1
|
Mercadante S, Bellastella A. Chrono-Endocrinology in Clinical Practice: A Journey from Pathophysiological to Therapeutic Aspects. Life (Basel) 2024; 14:546. [PMID: 38792568 PMCID: PMC11121809 DOI: 10.3390/life14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This review was aimed at collecting the knowledge on the pathophysiological and clinical aspects of endocrine rhythms and their implications in clinical practice, derived from the published literature and from some personal experiences on this topic. We chose to review, according to the PRISMA guidelines, the results of original and observational studies, reviews, meta-analyses and case reports published up to March 2024. Thus, after summarizing the general aspects of biological rhythms, we will describe the characteristics of several endocrine rhythms and the consequences of their disruption, paying particular attention to the implications in clinical practice. Rhythmic endocrine secretions, like other physiological rhythms, are genetically determined and regulated by a central hypothalamic CLOCK located in the suprachiasmatic nucleus, which links the timing of the rhythms to independent clocks, in a hierarchical organization for the regulation of physiology and behavior. However, some environmental factors, such as daily cycles of light/darkness, sleep/wake, and timing of food intake, may influence the rhythm characteristics. Endocrine rhythms are involved in important physiological processes and their disruption may cause several disorders and also cancer. Thus, it is very important to prevent disruptions of endocrine rhythms and to restore a previously altered rhythm by an early corrective chronotherapy.
Collapse
Affiliation(s)
| | - Antonio Bellastella
- Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|
2
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
4
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
6
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
7
|
Pickel L, Lee JH, Maughan H, Shi IQ, Verma N, Yeung C, Guttman D, Sung H. Circadian rhythms in metabolic organs and the microbiota during acute fasting in mice. Physiol Rep 2022; 10:e15393. [PMID: 35851583 PMCID: PMC9295129 DOI: 10.14814/phy2.15393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 04/16/2023] Open
Abstract
The circadian clock regulates metabolism in anticipation of regular changes in the environment. It is found throughout the body, including in key metabolic organs such as the liver, adipose tissues, and intestine, where the timing of the clock is set largely by nutrient signaling. However, the circadian clocks of these tissues during the fasted state have not been completely characterized. Moreover, the sufficiency of a functioning host clock to produce diurnal rhythms in the composition of the microbiome in fasted animals has not been explored. To this end, mice were fasted 24 h prior to collection of key metabolic tissues and fecal samples for the analysis of circadian clock gene expression and microbiome composition. Rhythm characteristics were determined using CircaCompare software. We identify tissue-specific changes to circadian clock rhythms upon fasting, particularly in the brown adipose tissue, and for the first time demonstrate the rhythmicity of the microbiome in fasted animals.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | | | - Irisa Qianwen Shi
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
| | - Navkiran Verma
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - Christy Yeung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| | - David Guttman
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoOntarioUSA
| | - Hoon‐Ki Sung
- Translational Medicine Program, The Hospital for Sick ChildrenTorontoOntarioUSA
- Department of Laboratory Medicine and PathologyUniversity of TorontoTorontoOntarioUSA
| |
Collapse
|
8
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Heyde I, Oster H. Induction of internal circadian desynchrony by misaligning zeitgebers. Sci Rep 2022; 12:1601. [PMID: 35102210 PMCID: PMC8803932 DOI: 10.1038/s41598-022-05624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
24-h rhythms in physiology and behaviour are orchestrated by an endogenous circadian clock system. In mammals, these clocks are hierarchically organized with a master pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). External time signals-so-called zeitgebers-align internal with geophysical time. During shift work, zeitgeber input conflicting with internal time induces circadian desynchrony which, in turn, promotes metabolic and psychiatric disorders. However, little is known about how internal desynchrony is expressed at the molecular level under chronodisruptive environmental conditions. We here investigated the effects of zeitgeber misalignment on circadian molecular organisation by combining 28-h light-dark (LD-28) cycles with either 24-h (FF-24) or 28-h feeding-fasting (FF-28) regimes in mice. We found that FF cycles showed strong effects on peripheral clocks, while having little effect on centrally coordinated activity rhythms. Systemic, i.e., across-tissue internal circadian desynchrony was profoundly induced within four days in LD-28/FF-24, while phase coherence between tissue clocks was maintained to a higher degree under LD-28/FF-28 conditions. In contrast, temporal coordination of clock gene activity across tissues was reduced under LD-28/FF-28 conditions compared to LD-28/FF-24. These results indicate that timed food intake may improve internal synchrony under disruptive zeitgeber conditions but may, at the same time, weaken clock function at the tissue level.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, CBBM (House 66), Marie Curie Street, 23562, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, CBBM (House 66), Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
10
|
Abstract
Cross-talk between peripheral tissues is essential to ensure the coordination of nutrient intake with disposition during the feeding period, thereby preventing metabolic disease. This mini-review considers the interactions between the key peripheral tissues that constitute the metabolic clock, each of which is considered in a separate mini-review in this collation of articles published in Endocrinology in 2020 and 2021, by Martchenko et al (Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones); Alvarez et al (The microbiome as a circadian coordinator of metabolism); Seshadri and Doucette (Circadian regulation of the pancreatic beta cell); McCommis et al (The importance of keeping time in the liver); Oosterman et al (The circadian clock, shift work, and tissue-specific insulin resistance); and Heyde et al (Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism). The use of positive- and negative-feedback signals, both hormonal and metabolic, between these tissues ensures that peripheral metabolic pathways are synchronized with the timing of food intake, thus optimizing nutrient disposition and preventing metabolic disease. Collectively, these articles highlight the critical role played by the circadian clock in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8Canada
- Correspondence: P. L. Brubaker, PhD, Departments of Physiology and Medicine, University of Toronto, Medical Sciences Bldg, Rm 3366, 1 King’s College Cir, Toronto, ON M5S 1A8, Canada.
| | | |
Collapse
|
11
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
12
|
Desmet L, Thijs T, Segers A, Verbeke K, Depoortere I. Chronodisruption by chronic jetlag impacts metabolic and gastrointestinal homeostasis in male mice. Acta Physiol (Oxf) 2021; 233:e13703. [PMID: 34107165 DOI: 10.1111/apha.13703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023]
Abstract
AIM Chronodisruption desynchronizes peripheral clocks and leads to metabolic diseases. Feeding cues are important synchronizers of peripheral clocks and influence rhythmic oscillations in intestinal microbiota and their metabolites. We investigated whether chronic jetlag, mimicking frequent time zone travelling, affected the diurnal fluctuations in faecal short-chain fatty acid (SCFA) levels, that feed back to the gut clock to regulate rhythmicity in gut function. METHODS Rhythms in faecal SCFAs levels and in the expression of clock genes and epithelial markers were measured in the colonic mucosa of control and jetlagged mice. The entraining effect of SCFAs on the rhythm in clock gene mRNA expression was studied in primary colonic crypts. The role of the circadian clock in epithelial marker expression was studied in Arntl-/- mice. RESULTS Chronic jetlag increased body weight gain and abolished the day/night food intake pattern which resulted in a phase-delay in the rhythm of faecal SCFAs that paralleled the shift in the expression of mucosal clock genes. This effect was mimicked by stimulation of primary colonic crypts from control mice with SCFAs. Jetlag abolished the rhythm in Tnfα, proglucagon and ghrelin expression but not in the expression of tight junction markers. Only a dampening in plasma glucagon-like peptide-1 but not in ghrelin levels was observed. Rhythms in ghrelin but not proglucagon mRNA expression were abolished in Arntl-/- mice. CONCLUSION The altered food intake pattern during chronodisruption corresponds with the changes in rhythmicity of SCFA levels that entrain clock genes to affect rhythms in mRNA expression of gut epithelial markers.
Collapse
Affiliation(s)
- Louis Desmet
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Theo Thijs
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Anneleen Segers
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders KU Leuven Leuven Belgium
| |
Collapse
|
13
|
Kageyama K, Iwasaki Y, Daimon M. Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience. Int J Mol Sci 2021; 22:ijms222212242. [PMID: 34830130 PMCID: PMC8621508 DOI: 10.3390/ijms222212242] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Correspondence: ; Tel.: +81-172-39-5062
| | - Yasumasa Iwasaki
- Department of Clinical Nutrition Management Nutrition Course, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka 510-0293, Mie, Japan;
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| |
Collapse
|
14
|
Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021; 13:nu13113846. [PMID: 34836101 PMCID: PMC8622682 DOI: 10.3390/nu13113846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/17/2023] Open
Abstract
We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.
Collapse
|
15
|
Tarianyk KA, Lytvynenko NV, Shkodina AD, Kaidashev IP. THE ROLE OF CIRCADIAN REGULATION OF GHRELIN LEVELS IN PARKINSON’S DISEASE (LITERATURE REVIEW). WIADOMOŚCI LEKARSKIE 2021; 74:1750-1753. [DOI: 10.36740/wlek202107132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The paper is aimed at the analysis of the role of the circadian regulation of ghrelin levels in patients with Parkinson’s disease. Based on the literature data, patients with Parkinson’s disease have clinical fluctuations in the symptoms of the disease, manifested by the diurnal changes in motor activity, autonomic functions, sleep-wake cycle, visual function, and the efficacy of dopaminergic therapy. Biological rhythms are controlled by central and peripheral oscillators which links with dopaminergic neurotransmission – core of the pathogenesis of Parkinson`s disease. Circadian system is altered in Parkinson`s disease due to that ghrelin fluctuations may be changed. Ghrelin is potential food-entrainable oscillator because it is linked with clock genes expression. In Parkinson`s disease this hormone may induce eating behavior changing and as a result metabolic disorder. The “hunger hormone” ghrelin can be a biomarker of the Parkinson’s disease, and the study of its role in the pathogenesis, as well as its dependence on the period of the day, intake of levodopa medications to improve the effectiveness of treatment is promising.
Collapse
|
16
|
Bellastella G, Maiorino MI, Scappaticcio L, De Bellis A, Mercadante S, Esposito K, Bellastella A. Chronothyroidology: Chronobiological Aspects in Thyroid Function and Diseases. Life (Basel) 2021; 11:life11050426. [PMID: 34068480 PMCID: PMC8151474 DOI: 10.3390/life11050426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Chronobiology is the scientific discipline which considers biological phenomena in relation to time, which assumes itself biological identity. Many physiological processes are cyclically regulated by intrinsic clocks and many pathological events show a circadian time-related occurrence. Even the pituitary–thyroid axis is under the control of a central clock, and the hormones of the pituitary–thyroid axis exhibit circadian, ultradian and circannual rhythmicity. This review, after describing briefly the essential principles of chronobiology, will be focused on the results of personal experiences and of other studies on this issue, paying particular attention to those regarding the thyroid implications, appearing in the literature as reviews, metanalyses, original and observational studies until 28 February 2021 and acquired from two databases (Scopus and PubMed). The first input to biological rhythms is given by a central clock located in the suprachiasmatic nucleus (SCN), which dictates the timing from its hypothalamic site to satellite clocks that contribute in a hierarchical way to regulate the physiological rhythmicity. Disruption of the rhythmic organization can favor the onset of important disorders, including thyroid diseases. Several studies on the interrelationship between thyroid function and circadian rhythmicity demonstrated that thyroid dysfunctions may affect negatively circadian organization, disrupting TSH rhythm. Conversely, alterations of clock machinery may cause important perturbations at the cellular level, which may favor thyroid dysfunctions and also cancer.
Collapse
Affiliation(s)
- Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Maria Ida Maiorino
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Lorenzo Scappaticcio
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Annamaria De Bellis
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.B.); (M.I.M.); (L.S.); (A.D.B.)
| | - Silvia Mercadante
- Diabetes Unit, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (K.E.)
| | - Katherine Esposito
- Diabetes Unit, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (K.E.)
| | - Antonio Bellastella
- Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Abstract
Many molecular, physiological and behavioural processes display distinct 24-hour rhythms that are directed by the circadian system. The master clock, located in the suprachiasmatic nucleus region of the hypothalamus, is synchronized or entrained by the light-dark cycle and, in turn, synchronizes clocks present in peripheral tissues and organs. Other environmental cues, most importantly feeding time, also synchronize peripheral clocks. In this way, the circadian system can prepare the body for predictable environmental changes such as the availability of nutrients during the normal feeding period. This Review summarizes existing knowledge about the diurnal regulation of gastrointestinal processes by circadian clocks present in the digestive tract and its accessory organs. The circadian control of gastrointestinal digestion, motility, hormones and barrier function as well as of the gut microbiota are discussed. An overview is given of the interplay between different circadian clocks in the digestive system that regulate glucose homeostasis and lipid and bile acid metabolism. Additionally, the bidirectional interaction between the master clock and peripheral clocks in the digestive system, encompassing different entraining factors, is described. Finally, the possible behavioural adjustments or pharmacological strategies for the prevention and treatment of the adverse effects of chronodisruption are outlined.
Collapse
|
18
|
Finger A, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf) 2021; 231:e13548. [PMID: 32846050 DOI: 10.1111/apha.13548] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental changes and drives rhythmic biological functions, as well as behavioural outputs with an approximately 24-hour period. In mammals, body clocks are hierarchically organized, encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nucleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscillators within virtually every cell type. A functional clock machinery on the molecular level, alignment among body clocks, as well as synchronization between endogenous circadian and exogenous environmental cycles has been shown to be crucial for our health and well-being. Yet, modern life constantly poses widespread challenges to our internal clocks, for example artificial lighting, shift work and trans-meridian travel, potentially leading to circadian disruption or misalignment and the emergence of associated diseases. For instance many of us experience a mismatch between sleep timing on work and free days (social jetlag) in our everyday lives without being aware of health consequences that may arise from such chronic circadian misalignment, Hence, this review provides an overview of the organization and molecular built-up of the mammalian circadian system, its interactions with the outside world, as well as pathologies arising from circadian disruption and misalignment.
Collapse
Affiliation(s)
- Anna‐Marie Finger
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Achim Kramer
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| |
Collapse
|
19
|
Martchenko A, Martchenko SE, Biancolin AD, Brubaker PL. Circadian Rhythms and the Gastrointestinal Tract: Relationship to Metabolism and Gut Hormones. Endocrinology 2020; 161:5909225. [PMID: 32954405 PMCID: PMC7660274 DOI: 10.1210/endocr/bqaa167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are 24-hour biological rhythms within organisms that have developed over evolutionary time due to predefined environmental changes, mainly the light-dark cycle. Interestingly, metabolic tissues, which are largely responsible for establishing diurnal metabolic homeostasis, have been found to express cell-autonomous clocks that are entrained by food intake. Disruption of the circadian system, as seen in individuals who conduct shift work, confers significant risk for the development of metabolic diseases such as type 2 diabetes and obesity. The gastrointestinal (GI) tract is the first point of contact for ingested nutrients and is thus an essential organ system for metabolic control. This review will focus on the circadian function of the GI tract with a particular emphasis on its role in metabolism through regulation of gut hormone release. First, the circadian molecular clock as well as the organization of the mammalian circadian system is introduced. Next, a brief overview of the structure of the gut as well as the circadian regulation of key functions important in establishing metabolic homeostasis is discussed. Particularly, the focus of the review is centered around secretion of gut hormones; however, other functions of the gut such as barrier integrity and intestinal immunity, as well as digestion and absorption, all of which have relevance to metabolic control will be considered. Finally, we provide insight into the effects of circadian disruption on GI function and discuss chronotherapeutic intervention strategies for mitigating associated metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Correspondence: P.L. Brubaker, Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada. E-mail:
| |
Collapse
|
20
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
21
|
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang H, Yu X, Liu Z. DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism. Food Funct 2020; 11:3621-3631. [PMID: 32292967 DOI: 10.1039/c9fo02606a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Disruptions to circadian rhythm have been associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). DHA has been found to affect both circadian rhythm and lipid metabolism. In this study, the relationship between DHA substitution and improvements in lipid metabolism and circadian clock regulation was studied. Male C57BL/6 mice were fed a control, a high fat or a DHA substituted diet for 12 weeks. Biochemical analysis and H&E staining showed that the high-fat diet (HFD) could induce NAFLD, and DHA substitution (AOH) could attenuate NAFLD. The qPCR results showed that the expressions of core clock genes Clock and Bmal1 were significantly higher at zeitgeber (ZT) 0 (7:00 am) than those at ZT12 (7:00 pm) in the control group, while this difference in day and night disappeared in the HFD group, but was observed in the AOH group. Western blotting results indicated that the expressions of rhythm output molecules (RORα and REV-ERBα) and their downstream protein INSIG2 all showed the corresponding circadian changes. SREBP-regulated proteins were significantly increased in the HFD group at both ZT0 and ZT12, but decreased in the AOH group accompanied by the corresponding changes in the protein expressions of HMGCR, LXR, CYP7A1 and CYP27A1. Altogether, HFD can decrease or disrupt circadian rhythm fluctuation by up-regulating the expression of core circadian rhythm genes Clock and Bmal1 at ZT12, and induce metabolic abnormalities through the INSIG2-SREBP pathway regulated by RORα and REV-ERBα. DHA substitution seems to restore circadian rhythm similar to the normal circadian rhythm of "night-high, day-low" through the metabolic pathway regulated by rhythmic nuclear receptors, improving the lipid metabolism rhythm and reducing liver fat.
Collapse
Affiliation(s)
- Rulong Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hernández Morante JJ, Díaz Soler I, Muñoz JSG, Sánchez HP, Barberá Ortega MDC, Martínez CM, Morillas Ruiz JM. Moderate Weight Loss Modifies Leptin and Ghrelin Synthesis Rhythms but Not the Subjective Sensations of Appetite in Obesity Patients. Nutrients 2020; 12:E916. [PMID: 32230732 PMCID: PMC7230904 DOI: 10.3390/nu12040916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is characterized by a resistance to appetite-regulating hormones, leading to a misalignment between the physiological signals and the perceived hunger/satiety signal. A disruption of the synthesis rhythm may explain this situation. The aim of this study was to evaluate the effect of dietary-induced weight loss on the daily rhythms of leptin and ghrelin and its influence on the daily variability of the appetite sensations of patients with obesity. Twenty subjects with obesity underwent a hypocaloric dietary intervention for 12 weeks. Plasma leptin and ghrelin were analyzed at baseline and at the end of the intervention and in 13 normal-weight controls. Appetite ratings were analyzed. Weight loss decreased leptin synthesis (pauc < 0.001) but not the rhythm characteristics, except the mean variability value (pmesor = 0.020). By contrast, the mean ghrelin level increased after weight loss. The rhythm characteristics were also modified until a rhythm similar to the normal-weight subjects was reached. The amount of variability of leptin and ghrelin was correlated with the effectiveness of the dietary intervention (p < 0.020 and p < 0.001, respectively). Losing weight partially restores the daily rhythms of leptin and modifies the ghrelin rhythms, but appetite sensations are barely modified, thus confirming that these hormones cannot exercise their physiological function properly.
Collapse
Affiliation(s)
- Juan José Hernández Morante
- Eating Disorders Research Unit, Catholic University of Murcia (UCAM), 30107 Murcia, Spain; (I.D.S.); (M.d.C.B.O.)
| | - Inmaculada Díaz Soler
- Eating Disorders Research Unit, Catholic University of Murcia (UCAM), 30107 Murcia, Spain; (I.D.S.); (M.d.C.B.O.)
| | | | - Horacio Pérez Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Catholic University of Murcia (UCAM), 30107 Murcia, Spain;
| | - Mª del Carmen Barberá Ortega
- Eating Disorders Research Unit, Catholic University of Murcia (UCAM), 30107 Murcia, Spain; (I.D.S.); (M.d.C.B.O.)
| | | | - Juana Mª Morillas Ruiz
- Food Technology & Nutrition Dept., Catholic University of Murcia (UCAM), 30107 Murcia, Spain;
| |
Collapse
|
23
|
Hay RE, Edwards A, Klein M, Hyland L, MacDonald D, Karatsoreos I, Hill MN, Abizaid A. Ghrelin Receptor Signaling Is Not Required for Glucocorticoid-Induced Obesity in Male Mice. Endocrinology 2020; 161:5636885. [PMID: 31748785 PMCID: PMC7445420 DOI: 10.1210/endocr/bqz023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
Chronically elevated levels of glucocorticoids increase food intake, weight gain, and adiposity. Similarly, ghrelin, a gut-secreted hormone, is also associated with weight gain, adiposity, and increased feeding. Here we sought to determine if corticosterone-induced metabolic and behavioral changes require functional ghrelin receptors (GHSR). To do this, we treated male C57BL mice with chronic corticosterone (CORT) mixed in their drinking water for 28 days. Half of these mice received the GHSR antagonist JMV2959 via osmotic minipumps while treated with CORT. In a second experiment, we gave the same CORT protocol to mice with a targeted mutation to the GHSR or their wild-type littermates. As expected, CORT treatment increased food intake, weight gain, and adiposity, but contrary to expectations, mice treated with a GHSR receptor antagonist or GHSR knockout (KO) mice did not show attenuated food intake, weight gain, or adiposity in response to CORT. Similarly, the effects of CORT on the liver were the same or more pronounced in GHSR antagonist-treated and GHSR KO mice. Treatment with JMV2959 did attenuate the effects of chronic CORT on glycemic regulation as determined by the glucose tolerance test. Finally, disruption of GHSR signaling resulted in behavioral responses associated with social withdrawal, potentially due to neuroprotective effects of GHSR activation. In all, we propose that blocking GHSR signaling helps to moderate glucose concentrations when CORT levels are high, but blocking GHSR signaling does not prevent increased food intake, weight gain, or increased adiposity produced by chronic CORT.
Collapse
Affiliation(s)
- Rebecca E Hay
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Alex Edwards
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Marianne Klein
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Lindsay Hyland
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - David MacDonald
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ilia Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, US
| | - Matthew N Hill
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Correspondence: Alfonso Abizaid, Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada. E-mail:
| |
Collapse
|
24
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are two of the most common liver diseases associated with obesity, type 2 diabetes and metabolic syndrome. The prevalence of these conditions are increasingly rising and presently there is not a pharmacological option available in the market. Elucidation of the mechanism of action and the molecular underpinnings behind liver disease could help to better understand the pathophysiology of these illnesses. In this sense, in the last years modulation of the ghrelin system in preclinical animal models emerge as a promising therapeutic tool. In this review, we compile the latest knowledge of the modulation of ghrelin system and its intracellular pathways that regulates lipid metabolism, hepatic inflammation and liver fibrosis. We also describe novel processes implicated in the regulation of liver disease by ghrelin, such as autophagy or dysregulated circadian rhythms. In conclusion, the information displayed in this review support that the ghrelin system could be an appealing strategy for the treatment of liver disease.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Omar Al-Massadi
- Inserm UMR-S1270, 75005, Paris, France.
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, 75005, Paris, France.
- Institut du Fer a Moulin, Inserm, 17 rue du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
25
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Bellastella G, De Bellis A, Maiorino MI, Paglionico VA, Esposito K, Bellastella A. Endocrine rhythms and sport: it is time to take time into account. J Endocrinol Invest 2019; 42:1137-1147. [PMID: 30924095 DOI: 10.1007/s40618-019-01038-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Studies of time-related biological phenomena have contributed to establishing a new scientific discipline, the chronobiology, which considers biological phenomena in relation to time. Sports activity profoundly affects the temporal organization of the organism and endocrine rhythms play a key role in the chronoorganization of individuals and are particularly important for correct physical activity. Correctly reading rhythmic hormonal variations of the human organism opens new horizons to sports medicine. OBJECTIVE This review is aimed at clarifying the relationship between endocrine rhythms and sports activities on the basis of the latest data in the literature. METHOD Data acquisition was obtained from three databases (PubMed, Scopus and SPORTDiscus), paying particular attention to reviews, meta-analysis, original and observational studies on this issue. RESULTS After the description of the general characteristics and parameters of biological rhythms, the main endocrine rhythms will be described, highlighting in particular the interrelationships with sports activity and focusing on the factors which can affect negatively their characteristics and consequently the psychophysical performances of the athletes. CONCLUSION Knowledge of this issue may allow establishing the best form of competitive or amateur activity, through the collaboration of an informed athlete and a sports physician attentive to biological rhythms. By taking into account that alteration of physiological rhythmic temporal organization can favour the onset of important diseases, including cancer, this will lead to the expected performances without impairing the correct chronoorganization of the athlete.
Collapse
Affiliation(s)
- G Bellastella
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy.
| | - A De Bellis
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - M I Maiorino
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - V A Paglionico
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - K Esposito
- Endocrinology and Metabolic Diseases Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - A Bellastella
- University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|