanocomplexes on the surfaces of commercial cellulose filter papers to achieve substantial bacterial reduction under gravity-driven filtration. PDA can bind to cellulose paper and act as a reducer to produce silver nanoparticles (AgNPs), while PEI can react with oxidative dopamine and act as a dispersant to avoid the aggregation of AgNPs. The successful immobilization of PDA/PEI/Ag nanocomplexes was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used as pathogen models to test the efficacy of the PDA/PEI/Ag nanocomplex-incorporated filter papers. The PDA/PEI/Ag nanocomplex-incorporated filter papers provided a substantial bacterial removal of up to 99% by simple gravity filtration. This work may be useful to develop a feasible industrial production process for the integration of biocidal AgNPs into cellulose filter paper and is recommended as a local-condition water-treatment technology to treat microbial-contaminated drinking water.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (M.-Y.T.); (C.-L.L.)
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan;
| | - Ming-Yen Tsai
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (M.-Y.T.); (C.-L.L.)
| | - Chia-Jung Kuo
- Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan;
| | - Ching-Lo Lin
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan; (M.-Y.T.); (C.-L.L.)
| |
Collapse
|
37
|
Das G, Shin HS, Campos EVR, Fraceto LF, Del Pilar Rodriguez-Torres M, Mariano KCF, de Araujo DR, Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology 2021. [PMID: 33482828 DOI: 10.1186/s12951-021-00774-y.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advances in products based on nanotechnology have directed extensive research on low-cost, biologically compatible, and easily degradable materials. MAIN BODY Sericin (SER) is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). SER is a biocompatible material with economic viability, which can be easily functionalized due to its potential crosslink reactions. Also, SER has inherent biological properties, which makes possible its use as a component of pharmaceutical formulations with several biomedical applications, such as anti-tumor, antimicrobials, antioxidants and as scaffolds for tissue repair as well as participating in molecular mechanisms attributed to the regulation of transcription factors, reduction of inflammatory signaling molecules, stimulation of apoptosis, migration, and proliferation of mesenchymal cells. CONCLUSION In this review, the recent innovations on SER-based nano-medicines (nanoparticles, micelles, films, hydrogels, and their hybrid systems) and their contributions for non-conventional therapies are discussed considering different molecular mechanisms for promoting their therapeutic applications.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Estefânia V Ramos Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de março, 511, Alto da Boa Vista, Sorocaba, São Paulo, 18087-180, Brazil
| | - Maria Del Pilar Rodriguez-Torres
- Departamento de Ingenieria Molecular de Materiales, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230, Queretaro, Qro, Mexico
| | - Kelli Cristina Freitas Mariano
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900, Coahuila, C.P., Mexico
| | - Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, Ilha Solteira, SP, 15385-000, Brazil
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| |
Collapse
|
38
|
Das G, Shin HS, Campos EVR, Fraceto LF, Del Pilar Rodriguez-Torres M, Mariano KCF, de Araujo DR, Fernández-Luqueño F, Grillo R, Patra JK. Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J Nanobiotechnology 2021; 19:30. [PMID: 33482828 PMCID: PMC7821414 DOI: 10.1186/s12951-021-00774-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The advances in products based on nanotechnology have directed extensive research on low-cost, biologically compatible, and easily degradable materials. MAIN BODY Sericin (SER) is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). SER is a biocompatible material with economic viability, which can be easily functionalized due to its potential crosslink reactions. Also, SER has inherent biological properties, which makes possible its use as a component of pharmaceutical formulations with several biomedical applications, such as anti-tumor, antimicrobials, antioxidants and as scaffolds for tissue repair as well as participating in molecular mechanisms attributed to the regulation of transcription factors, reduction of inflammatory signaling molecules, stimulation of apoptosis, migration, and proliferation of mesenchymal cells. CONCLUSION In this review, the recent innovations on SER-based nano-medicines (nanoparticles, micelles, films, hydrogels, and their hybrid systems) and their contributions for non-conventional therapies are discussed considering different molecular mechanisms for promoting their therapeutic applications.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Estefânia V Ramos Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de março, 511, Alto da Boa Vista, Sorocaba, São Paulo, 18087-180, Brazil
| | - Maria Del Pilar Rodriguez-Torres
- Departamento de Ingenieria Molecular de Materiales, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blvd. Juriquilla 3001, 76230, Queretaro, Qro, Mexico
| | - Kelli Cristina Freitas Mariano
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, Federal University of ABC. Av. Dos Estados, 5001. Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, 25900, Coahuila, C.P., Mexico
| | - Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, Ilha Solteira, SP, 15385-000, Brazil
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| |
Collapse
|
39
|
Rational Design of Ag/ZnO Hybrid Nanoparticles on Sericin/Agarose Composite Film for Enhanced Antimicrobial Applications. Int J Mol Sci 2020; 22:ijms22010105. [PMID: 33374249 PMCID: PMC7794692 DOI: 10.3390/ijms22010105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Silver-based hybrid nanomaterials are receiving increasing attention as potential alternatives for traditional antimicrobial agents. Here, we proposed a simple and eco-friendly strategy to efficiently assemble zinc oxide nanoparticles (ZnO) and silver nanoparticles (AgNPs) on sericin-agarose composite film to impart superior antimicrobial activity. Based on a layer-by-layer self-assembly strategy, AgNPs and ZnO were immobilized on sericin-agarose films using the adhesion property of polydopamine. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction spectroscopy were used to show the morphology of AgNPs and ZnO on the surface of the composite film and analyze the composition and structure of AgNPs and ZnO, respectively. Water contact angle, swelling ratio, and mechanical property were determined to characterize the hydrophilicity, water absorption ability, and mechanical properties of the composite films. In addition, the antibacterial activity of the composite film was evaluated against Gram-positive and Gram-negative bacteria. The results showed that the composite film not only has desirable hydrophilicity, high water absorption ability, and favorable mechanical properties but also exhibits excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria. It has shown great potential as a novel antimicrobial biomaterial for wound dressing, artificial skin, and tissue engineering.
Collapse
|
40
|
Niyonshuti II, Krishnamurthi VR, Okyere D, Song L, Benamara M, Tong X, Wang Y, Chen J. Polydopamine Surface Coating Synergizes the Antimicrobial Activity of Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40067-40077. [PMID: 32794690 DOI: 10.1021/acsami.0c10517] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on Escherichia coli. The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.
Collapse
Affiliation(s)
- Isabelle I Niyonshuti
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Deborah Okyere
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Liang Song
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mourad Benamara
- Institute of Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Materials Science and Engineering Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
41
|
Pham XH, Kim J, Jun BH. Silver Nano/Microparticles: Modification and Applications 2.0. Int J Mol Sci 2020; 21:E4395. [PMID: 32575707 PMCID: PMC7349777 DOI: 10.3390/ijms21124395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023] Open
Abstract
Currently, nano/microparticles are widely used in various fields [...].
Collapse
Affiliation(s)
| | | | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (X.-H.P.); (J.K.)
| |
Collapse
|
42
|
Metallic Stent Mesh Coated with Silver Nanoparticles Suppresses Stent-Induced Tissue Hyperplasia and Biliary Sludge in the Rabbit Extrahepatic Bile Duct. Pharmaceutics 2020; 12:pharmaceutics12060563. [PMID: 32560473 PMCID: PMC7356520 DOI: 10.3390/pharmaceutics12060563] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Recent therapeutic strategies to suppress restenosis after biliary stent placement are insufficient. Here, we demonstrate the usefulness of a self-expandable metal stent (SEMS), a stent mesh coated with silver nanoparticles (AgNPs), for suppression of both stent-induced tissue hyperplasia and biliary sludge formation in the rabbit bile duct. The AgNP-coated SEMSs were prepared using a simple bio-inspired surface modification process. Then, the prepared SEMSs were successfully placed in 22 of 24 rabbits. Sludge formation in the AgNP-coated SEMS groups was significantly decreased compared to the control group on gross findings. Cholangiographic and histologic examinations demonstrated significantly decreased tissue hyperplasia in the AgNP-coated SEMS groups compared with the control group (p < 0.05 for all). There were no differences between the AgNP-coated SEMS groups (p > 0.05 for all). However, in the group coated with the greatest concentration of AgNPs (Group D), submucosal fibrosis was thicker than in the other AgNP-coated groups (p < 0.05 for all). The AgNP-coated metallic stent mesh significantly suppressed stent-induced tissue hyperplasia and biliary sludge formation in the rabbit bile duct. Taken together, the AgNP coating strategy developed in this study could be widely utilized in non-vascular medical devices for anti-bacterial and anti-inflammatory responses.
Collapse
|
43
|
Zhang YH, Shi MJ, Li KL, Xing R, Chen ZH, Chen XD, Wang YF, Liu XF, Liang XY, Sima YH, Xu SQ. Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:376-393. [PMID: 31724490 DOI: 10.1080/09205063.2019.1692642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Biological modifications of the silk fibroin (silk) material have broad applications in textiles, biomedical materials and other industrial materials. It is economical to incorporate nanoparticles to the biosynthesis of silk fibroin by adding them to silkworm larval diets. This strategy may result in the rapid stable production of modified silk. Glucose-coated silver nanoparticles (AgNPs) were used to improve the AgNPs' biocompatibility, and the AgNPs were efficiently incorporated into silk by feeding. Larvae fed with AgNPs produced silk with significantly improved antibacterial properties and altered silk secondary structures. Both positive and negative effects on the growth and synthesis of silk proteins were observed after different AgNPs doses. Larvae feeding with low concentration of 0.02% and medium 0.20% AgNPs have greater transfer efficiencies of AgNPs to silk compared with feeding high concentration of 2.00% AgNPs. In addition, the elongation and tensile strength of the produced silk fibers were also significantly increased, with greater mammalian cell compatibility. The appropriate AgNPs concentration in the diet of silkworms can promote the synthesis of silk proteins, enhance their mechanical properties, improve their antibacterial property and inhibit the presence of Gram-negative bacteria.
Collapse
Affiliation(s)
- Yun-Hu Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Mei-Juan Shi
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Kai-Le Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Rui Xing
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESLab), Soochow University, Suzhou, China
| | - Zhuo-Hua Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xue-Dong Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yong-Feng Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xiao-Fei Liu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xin-Yin Liang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESLab), Soochow University, Suzhou, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,National Engineering Laboratory for Modern Silk (NESLab), Soochow University, Suzhou, China
| |
Collapse
|
44
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4222-4233. [DOI: 10.1080/21691401.2019.1687501] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Ai L, He H, Wang P, Cai R, Tao G, Yang M, Liu L, Zuo H, Zhao P, Wang Y. Rational Design and Fabrication of ZnONPs Functionalized Sericin/PVA Antimicrobial Sponge. Int J Mol Sci 2019; 20:ijms20194796. [PMID: 31569598 PMCID: PMC6801402 DOI: 10.3390/ijms20194796] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
The interests of developing antimicrobial biomaterials based on silk sericin from Bombyx mori cocoon, have been shooting up in the last decades. Sericin is a valuable natural protein owing to its hydrophilicity, biodegradability, and biocompatibility. Here, we fabricated a sponge with antibacterial capacities for potential wound dressing application. By co-blending of sericin, polyvinyl alcohol (PVA) and zinc oxide nanoparticles (ZnONPs), the ZnONPs-sericin/PVA composite sponge (ZnONPs-SP) was successfully prepared after freeze-drying. Scanning electron microscopy showed the porous structure of ZnONPs-SP. Energy dispersive spectroscopy indicated the existence of Zn in the sponge. X-ray diffractometry revealed the hexagonal wurtzite structure of ZnONPs. Fourier transform infrared spectroscopy showed the biologic coupling of ZnONPs and sericin resulted in a decrease of α-helix and random coil contents, and an increase of β-sheet structure in the sponge. The swelling experiment suggested ZnONPs-SP has high porosity, good hydrophilicity, and water absorption capability. The plate bacterial colony counting coupled with growth curve assays demonstrated that the composite sponge has an efficiently bacteriostatic effect against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the cell compatibility analysis suggested the composite sponge has excellent cytocompatibility on NIH3T3 cells. In all, ZnONPs-SP composite sponge has significant potentials in biomaterials such as wound dressing and tissue engineering.
Collapse
Affiliation(s)
- Lisha Ai
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Huawei He
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
- College of Biotechnology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Peng Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Rui Cai
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Gang Tao
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Meirong Yang
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Liying Liu
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Yejing Wang
- Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China.
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Davidović S, Lazić V, Miljković M, Gordić M, Sekulić M, Marinović-Cincović M, Ratnayake IS, Ahrenkiel SP, Nedeljković JM. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. Carbohydr Polym 2019; 224:115187. [PMID: 31472840 DOI: 10.1016/j.carbpol.2019.115187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023]
Abstract
The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10-20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureuswas observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (≥99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (≤0.24 ppm) than the harmful ecological level (1 ppm).
Collapse
Affiliation(s)
- Slađana Davidović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120, Belgrade, Serbia
| | - Vesna Lazić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| | - Miona Miljković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120, Belgrade, Serbia
| | - Milan Gordić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Milica Sekulić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | | | - Ishara S Ratnayake
- South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, SD, 57701, USA
| | - S Phillip Ahrenkiel
- South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, SD, 57701, USA
| | - Jovan M Nedeljković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| |
Collapse
|
47
|
Liao C, Li Y, Tjong SC. Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1102. [PMID: 31374855 PMCID: PMC6724040 DOI: 10.3390/nano9081102] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Aliphatic polyesters such as poly(lactic acid) (PLA), polycaprolactone (PCL) and poly(lactic-co-glycolic) acid (PLGA) copolymers have been widely used as biomaterials for tissue engineering applications including: bone fixation devices, bone scaffolds, and wound dressings in orthopedics. However, biodegradable aliphatic polyesters are prone to bacterial infections due to the lack of antibacterial moieties in their macromolecular chains. In this respect, silver nanoparticles (AgNPs), graphene oxide (GO) sheets and AgNPs-GO hybrids can be used as reinforcing nanofillers for aliphatic polyesters in forming antimicrobial nanocomposites. However, polymeric matrix materials immobilize nanofillers to a large extent so that they cannot penetrate bacterial membrane into cytoplasm as in the case of colloidal nanoparticles or nanosheets. Accordingly, loaded GO sheets of aliphatic polyester nanocomposites have lost their antibacterial functions such as nanoknife cutting, blanket wrapping and membrane phospholipid extraction. In contrast, AgNPs fillers of polyester nanocomposites can release silver ions for destroying bacterial cells. Thus, AgNPs fillers are more effective than loaded GO sheets of polyester nanocomposiites in inhibiting bacterial infections. Aliphatic polyester nanocomposites with AgNPs and AgNPs-GO fillers are effective to kill multi-drug resistant bacteria that cause medical device-related infections.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
48
|
Villamizar-Sarmiento MG, Moreno-Villoslada I, Martínez S, Giacaman A, Miranda V, Vidal A, Orellana SL, Concha M, Pavicic F, Lisoni JG, Leyton L, Oyarzun-Ampuero FA. Ionic Nanocomplexes of Hyaluronic Acid and Polyarginine to Form Solid Materials: A Green Methodology to Obtain Sponges with Biomedical Potential. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E944. [PMID: 31261871 PMCID: PMC6669755 DOI: 10.3390/nano9070944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
We report on the design, development, characterization, and a preliminary cellular evaluation of a novel solid material. This material is composed of low-molecular-weight hyaluronic acid (LMWHA) and polyarginine (PArg), which generate aqueous ionic nanocomplexes (INC) that are then freeze-dried to create the final product. Different ratios of LMWHA/PArg were selected to elaborate INC, the size and zeta potential of which ranged from 100 to 200 nm and +25 to -43 mV, respectively. Turbidimetry and nanoparticle concentration analyses demonstrated the high capacity of the INC to interact with increasing concentrations of LMWHA, improving the yield of production of the nanostructures. Interestingly, once the selected formulations of INC were freeze-dried, only those comprising a larger excess of LMWHA could form reproducible sponge formulations, as seen with the naked eye. This optical behavior was consistent with the scanning transmission electron microscopy (STEM) images, which showed a tendency of the particles to agglomerate when an excess of LMWHA was present. Mechanical characterization evidenced low stiffness in the materials, attributed to the low density and high porosity. A preliminary cellular evaluation in a fibroblast cell line (RMF-EG) evidenced the concentration range where swollen formulations did not affect cell proliferation (93-464 µM) at 24, 48, or 72 h. Considering that the reproducible sponge formulations were elaborated following inexpensive and non-contaminant methods and comprised bioactive components, we postulate them with potential for biomedical purposes. Additionally, this systematic study provides important information to design reproducible porous solid materials using ionic nanocomplexes.
Collapse
Affiliation(s)
- María Gabriela Villamizar-Sarmiento
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, Chile
| | - Samuel Martínez
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Annesi Giacaman
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
- Jeffrey Modell Center of Diagnosis and Research in Primary Immunodeficiencies. Faculty of Medicine, University of La Frontera, Temuco 4780000, Chile
| | - Victor Miranda
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Alejandra Vidal
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sandra L Orellana
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Isla Teja, Casilla 567, Valdivia 5090000, Chile
| | - Miguel Concha
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Francisca Pavicic
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Judit G Lisoni
- NM MultiMat, Instituto de Ciencias Físicas y Matemáticas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Lisette Leyton
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile.
| | - Felipe A Oyarzun-Ampuero
- Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile.
| |
Collapse
|
49
|
Jun BH. Silver Nano/Microparticles: Modification and Applications. Int J Mol Sci 2019; 20:ijms20112609. [PMID: 31141905 PMCID: PMC6600572 DOI: 10.3390/ijms20112609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
- Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
50
|
Shah A, Ali Buabeid M, Arafa ESA, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm 2019; 564:22-38. [PMID: 31002933 DOI: 10.1016/j.ijpharm.2019.04.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
AIM The current study reports the development and evaluation of chitosan-sericin-silver nanocomposite (CSSN) films without and with moxifloxacin (Mox). METHODOLOGY The film preparation method involved the in-situ synthesis of silver nanoparticles within the chitosan-sericin colloidal composite followed by preparation into a film by solvent casting technique. In-situ formation and the particle size analysis of the silver nanoparticles was performed via UV-Visible and zeta-size spectrometer. The prepared films were tested for swelling ratio, contents uniformity, in-vitro Mox release, and permeation analysis. The morphological (SEM), elemental (EDX), spectral (FT-IR), structural (XRD), and thermal (TGA and DSC) properties of the composites were also inspected. The antibacterial activity of the CSSN films was performed against seven pathogenic bacterial strains including five ATCC and two clinical strains. The potential wound healing activity of the composite films was evaluated on burn wound model induced in Sprague Dawley male rats. RESULTS The prepared films displayed good swelling profile with a sustained in-vitro Mox release and permeation profile; attaining maximum of 78.57% (CSSM3) release and 55.05% (CSSM1) permeation (CSSM1) in 24 h. The prepared films, particularly the Mox-loaded CSSN films displayed a promising antibacterial activity against all the tested strains with the activity being highest against MRSA (clinical isolates). The prepared films indicated a remarkable wound healing applications with successful fibrosis, collagen reorganization, neovascularization, and mild epidermal regeneration after 7 days of treatment with no silver ions detection in animal's blood. CONCLUSION The obtained findings strongly suggest the use of the prepared novel composite dressing for wound care applications.
Collapse
Affiliation(s)
- Aamna Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Manal Ali Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Izhar Hussain
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Lihong Li
- Department of Acupuncture, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|