1
|
Javid S, Bihamta MR, Omidi M, Abbasi AR, Alipour H, Ingvarsson PK, Poczai P. Genome-wide association study (GWAS) uncovers candidate genes linked to the germination performance of bread wheat (Triticum aestivum L.) under salt stress. BMC Genomics 2025; 26:5. [PMID: 39762749 PMCID: PMC11702142 DOI: 10.1186/s12864-024-11188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars. RESULTS A total of 10 and 15 functional marker-trait associations (MTAs) were detected under moderate (60 mM NaCl) and severe (120 mM NaCl) salinity, respectively. From genomic annotation, 17 candidate genes were identified that were functionally annotated to be involved in the germination performance of salt-stressed wheat, such as CHX2, PK2, PUBs, and NTP10. Most of these genes play key roles in DNA/RNA/ATP/protein binding, transferase activity, transportation, phosphorylation, or ubiquitination and some harbored unknown functions that collectively may respond to salinity as a complex network. CONCLUSION These findings, including the candidate genes, respective pathways, marker-trait associations (MTAs), and in-depth phenotyping of wheat accessions, improve knowledge of the mechanisms responsible for better germination performance of wheat seedlings under salinity conditions.
Collapse
Affiliation(s)
- Saeideh Javid
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | | - Mansour Omidi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Ali Reza Abbasi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter Poczai
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Cui J, Li S, Zhang T, Li C, Duan Y, Xu S, Wang J, Liu H, Yang L, Xin W, Jia Y, Bu Q, Zou D, Zheng H. OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:14. [PMID: 39729109 DOI: 10.1007/s00122-024-04772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important. However, as previous studies have concentrated on neutral salt stress, understanding of alkalinity tolerance is still in its infancy, and the genetic resource data is scarce. Here, we used a natural population composed of 295 japonica rice varieties and a recombinant inbred population including 189 lines derived from Caidao (alkali-sensitive) and WD20342 (alkali-tolerant) to uncover the genetic structure of alkalinity tolerance during rice germination. A total of 15 lead SNPs and six QTLs related to relative germination potential (RGP) and relative germination index (RGI) were detected by genome-wide association study and linkage mapping. Of which, Chr5_28094966, a lead SNP was located in the interval of the mapped major QTL qAT5, that was significantly associated with both RGP and RGI in the two populations. According to the LD block analysis and QTL interval, a 425 kb overlapped region was obtained for screening the candidate genes. After haplotype analysis, qRT-PCR and parental sequence analysis, LOC_Os05g49100 (OsWRKY49) was initially considered as the candidate gene. Having studied the characteristics of rice lines with OsWRKY49 knockout and overexpression, we established that OsWRKY49 could be a positive regulator of alkalinity tolerance in rice at the germination stage. Subcellular localization showed that green fluorescent protein-tagged OsWRKY49 was localized in the nucleus. The application of OsWRKY49 could be useful for increasing alkalinity tolerance of rice direct seeding.
Collapse
Affiliation(s)
- Jingnan Cui
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shuangshuang Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Chong Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxuan Duan
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shanbin Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Gong W, Proud C, Vinarao R, Fukai S, Mitchell J. Genome-Wide Association Study of Early Vigour-Related Traits for a Rice ( Oryza sativa L.) japonica Diversity Set Grown in Aerobic Conditions. BIOLOGY 2024; 13:261. [PMID: 38666873 PMCID: PMC11048181 DOI: 10.3390/biology13040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Aerobic rice production is a relatively new system in which rice is direct-seeded and grown in non-flooded but well-watered conditions to improve water productivity. Early vigour-related traits are likely to be important in aerobic conditions. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with early vigour-related traits in aerobic conditions using a japonica rice diversity set. Field experiments and glasshouse experiments conducted under aerobic conditions revealed significant genotypic variation in early vigour-related traits. Genome-wide association analysis identified 32 QTL associated with early vigour-related traits. Notably, two QTL, qAEV1.5 and qAEV8, associated with both early vigour score and mesocotyl length, explained up to 22.1% of the phenotypic variance. In total, 23 candidate genes related to plant growth development and abiotic stress response were identified in the two regions. This study provides novel insights into the genetic basis of early vigour under aerobic conditions. Validation of identified QTL and candidate genes in different genetic backgrounds is crucial for future studies. Moreover, testing the effect of QTL on yield under different environments would be valuable. After validation, these QTL and genes can be considered for developing markers in marker-assisted selection for aerobic rice production.
Collapse
Affiliation(s)
- Wenliu Gong
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD 4072, Australia (J.M.)
| | | | | | | | | |
Collapse
|
4
|
Liu L, Ma Y, Zhao H, Guo L, Guo Y, Liu CM. Genome-wide association studies identified OsTMF as a gene regulating rice seed germination under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1384246. [PMID: 38601316 PMCID: PMC11004275 DOI: 10.3389/fpls.2024.1384246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Introduction Salt tolerance during seed germination is an important trait for direct seeding and low-cost rice production. Nevertheless, it is still not clear how seed germination under salt stress is regulated genetically. Methods In this study, genome-wide association studies (GWAS) were performed to decipher the genetic basis of seed germination under salt stress using 541 rice varieties collected worldwide. Results and discussion Three quantitative trait loci (QTLs) were identified including qGRG3-1 on chromosome 3, qGRG3-2 on chromosome 5, and qGRG4 on chromosome 4. Assessment of candidate genes in these loci for their responses to salt stress identified a TATA modulatory factor (OsTMF) in qGRG3-2. The expression of OsTMF was up-regulated in both roots and shoots after exposure to salt stress, and OsTMF knockout mutants exhibited delayed seed germination under salt stress. Haplotype analysis showed that rice varieties carrying OsTMF-Hap2 displayed elevated salt tolerance during seed germination. These results provide important knowledge and resources to improve rice seed germination under salt stress in the future.
Collapse
Affiliation(s)
- Lifeng Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanling Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chun-Ming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Xing M, Nie Y, Huang J, Li Y, Zhao M, Wang S, Wang Y, Chen W, Chen Z, Zhang L, Cheng Y, Yang Q, Sun J, Qiao W. A wild rice CSSL population facilitated identification of salt tolerance genes and rice germplasm innovation. PHYSIOLOGIA PLANTARUM 2024; 176:e14301. [PMID: 38629128 DOI: 10.1111/ppl.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Salt stress is one of the major factors that limits rice production. Therefore, identification of salt-tolerant alleles from wild rice is important for rice breeding. In this study, we constructed a set of chromosome segment substitution lines (CSSLs) using wild rice as the donor parent and cultivated rice Nipponbare (Nip) as the recurrent parent. Salt tolerance germinability (STG) was evaluated, and its association with genotypes was determined using this CSSL population. We identified 17 QTLs related to STG. By integrating the transcriptome and genome data, four candidate genes were identified, including the previously reported AGO2 and WRKY53. Compared with Nip, wild rice AGO2 has a structure variation in its promoter region and the expression levels were upregulated under salt treatments; wild rice WRKY53 also has natural variation in its promoter region, and the expression levels were downregulated under salt treatments. Wild rice AGO2 and WRKY53 alleles have combined effects for improving salt tolerance at the germination stage. One CSSL line, CSSL118 that harbors these two alleles was selected. Compared with the background parent Nip, CSSL118 showed comprehensive salt tolerance and higher yield, with improved transcript levels of reactive oxygen species scavenging genes. Our results provided promising genes and germplasm resources for future rice salt tolerance breeding.
Collapse
Affiliation(s)
- Meng Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yamin Nie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jingfen Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yapeng Li
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Mingchao Zhao
- Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Shizhuang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yanyan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Wenxi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Lifang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunlian Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingwen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
6
|
Xu G, Cheng Y, Wang X, Dai Z, Kang Z, Ye Z, Pan Y, Zhou L, Xie D, Sun J. Identification of Single Nucleotide Polymorphic Loci and Candidate Genes for Seed Germination Percentage in Okra under Salt and No-Salt Stresses by Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:588. [PMID: 38475435 DOI: 10.3390/plants13050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Excessive soil salinity is a major stressor inhibiting crops' growth, development, and yield. Seed germination is a critical stage of crop growth and development, as well as one of the most salt-sensitive stages. Salt stress has a significant inhibitory effect on seed germination. Okra is a nutritious vegetable, but its seed germination percentage (GP) is low, whether under salt stress conditions or suitable conditions. In this study, we used 180 okra accessions and conducted a genome-wide association study (GWAS) on the germination percentage using 20,133,859 single nucleotide polymorphic (SNP) markers under 0 (CK, diluted water), 70 (treatment 1, T1), and 140 mmol/L (treatment 2, T2) NaCl conditions. Using the mixed linear model (MLM) in Efficient Mixed-model Association eXpedated (EMMAX) and Genome-wide Efficient Mixed Model Association (GEMMA) software, 511 SNP loci were significantly associated during germination, of which 167 SNP loci were detected simultaneously by both programs. Among the 167 SNPs, SNP2619493 on chromosome 59 and SNP2692266 on chromosome 44 were detected simultaneously under the CK, T1, and T2 conditions, and were key SNP loci regulating the GP of okra seeds. Linkage disequilibrium block analysis revealed that nsSNP2626294 (C/T) in Ae59G004900 was near SNP2619493, and the amino acid changes caused by nsSNP2626294 led to an increase in the phenotypic values in some okra accessions. There was an nsSNP2688406 (A/G) in Ae44G005470 near SNP2692266, and the amino acid change caused by nsSNP2688406 led to a decrease in phenotypic values in some okra accessions. These results indicate that Ae59G004900 and Ae44G005470 regulate the GP of okra seeds under salt and no-salt stresses. The gene expression analysis further demonstrated these results. The SNP markers and genes that were identified in this study will provide reference for further research on the GP of okra, as well as new genetic markers and candidate genes for cultivating new okra varieties with high GPs under salt and no-salt stress conditions.
Collapse
Affiliation(s)
- Gaowen Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yujing Cheng
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226019, China
| | - Xiaoqiu Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226019, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zepei Kang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zhichao Ye
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yangyang Pan
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Linkang Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Dongwei Xie
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jian Sun
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
7
|
Li C, Lu C, Yang M, Wu G, Nyasulu M, He H, He X, Bian J. Uncovering Novel QTLs and Candidate Genes for Salt Tolerance at the Bud Burst Stage in Rice through Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:174. [PMID: 38256728 PMCID: PMC10818446 DOI: 10.3390/plants13020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024]
Abstract
Salt stress is one of the most important factors limiting rice growth and yield increase. Salt tolerance of rice at the bud burst (STB) stage determines whether germinated seeds can grow normally under salt stress, which is very important for direct seeding. However, reports on quantitative trait loci (QTLs) and candidate genes for STB in rice are very limited. In this study, a natural population of 130 indica and 81 japonica rice accessions was used to identify STB-related QTLs and candidate genes using a genome-wide association study (GWAS). Nine QTLs, including five for relative shoot length (RSL), two for relative root length (RRL), and two for relative root number (RRN), were identified. Five of these STB-related QTLs are located at the same site as the characterized salt tolerance genes, such as OsMDH1, OsSRFP1, and OsCDPK7. However, an important QTL related to RSL, qRSL1-2, has not been previously identified and was detected on chromosome 1. The candidate region for qRSL1-2 was identified by linkage disequilibrium analysis, 18 genes were found to have altered expression levels under salt stress through the RNA-seq database, and 10 of them were found to be highly expressed in the shoot. It was also found that, eight candidate genes (LOC_Os01g62980, LOC_Os01g63190, LOC_Os01g63230, LOC_Os01g63280, LOC_Os01g63400, LOC_Os01g63460, and LOC_Os01g63580) for qRSL1-2 carry different haplotypes between indica and japonica rice, which exactly corresponds to the significant difference in RSL values between indica and japonica rice in this study. Most of the accessions with elite haplotypes were indica rice, which had higher RSL values. These genes with indica-japonica specific haplotypes were identified as candidate genes. Rice accessions with elite haplotypes could be used as important resources for direct seeding. This study also provides new insights into the genetic mechanism of STB.
Collapse
Affiliation(s)
- Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
- Institute of Agricultural Sciences, Ganzhou 341000, China
| | - Changsheng Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Mvuyeni Nyasulu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| |
Collapse
|
8
|
Saputro TB, Jakada BH, Chutimanukul P, Comai L, Buaboocha T, Chadchawan S. OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:14483. [PMID: 37833931 PMCID: PMC10572369 DOI: 10.3390/ijms241914483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Rice (Oryza sativa L.), one of the most important commodities and a primary food source worldwide, can be affected by adverse environmental factors. The chromosome segment substitution line 16 (CSSL16) of rice is considered salt-tolerant. A comparison of the transcriptomic data of the CSSL16 line under normal and salt stress conditions revealed 511 differentially expressed sequence (DEseq) genes at the seedling stage, 520 DEseq genes in the secondary leaves, and 584 DEseq genes in the flag leaves at the booting stage. Four BTB genes, OsBTBZ1, OsBTBZ2, OsBTBN3, and OsBTBN7, were differentially expressed under salt stress. Interestingly, only OsBTBZ1 was differentially expressed at the seedling stage, whereas the other genes were differentially expressed at the booting stage. Based on the STRING database, OsBTBZ1 was more closely associated with other abiotic stress-related proteins than other BTB genes. The highest expression of OsBTBZ1 was observed in the sheaths of young leaves. The OsBTBZ1-GFP fusion protein was localized to the nucleus, supporting the hypothesis of a transcriptionally regulatory role for this protein. The bt3 Arabidopsis mutant line exhibited susceptibility to NaCl and abscisic acid (ABA) but not to mannitol. NaCl and ABA decreased the germination rate and growth of the mutant lines. Moreover, the ectopic expression of OsBTBZ1 rescued the phenotypes of the bt3 mutant line and enhanced the growth of wild-type Arabidopsis under stress conditions. These results suggest that OsBTBZ1 is a salt-tolerant gene functioning in ABA-dependent pathways.
Collapse
Affiliation(s)
- Triono B. Saputro
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bello H. Jakada
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
| | - Panita Chutimanukul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathumthani, Bangkok 12120, Thailand;
| | - Luca Comai
- Genome Center and Department of Plant Biology, UC Davis, Davis, CA 95616, USA;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Zhan C, Zhu P, Chen Y, Chen X, Liu K, Chen S, Hu J, He Y, Xie T, Luo S, Yang Z, Chen S, Tang H, Zhang H, Cheng J. Identification of a key locus, qNL3.1, associated with seed germination under salt stress via a genome-wide association study in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:58. [PMID: 36912929 PMCID: PMC10011300 DOI: 10.1007/s00122-023-04252-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Two causal OsTTL and OsSAPK1 genes of the key locus qNL3.1 significantly associated with seed germination under salt stress were identified via a genome-wide association study, which could improve rice seed germination under salt stress. Rice is a salt-sensitive crop, and its seed germination determines subsequent seedling establishment and yields. In this study, 168 accessions were investigated for the genetic control of seed germination under salt stress based on the germination rate (GR), germination index (GI), time at which 50% germination was achieved (T50) and mean level (ML). Extensive natural variation in seed germination was observed among accessions under salt stress. Correlation analysis showed significantly positive correlations among GR, GI and ML and a negative correlation with T50 during seed germination under salt stress. Forty-nine loci significantly associated with seed germination under salt stress were identified, and seven of these were identified in both years. By comparison, 16 loci were colocated with the previous QTLs, and the remaining 33 loci might be novel. qNL3.1, colocated with qLTG-3, was simultaneously identified with the four indices in two years and might be a key locus for seed germination under salt stress. Analysis of candidate genes showed that two genes, the similar to transthyretin-like protein OsTTL and the serine/threonine protein kinase OsSAPK1, were the causal genes of qNL3.1. Germination tests indicated that both Osttl and Ossapk1 mutants significantly reduced seed germination under salt stress compared to the wild type. Haplotype analysis showed that Hap.1 of OsTTL and Hap.1 of OsSAPK1 genes were excellent alleles, and their combination resulted in high seed germination under salt stress. Eight accessions with elite performance of seed germination under salt stress were identified, which could improve rice seed germination under salt stress.
Collapse
Affiliation(s)
- Chengfang Zhan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Peiwen Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongji Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kexin Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxiao Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ying He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shasha Luo
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zeyuan Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sunlu Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haijuan Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Jinping Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Hainan Yazhou Bay Seed Lab, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Yin W, Lu T, Chen Z, Lu T, Ye H, Mao Y, Luo Y, Lu M, Zhu X, Yuan X, Rao Y, Wang Y. Quantitative trait locus mapping and candidate gene analysis for salt tolerance at bud stage in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1041081. [PMID: 36726666 PMCID: PMC9886062 DOI: 10.3389/fpls.2022.1041081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Soil salinization has a serious influence on rice yield and quality. How to enhance salt tolerance in rice is a topical issue. In this study, 120 recombinant inbred line populations were generated through nonstop multi-generation selfing using a male indica rice variety Huazhan (Oryza sativa L. subsp. indica cv. 'HZ') and a female variety of Nekken2 (Oryza sativa L. subsp. japonica cv. 'Nekken2') as the parents. Germination under 80 mM NaCl conditions was measured and analyzed, and quantitative trait locus (QTL) mapping was completed using a genetic map. A total of 16 salt-tolerance QTL ranges were detected at bud stage in rice, which were situated on chromosomes 3, 4, 6, 8, 9, 10, 11, and 12. The maximum limit of detection was 4.69. Moreover, the qST12.3 was narrowed to a 192 kb region on chromosome 12 using map-based cloning strategy. Statistical analysis of the expression levels of these candidate genes under different NaCl concentrations by qRT-PCR revealed that qST12.3 (LOC_Os12g25200) was significantly down-regulated with increasing NaCl concentration, and the expression level of the chlorine-transporter-encoding gene LOC_Os12g25200 in HZ was significantly higher than that of Nekken2 under 0 mM NaCl. Sequencing analysis of LOC_Os12g25200 promoter region indicated that the gene expression difference between parents may be due to eight base differences in the promoter region. Through QTL mining and analysis, a plurality of candidate genes related to salt tolerance in rice was obtained, and the results showed that LOC_Os12g25200 might negatively regulate salt tolerance in rice. The results provide the basis for further screening and cultivation of salt-tolerant rice varieties and have laid the foundation for elucidating further molecular regulation mechanisms of salt tolerance in rice.
Collapse
Affiliation(s)
- Wenjing Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tianqi Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Zhengai Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tao Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hanfei Ye
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yijian Mao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Yiting Luo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Mei Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xi Yuan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Ju C, Ma X, Han B, Zhang W, Zhao Z, Geng L, Cui D, Han L. Candidate gene discovery for salt tolerance in rice ( Oryza sativa L.) at the germination stage based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2022; 13:1010654. [PMID: 36388603 PMCID: PMC9664195 DOI: 10.3389/fpls.2022.1010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Salt stress affects rice seed germination and seedling formation, seriously restricting rice production. Screening salt-tolerant rice varieties and analyzing the genetic mechanisms underlying salt tolerance are therefore very important to ensure rice production. In this study, 313 Oryza sativa ssp. japonica germplasm were used to conduct a genome-wide association study (GWAS) using 1% NaCl as a salt stress treatment during germination stage. The germination potential (GP) on different days and the germination index (GI) under salt stress were used as salt tolerance indicators. The results of population structure analysis showed that the 313 germplasm studied could be divided into two subpopulations, consistent with the geographical origins of the materials. There were 52 loci significantly related to salt tolerance during germination, and the phenotypic contribution rate of 29 loci was > 10%. A region on chromosome 11 (17049672-17249672 bp) was repeatedly located, and the candidate gene LOC_Os11g29490, which encodes a plasma membrane ATPase, was identified in this locus. Further haplotype analysis showed the GP of germplasm with different haplotypes at that locus significantly differed under salt stress (p < 0.05), and germplasm carrying Hap2 displayed strong salt tolerance during the germination stage. Two other promising candidate genes for salt tolerance were identified: LOC_Os01g27170 (OsHAK3), which encodes a potassium transporter, and LOC_Os10g42550 (OsITPK5), which encodes an inositol 1, 3, 4-trisphosphate 5/6-kinase. The results of this study provide a theoretical basis for salt-tolerant gene cloning and molecular design breeding in rice.
Collapse
Affiliation(s)
- Chunyan Ju
- Chongqing Engineering Research Center of Specialty Crop Resources, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Zhengwu Zhao
- Chongqing Engineering Research Center of Specialty Crop Resources, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
13
|
Thabet SG, Alomari DZ, Börner A, Brinch-Pedersen H, Alqudah AM. Elucidating the genetic architecture controlling antioxidant status and ionic balance in barley under salt stress. PLANT MOLECULAR BIOLOGY 2022; 110:287-300. [PMID: 35918559 DOI: 10.1007/s11103-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Association genetic analysis empowered us to identify candidate genes underlying natural variation of morpho-physiological, antioxidants, and grain yield-related traits in barley. Novel intriguing genomic regions were identified and dissected. Salinity stress is one of the abiotic stresses that influence the morpho-physiological, antioxidants, and yield-related traits in crop plants. The plants of a core set of 138 diverse barley accessions were analyzed after exposure to salt stress under field conditions during the reproductive phase. A genome-wide association scan (GWAS) was then conducted using 19,276 single nucleotide polymorphisms (SNPs) to uncover the genetic basis of morpho-physiological and grain-related traits. A wide range of responses to salt stress by the accessions was explored in the current study. GWAS detected 263 significantly associated SNPs with the antioxidants, K+/Na+ content ratio, and agronomic traits. Five genomic regions harbored interesting putative candidate genes within LD ± 1.2 Mbp. Choromosome 2H harbored many candidate genes associated with the antioxidants ascorbic acid (AsA) and glutathione (GSH), such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), under salt stress. Markedly, an A:C SNP at 153,773,211 bp on chromosome 7H is located inside the gene HORVU.MOREX.r3.7HG0676830 (153,772,300-153,774,057 bp) that was annotated as L-gulonolactone oxidase, regulating the natural variation of SOD_S and APX_S. The allelic variation at this SNP reveals a negative selection of accessions carrying the C allele, predominantly found in six-rowed spring landraces originating from Far-, Near-East, and central Asia carrying photoperiod sensitive alleles having lower activity of enzymatic antioxidants. The SNP-trait associations detected in the current study constitute a benchmark for developing molecular selection tools for antioxidant compound selection in barley.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt
| | - Dalia Z Alomari
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Ahmad M Alqudah
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
14
|
Genome-Wide Association Study of Salt Tolerance-Related Traits during Germination and Seedling Development in an Intermedium-Spike Barley Collection. Int J Mol Sci 2022; 23:ijms231911060. [PMID: 36232362 PMCID: PMC9569600 DOI: 10.3390/ijms231911060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of “Morex”. The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.
Collapse
|
15
|
Li C, Lu C, Zou B, Yang M, Wu G, Wang P, Cheng Q, Wang Y, Zhong Q, Huang S, Huang T, He H, Bian J. Genome-Wide Association Study Reveals a Genetic Mechanism of Salt Tolerance Germinability in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:934515. [PMID: 35909718 PMCID: PMC9335074 DOI: 10.3389/fpls.2022.934515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the factors that limits rice production, and an important task for researchers is to cultivate rice with strong salt tolerance. In this study, 211 rice accessions were used to determine salt tolerance germinability (STG) indices and conduct a genome-wide association study (GWAS) using 36,727 SNPs. The relative germination energy (RGE), relative germination index (RGI), relative vigor index (RVI), relative mean germination time (RMGT), relative shoot length (RSL), and relative root length (RRL) were used to determine the STG indices in rice. A total of 43 QTLs, including 15 for the RGE, 6 for the RGI, 7 for the RVI, 3 for the RMGT, 1 for the RSL, and 11 for the RRL, were identified on nine chromosome regions under 60 and 100 mM NaCl conditions. For these STG-related QTLs, 18 QTLs were co-localized with previous studies, and some characterized salt-tolerance genes, such as OsCOIN, OsHsp17.0, and OsDREB2A, are located in these QTL candidates. Among the 25 novel QTLs, qRGE60-1-2 co-localized with qRGI60-1-1 on chromosome 1, and qRGE60-3-1 and qRVI60-3-1 co-localized on chromosome 3. According to the RNA-seq database, 16 genes, including nine for qRGE60-1-2 (qRGI60-1-1) and seven for qRGE60-3-1 (qRVI60-3-1), were found to show significant differences in their expression levels between the control and salt treatments. Furthermore, the expression patterns of these differentially expressed genes were analyzed, and nine genes (five for qRGE60-1-2 and four for qRGE60-3-1) were highly expressed in embryos at the germination stage. Haplotype analysis of these nine genes showed that the rice varieties with elite haplotypes in the LOC_Os03g13560, LOC_Os03g13840, and LOC_Os03g14180 genes had high STG. GWAS validated the known genes underlying salt tolerance and identified novel loci that could enrich the current gene pool related to salt tolerance. The resources with high STG and significant loci identified in this study are potentially useful in breeding for salt tolerance.
Collapse
Affiliation(s)
- Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Changsheng Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Baoli Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, China
| |
Collapse
|
16
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
17
|
Hasseb NM, Sallam A, Karam MA, Gao L, Wang RRC, Moursi YS. High-LD SNP markers exhibiting pleiotropic effects on salt tolerance at germination and seedlings stages in spring wheat. PLANT MOLECULAR BIOLOGY 2022; 108:585-603. [PMID: 35217965 PMCID: PMC8967789 DOI: 10.1007/s11103-022-01248-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/25/2022] [Indexed: 06/01/2023]
Abstract
Salt tolerance at germination and seedling growth stages was investigated. GWAS revealed nine genomic regions with pleiotropic effects on salt tolerance. Salt tolerant genotypes were identified for future breeding program. With 20% of the irrigated land worldwide affected by it, salinity is a serious threat to plant development and crop production. While wheat is the most stable food source worldwide, it has been classified as moderately tolerant to salinity. In several crop plants; such as barley, maize and rice, it has been shown that salinity tolerance at seed germination and seedling establishment is under polygenic control. As yield was the ultimate goal of breeders and geneticists, less attention has been paid to understanding the genetic architecture of salt tolerance at early stages. Thus, the genetic control of salt tolerance at these stages is poorly understood relative to the late stages. In the current study, 176 genotypes of spring wheat were tested for salinity tolerance at seed germination and seedling establishment. Genome-Wide Association Study (GWAS) has been used to identify the genomic regions/genes conferring salt tolerance at seed germination and seedling establishment. Salinity stress negatively impacted all germination and seedling development parameters. A set of 137 SNPs showed significant association with the traits of interest. Across the whole genome, 33 regions showed high linkage disequilibrium (LD). These high LD regions harbored 15 SNPs with pleiotropic effect (i.e. SNPs that control more than one trait). Nine genes belonging to different functional groups were found to be associated with the pleiotropic SNPs. Noteworthy, chromosome 2B harbored the gene TraesCS2B02G135900 that acts as a potassium transporter. Remarkably, one SNP marker, reported in an early study, associated with salt tolerance was validated in this study. Our findings represent potential targets of genetic manipulation to understand and improve salinity tolerance in wheat.
Collapse
Affiliation(s)
- Nouran M Hasseb
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed A Karam
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Liangliang Gao
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State Univ, Manhattan, KS, 66502, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Buxin Road 97, Dapeng-District, Shenzhen, 518120, Guangdong, China
| | - Richard R C Wang
- USDA-ARS Forage and Range Research Lab, Utah State University, Logan, UT, 84322-6300, USA
| | - Yasser S Moursi
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
18
|
Peng L, Sun S, Yang B, Zhao J, Li W, Huang Z, Li Z, He Y, Wang Z. Genome-wide association study reveals that the cupin domain protein OsCDP3.10 regulates seed vigour in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:485-498. [PMID: 34665915 PMCID: PMC8882794 DOI: 10.1111/pbi.13731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 05/06/2023]
Abstract
Seed vigour is an imperative trait for the direct seeding of rice. In this study, we examined the genetic regulation of seedling percentage at the early germination using a genome-wide association study in rice. One major quantitative trait loci qSP3 for seedling percentage was identified, and the candidate gene was validated as qSP3, encoding a cupin domain protein OsCDP3.10 for the synthesis of 52 kDa globulin. Disruption of this gene in Oscdp3.10 mutants reduced the seed vigour, including the germination potential and seedling percentage, at the early germination in rice. The lacking accumulation of 52 kDa globulin was observed in the mature grains of the Oscdp3.10 mutants. The significantly lower amino acid contents were observed in the mature grains and the early germinating seeds of the Oscdp3.10 mutants compared with those of wild-type. Rice OsCDP3.10 regulated seed vigour mainly via modulating the amino acids e.g. Met, Glu, His, and Tyr that contribute to hydrogen peroxide (H2 O2 ) accumulation in the germinating seeds. These results provide important insights into the application of seed priming with the amino acids and the selection of OsCDP3.10 to improve seed vigour in rice.
Collapse
Affiliation(s)
- Liling Peng
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Shan Sun
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bin Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm ResourcesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Jia Zhao
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Wenjun Li
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhibo Huang
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Ziyin Li
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yongqi He
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhoufei Wang
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingGuangdong Laboratory of Lingnan Modern AgricultureState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
19
|
Lv Y, Ma J, Wei H, Xiao F, Wang Y, Jahan N, Hazman M, Qian Q, Shang L, Guo L. Combining GWAS, Genome-Wide Domestication and a Transcriptomic Analysis Reveals the Loci and Natural Alleles of Salt Tolerance in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:912637. [PMID: 35783926 PMCID: PMC9248812 DOI: 10.3389/fpls.2022.912637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 05/12/2023]
Abstract
Soil salinity poses a serious threat to the sustainable production of rice (Oryza sativa L.) throughout the world. Thus, the detection of loci and alleles responsible for salt tolerance is fundamental to accelerating the improvement of rice and producing the resilient varieties that will ensure future harvests. In this study, we collected a set of 191 mini-core rice populations from around the world, evaluated their salt tolerance based on plant growth and development phenotypes at the seedling stage, and divided a standard evaluation score (SES) of visual salt injury into five different grades. We used ∼3.82 million single nucleotide polymorphisms (SNPs) to identify 155 significant SNPs and 275 genes associated with salt sensitivity based on a genome-wide association study (GWAS) of SES. In particular, two candidate genes, ZFP179 and OsDSR2, were associated with salt tolerance, and OsHKT1;1 was co-detected in the entire GWAS of all the panels and indica. Additionally, we investigated the transcriptional changes in cultivars 93-11 and PA64s under normal and salinity stress conditions and found 517 co-upregulated and 223 co-downregulated genes. These differentially expressed genes (DEGs) were highly enriched in "response to chemical" and "stress" based on the gene ontology enrichment analysis. Notably, 30 candidate genes that were associated with the salt tolerance analysis were obtained by integrating GWAS and transcriptomic DEG analyses, including 13 cloned genes that had no reports of tolerance to salt and 17 candidate genes whose functions were unknown. To further explore these genes and their alleles, we performed haplotype analysis, genome-wide domestication detection, and transcriptome analysis to breed improved varieties. This data and the genetic resources provided will be valuable for the development of salt tolerant rice varieties.
Collapse
Affiliation(s)
- Yang Lv
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jie Ma
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hua Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yueying Wang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Noushin Jahan
- Department of Agronomy, Khulna Agricultural University, Khulna, Bangladesh
| | - Mohamed Hazman
- Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Longbiao Guo,
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Longbiao Guo,
| |
Collapse
|
20
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
21
|
Wu J, Yu C, Huang L, Gan Y. A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. PHYSIOLOGIA PLANTARUM 2021; 173:1120-1135. [PMID: 34287928 DOI: 10.1111/ppl.13508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 05/24/2023]
Abstract
MADS-box transcription factors (TFs) play indispensable roles in various aspects of plant growth, development as well as in response to environmental stresses. Several MADS-box genes have been reported to be involved in the salt tolerance in different plant species. However, the role of the transcription factor OsMADS57 under salinity stress is still unknown. Here, the results of this study showed that OsMADS57 was mainly expressed in roots and leaves of rice plants (Oryza sativa). Gene expression pattern analysis revealed that OsMADS57 was induced by NaCl. Overexpression of OsMADS57 in both Arabidopsis thaliana (A. thaliana) and rice could improve their salt tolerance, which was demonstrated by higher germination rates, longer root length and better growth status of overexpression plants than wild type (WT) under salinity conditions. In contrast, RNA interference (RNAi) lines of rice showed more sensitivity towards salinity. Moreover, less reactive oxygen species (ROS) accumulated in OsMADS57 overexpressing lines when exposed to salt stress, as measured by 3, 3'-diaminobenzidine (DAB) or nitroblue tetrazolium (NBT) staining. Further experiments exhibited that overexpression of OsMADS57 in rice significantly increased the tolerance ability of plants to oxidative damage under salt stress, mainly by increasing the activities of antioxidative enzymes such as superoxide dismutase (SOD) and peroxidase (POD), reducing malonaldehyde (MDA) content and improving the expression of stress-related genes. Taken together, these results demonstrated that OsMADS57 plays a positive role in enhancing salt tolerance by activating the antioxidant system.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunyan Yu
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ludong University, College of Agriculture, Yantai, China
| | - Linli Huang
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- Department of Agronomy, Zhejiang Key Lab of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
22
|
Fan X, Jiang H, Meng L, Chen J. Gene Mapping, Cloning and Association Analysis for Salt Tolerance in Rice. Int J Mol Sci 2021; 22:11674. [PMID: 34769104 PMCID: PMC8583862 DOI: 10.3390/ijms222111674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinization caused by the accumulation of sodium can decrease rice yield and quality. Identification of rice salt tolerance genes and their molecular mechanisms could help breeders genetically improve salt tolerance. We studied QTL mapping of populations for rice salt tolerance, period and method of salt tolerance identification, salt tolerance evaluation parameters, identification of salt tolerance QTLs, and fine-mapping and map cloning of salt tolerance QTLs. We discuss our findings as they relate to other genetic studies of salt tolerance association.
Collapse
Affiliation(s)
- Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China;
| | - Hongzhen Jiang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
23
|
Li W, Yang B, Xu J, Peng L, Sun S, Huang Z, Jiang X, He Y, Wang Z. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:478-491. [PMID: 34376020 DOI: 10.1111/tpj.15455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Seed vigor is an important trait for the direct seeding of rice (Oryza sativa L.). In this study, we examined the genetic architecture of variation in the germination rate using a diverse panel of rice accessions. Four quantitative trait loci for germination rate were identified using a genome-wide association study during early germination. One candidate gene, encoding the 2-oxoglutarate/malate translocator (OsOMT), was validated for qGR11. Disruption of this gene (Osomt mutants) reduced seed vigor, including seed germination and seedling growth, in rice. Functional analysis revealed that OsOMT influences seed vigor mainly by modulating amino acid levels and glycolysis and tricarboxylic acid cycle processes. The levels of most amino acids, including the Glu family (Glu, Pro, Arg, and GABA), Asp family (Asp, Thr, Lys, Ile, and Met), Ser family (Ser, Gly, and Cys), and others (His, Ala, Leu, and Val), were significantly reduced in the mature grains and the early germinating seeds of Osomt mutants compared to wild type (WT). The glucose and soluble sugar contents, as well as adenosine triphosphate levels, were significantly decreased in germinating seeds of Osomt mutants compared to WT. These results provide important insights into the role of OsOMT in seed vigor in rice.
Collapse
Affiliation(s)
- Wenjun Li
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangyu Xu
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Liling Peng
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Sun
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhibo Huang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuhua Jiang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqi He
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
24
|
Imin B, Dai Y, Shi Q, Guo Y, Li H, Nijat M. Responses of two dominant desert plant species to the changes in groundwater depth in hinterland natural oasis, Tarim Basin. Ecol Evol 2021; 11:9460-9471. [PMID: 34306635 PMCID: PMC8293730 DOI: 10.1002/ece3.7766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Groundwater is increasingly becoming a permanent and steady water source for the growth and reproduction of desert plant species due to the frequent channel cutoff events in arid inland river basins. Although it is widely acknowledged that the accessibility of groundwater has a significant impact on plant species maintaining their ecological function, little is known about the water use strategies of desert plant species to the groundwater availability in Daryaboyi Oasis, Central Tarim Basin. This study initially determined the desirable and stressing groundwater depths based on ecological and morphological parameters including UAV-based fractional vegetation cover (FVC) images and plant growth status. Then, leaf δ13C values of small- and big-sized plants were analyzed to reveal the water use strategies of two dominant woody species (Populus euphratica and Tamarix ramosissima) in response to the groundwater depth gradient. The changes in FVC and growth status of plants suggested that the actual groundwater depth should be kept at an appropriate range of about 2.1-4.3 m, and the minimum groundwater depth should be less than 7 m. This will ensure the protection of riparian woody plants at a normal growth state and guarantee the coexistence of both plant types. Under a desirable groundwater condition, water alternation (i.e., flooding and rising groundwater depth) was the main factor influencing the variation of plant water use efficiency. The obtained results indicated that big-sized plants are more salt-tolerant than small ones, and T. ramosissima has strong salt palatability than P. euphratica. With increasing groundwater depth, P. euphratica continuously decreases its growth status to maintain hydraulic efficiency in drought condition, while T. ramosissima mainly increases its water use efficiency first and decreases its growth status after then. Besides, in a drought condition, T. ramosissima has strong adaptability than P. euphratica. This study will be informative for ecological restoration and sustainable management of Daryaboyi Oasis and provides reference materials for future research programs.
Collapse
Affiliation(s)
- Bilal Imin
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| | - Yue Dai
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Qingdong Shi
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| | - Yuchuan Guo
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Hao Li
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| | - Marhaba Nijat
- Key Laboratory of Oasis EcologyCollege of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
- Institute of Arid Ecology and EnvironmentXinjiang UniversityUrumqiChina
| |
Collapse
|
25
|
Liu W, Li S, Zhang C, Jin F, Li W, Li X. Identification of Candidate Genes for Drought Tolerance at Maize Seedlings Using Genome-Wide Association. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2637. [PMID: 34825009 PMCID: PMC8590722 DOI: 10.30498/ijb.2021.209324.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Drought stress is a serious threat that limit maize growth and production. OBJECTIVES The assessment tolerance level of maize by measuring changes in the main biochemical and physiological indicators under drought stress. MATERIAL AND METHODS We performed a genome-wide association analysis of biochemical and physiological indicators using an elite association panel. RESULTS The results revealed that eight significant SNPs (p<0.05/N) located in eight genes that are distributed on different chromosomes were associated with drought resistance indices under drought stress. Among these genes, four genes were linked via the associated SNPs with drought-resistance indices of the malondialdehyde activity (MDA), three genes were linked with drought resistance indexes of the superoxide dismutase activity (SOD), and one gene was linked with drought resistance indexes of relative conductivity (REC). The candidate genes functioned as transcription factors, enzymes, and transporters, which included trehalase, the AP2/EREB160 transcription factor, and glutathione S-transferase and also encoded a gene of unknown function. These genes may be directly or indirectly involved in drought resistance. The expression levels of ZmEREB160 responded to ABA and drought stress. CONCLUSIONS These results provided good information to understand the genetic basis of variation in drought resistance indices of biochemical and physiological indicators during drought stress.
Collapse
Affiliation(s)
- Wenping Liu
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
| | - Shufang Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
| | - Chunxiao Zhang
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
| | - Fengxue Jin
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
| | - Wanjun Li
- Taonan Research Center, Jilin Academy of Agricultural Sciences, Taonan 137100, Jilin, China
| | - Xiaohui Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
| |
Collapse
|
26
|
Application of Genomics to Understand Salt Tolerance in Lentil. Genes (Basel) 2021; 12:genes12030332. [PMID: 33668850 PMCID: PMC7996261 DOI: 10.3390/genes12030332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Soil salinity is a major abiotic stress, limiting lentil productivity worldwide. Understanding the genetic basis of salt tolerance is vital to develop tolerant varieties. A diversity panel consisting of 276 lentil accessions was screened in a previous study through traditional and image-based approaches to quantify growth under salt stress. Genotyping was performed using two contrasting methods, targeted (tGBS) and transcriptome (GBS-t) genotyping-by-sequencing, to evaluate the most appropriate methodology. tGBS revealed the highest number of single-base variants (SNPs) (c. 56,349), and markers were more evenly distributed across the genome compared to GBS-t. A genome-wide association study (GWAS) was conducted using a mixed linear model. Significant marker-trait associations were observed on Chromosome 2 as well as Chromosome 4, and a range of candidate genes was identified from the reference genome, the most plausible being potassium transporters, which are known to be involved in salt tolerance in related species. Detailed mineral composition performed on salt-treated and control plant tissues revealed the salt tolerance mechanism in lentil, in which tolerant accessions do not transport Na+ ions around the plant instead localize within the root tissues. The pedigree analysis identified two parental accessions that could have been the key sources of tolerance in this dataset.
Collapse
|
27
|
Nakhla WR, Sun W, Fan K, Yang K, Zhang C, Yu S. Identification of QTLs for Salt Tolerance at the Germination and Seedling Stages in Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:428. [PMID: 33668277 PMCID: PMC7996262 DOI: 10.3390/plants10030428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Rice is highly sensitive to salinity stress during the seedling establishment phase. Salt stress is widely occurring in cultivated areas and severely affects seed germination ability and seedling establishment, which may result in a complete crop failure. The objective of the present study is to identify quantitative trait loci (QTLs) related to salt tolerance of the germination and seedling stages in a rice backcross inbred line (BIL) population that was derived from a backcross of an Africa rice ACC9 as donor and indica cultivar Zhenshan97 (ZS97) as the recurrent parent. Under salt stress, ACC9 exhibited a higher germination percentage, but more repressed seedling growth than ZS97. Using the BIL population, 23 loci for germination parameters were detected at the germination stage and 46 loci were identified for several morphological and physiological parameters at the seedling stage. Among them, nine and 33 loci with the ACC9 alleles increased salt tolerance at the germination and seedling stages, respectively. Moreover, several major QTLs were found to be co-localized in the same or overlapping regions of previously reported genes for salt stress. These major loci will facilitate improving salt-tolerance rice in genome-breeding programs.
Collapse
Affiliation(s)
- Walid Raafat Nakhla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (W.R.N.); (W.S.); (K.F.); (K.Y.); (C.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Cai D, Xu Y, Zhao F, Zhang Y, Duan H, Guo X. Improved salt tolerance of Chenopodium quinoa Willd. contributed by Pseudomonas sp. strain M30-35. PeerJ 2021; 9:e10702. [PMID: 33520465 PMCID: PMC7811290 DOI: 10.7717/peerj.10702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background Plant-growth-promoting rhizobacteria (PGPR) can promote plant growth and enhance plant tolerance to salt stress. Pseudomonas sp. strain M30-35 might confer abiotic stress tolerance to its host plants. We evaluated the effects of M30-35 inoculation on the growth and metabolite accumulation of Chenopodium quinoa Willd. during salt stress growth conditions. Methods The effects of M30-35 on the growth of C. quinoa seedlings were tested under salt stress. Seedling growth parameters measured included chlorophyll content, root activity, levels of plant- phosphorus (P), and saponin content. Results M30-35 increased biomass production and root activity compared to non-inoculated plants fertilized with rhizobia and plants grown under severe salt stress conditions. The photosynthetic pigment content of chlorophyll a and b were higher in M30-35-inoculated C. quinoa seedlings under high salt stress conditions compared to non-inoculated seedlings. The stability of P content was also maintained. The content of saponin, an important secondary metabolite in C. quinoa, was increased by the inoculation of M30-35 under 300 mM NaCl conditions. Conclusion Inoculation of M30-35 rescues the growth diminution of C. quinoa seedlings under salt stress.
Collapse
Affiliation(s)
- Deyu Cai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ying Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Fei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yan Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaonong Guo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
29
|
Zeng P, Zhu P, Qian L, Qian X, Mi Y, Lin Z, Dong S, Aronsson H, Zhang H, Cheng J. Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress. BMC PLANT BIOLOGY 2021; 21:36. [PMID: 33422012 PMCID: PMC7797128 DOI: 10.1186/s12870-020-02820-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/25/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice growth is frequently affected by salinity. When exposed to high salinity, rice seed germination and seedling establishment are significantly inhibited. With the promotion of direct-seeding in Asia, improving rice seed germination under salt stress is crucial for breeding. RESULTS In this study, an indica landrace Wujiaozhan (WJZ) was identified with high germinability under salt stress. A BC1F2 population derived from the crossing WJZ/Nip (japonica, Nipponbare)//Nip, was used to quantitative trait loci (QTL) mapping for the seed germination rate (GR) and germination index (GI) under H2O and 300 mM NaCl conditions. A total of 13 QTLs were identified, i.e. ten QTLs under H2O conditions and nine QTLs under salt conditions. Six QTLs, qGR6.1, qGR8.1, qGR8.2, qGR10.1, qGR10.2 and qGI10.1 were simultaneously identified under two conditions. Under salt conditions, three QTLs, qGR6.2, qGR10.1 and qGR10.2 for GR were identified at different time points during seed germination, which shared the same chromosomal region with qGI6.2, qGI10.1 and qGI10.2 for GI respectively. The qGR6.2 accounted for more than 20% of phenotypic variation under salt stress, as the major effective QTL. Furthermore, qGR6.2 was verified via the BC2F2 population and narrowed to a 65.9-kb region with eleven candidate genes predicted. Based on the microarray database, five candidate genes were found with high transcript abundances at the seed germination stage, of which LOC_Os06g10650 and LOC_Os06g10710 were differentially expressed after seed imbibition. RT-qPCR results showed the expression of LOC_Os06g10650 was significantly up-regulated in two parents with higher levels in WJZ than Nip during seed germination under salt conditions. Taken together, it suggests that LOC_Os06g10650, encoding tyrosine phosphatase family protein, might be the causal candidate gene for qGR6.2. CONCLUSIONS In this study, we identified 13 QTLs from a landrace WJZ that confer seed germination traits under H2O and salt conditions. A major salt-tolerance-specific QTL qGR6.2 was fine mapped to a 65.9-kb region. Our results provide information on the genetic basis of improving rice seed germination under salt stress by marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Peng Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Peiwen Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Luofeng Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Xumei Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Yuxin Mi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Zefeng Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Shinan Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Henrik Aronsson
- Department of Biological and Environment Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China.
| | - Jinping Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
30
|
Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, Jin C, Fang S, Lu S, Guo L, Yao X. Genome-Wide Association Studies of Salt Tolerance at Seed Germination and Seedling Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:772708. [PMID: 35069628 PMCID: PMC8766642 DOI: 10.3389/fpls.2021.772708] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Most crops are sensitive to salt stress, but their degree of susceptibility varies among species and cultivars. In order to understand the salt stress adaptability of Brassica napus to salt stress, we collected the phenotypic data of 505 B. napus accessions at the germination stage under 150 or 215 mM sodium chloride (NaCl) and at the seedling stage under 215 mM NaCl. Genome-wide association studies (GWAS) of 16 salt tolerance coefficients (STCs) were applied to investigate the genetic basis of salt stress tolerance of B. napus. In this study, we mapped 31 salts stress-related QTLs and identified 177 and 228 candidate genes related to salt stress tolerance were detected at germination and seedling stages, respectively. Overexpression of two candidate genes, BnCKX5 and BnERF3 overexpression, were found to increase the sensitivity to salt and mannitol stresses at the germination stage. This study demonstrated that it is a feasible method to dissect the genetic basis of salt stress tolerance at germination and seedling stages in B. napus by GWAS, which provides valuable loci for improving the salt stress tolerance of B. napus. Moreover, these candidate genes are rich genetic resources for the following exploration of molecular mechanisms in adaptation to salt stress in B. napus.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao,
| |
Collapse
|
31
|
Zhao J, He Y, Huang S, Wang Z. Advances in the Identification of Quantitative Trait Loci and Genes Involved in Seed Vigor in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:659307. [PMID: 34335643 PMCID: PMC8316977 DOI: 10.3389/fpls.2021.659307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 05/08/2023]
Abstract
Seed vigor is a complex trait, including the seed germination, seedling emergence, and growth, as well as seed storability and stress tolerance, which is important for direct seeding in rice. Seed vigor is established during seed development, and its level is decreased during seed storage. Seed vigor is influenced by genetic and environmental factors during seed development, storage, and germination stages. A lot of factors, such as nutrient reserves, seed dying, seed dormancy, seed deterioration, stress conditions, and seed treatments, will influence seed vigor during seed development to germination stages. This review highlights the current advances on the identification of quantitative trait loci (QTLs) and regulatory genes involved in seed vigor at seed development, storage, and germination stages in rice. These identified QTLs and regulatory genes will contribute to the improvement of seed vigor by breeding, biotechnological, and treatment approaches.
Collapse
|
32
|
Yang J, Yang M, Su L, Zhou D, Huang C, Wang H, Guo T, Chen Z. Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110669. [PMID: 33218635 DOI: 10.1016/j.plantsci.2020.110669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Low temperature at the germination stage is one of the major abiotic stresses limiting rice (Oryza sativa L.) production, especially in regions where rice seeds are sown directly. However, few relevant genetic loci and genes have been identified. In this study, we report the phenotypic analysis of low temperature germination (LTG) in 200 indica rice varieties and a genome-wide association study (GWAS) of LTG in this collection using 161,657 high-quality SNPs, which were identified via genotyping-by-sequencing (GBS) of all the rice varieties. A total of 159 genetic loci were detected, and they were evenly distributed on all 12 chromosomes. Among them, 51 loci were detected more than twice; in particular, 23 loci were detected repeatedly in both the wet and dry seasons, and 569 genes were predicted in the 200-kb genomic region harbouring these 23 loci. Furthermore, 14,742 differentially expressed genes (DEGs) were identified using RNA sequencing. By integrating GWAS and RNA sequencing, 179 candidate DEGs were obtained. Sequence variation in the region of loci 95 was analyzed using 20 varieties with extreme phenotype. The polymorphisms of three DEGs (Os07g0585500, Os07g0585700, Os07g0585900) were associated with their phenotypes. Haplotype analysis of the three genes demonstrated that almost all the varieties with the same haplotype as japonica Nipponbare on the three DEGs showed high LTG ability. These findings provide valuable information for understanding the genetic control of LTG and performing molecular breeding with marker-assisted selection in indica rice.
Collapse
Affiliation(s)
- Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Danhua Zhou
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Abulfaraj AA. Stepwise signal transduction cascades under salt stress in leaves of wild barley (Hordeum spontaneum). BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1807408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Aala Abdulaziz Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Xu Y, Jin Z, Xu B, Li J, Li Y, Wang X, Wang A, Hu W, Huang D, Wei Q, Xu Z, Song S. Identification of transcription factors interacting with a 1274 bp promoter of MaPIP1;1 which confers high-level gene expression and drought stress Inducibility in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:278. [PMID: 32546127 PMCID: PMC7298759 DOI: 10.1186/s12870-020-02472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought stress can severely affect plant growth and crop yield. The cloning and identification of drought-inducible promoters would be of value for genetically-based strategies to improve resistance of crops to drought. RESULTS Previous studies showed that the MaPIP1;1 gene encoding an aquaporin is involved in the plant drought stress response. In this study, the promoter pMaPIP1;1, which lies 1362 bp upstream of the MaPIP1;1 transcriptional initiation site, was isolated from the banana genome..And the transcription start site(A) is 47 bp before the ATG. To functionally validate the promoter, various lengths of pMaPIP1;1 were deleted and fused to GUS to generate pMaPIP1;1::GUS fusion constructs that were then transformed into Arabidopsis to generate four transformants termed M-P1, M-P2, M-P3 and M-P4.Mannitol treatment was used to simulate drought conditions. All four transformants reacted well to mannitol treatment. M-P2 (- 1274 bp to - 1) showed the highest transcriptional activity among all transgenic Arabidopsis tissues, indicating that M-P2 was the core region of pMaPIP1;1. This region of the promoter also confers high levels of gene expression in response to mannitol treatment. Using M-P2 as a yeast one-hybrid bait, 23 different transcription factors or genes that interacted with MaPIP1;1 were screened. In an dual luciferase assay for complementarity verification, the transcription factor MADS3 positively regulated MaPIP1;1 transcription when combined with the banana promoter. qRT-PCR showed that MADS3 expression was similar in banana leaves and roots under drought stress. In banana plants grown in 45% soil moisture to mimic drought stress, MaPIP1;1 expression was maximized, which further demonstrated that the MADS3 transcription factor can synergize with MaPIP1;1. CONCLUSIONS Together our results revealed that MaPIP1;1 mediates molecular mechanisms associated with drought responses in banana, and will expand our understanding of how AQP gene expression is regulated. The findings lay a foundation for genetic improvement of banana drought resistance.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuye Xu
- Hainan University, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
35
|
Mwando E, Han Y, Angessa TT, Zhou G, Hill CB, Zhang XQ, Li C. Genome-Wide Association Study of Salinity Tolerance During Germination in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2020; 11:118. [PMID: 32153619 PMCID: PMC7047234 DOI: 10.3389/fpls.2020.00118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/27/2020] [Indexed: 05/21/2023]
Abstract
Barley seeds need to be able to germinate and establish seedlings in saline soils in Mediterranean-type climates. Despite being a major cereal crop, barley has few reported quantitative trait loci (QTL) and candidate genes underlying salt tolerance at the germination stage. Breeding programs targeting salinity tolerance at germination require an understanding of genetic loci and alleles in the current germplasm. In this study, we investigated seed-germination-related traits under control and salt stress conditions in 350 diverse barley accessions. A genome-wide association study, using ~24,000 genetic markers, was undertaken to detect marker-trait associations (MTA) and the underlying candidate genes for salinity tolerance during germination. We detected 19 loci containing 52 significant salt-tolerance-associated markers across all chromosomes, and 4 genes belonging to 4 family functions underlying the predicted MTAs. Our results provide new genetic resources and information to improve salt tolerance at germination in future barley varieties via genomic and marker-assisted selection and to open up avenues for further functional characterization of the identified candidate genes.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| | - Camilla Beate Hill
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
36
|
Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T. Salt Tolerance Improvement in Rice through Efficient SNP Marker-Assisted Selection Coupled with Speed-Breeding. Int J Mol Sci 2019; 20:ijms20102585. [PMID: 31130712 PMCID: PMC6567206 DOI: 10.3390/ijms20102585] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022] Open
Abstract
Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from “Kaijin” into high-yielding “Yukinko-mai” (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named “YNU31-2-4”, in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that “YNU31-2-4” plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. “YNU31-2-4” seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that “YNU31-2-4” seedlings avoided Na+ accumulation in shoots under salt stress. The “YNU31-2-4” plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. “YNU31-2-4” is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate.
Collapse
Affiliation(s)
- Md Masud Rana
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Agronomy Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh.
| | - Takeshi Takamatsu
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Marouane Baslam
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Kentaro Kaneko
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kimiko Itoh
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Naoki Harada
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Toshie Sugiyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| | - Takayuki Ohnishi
- Center for Education and Research of Community Collaboration, Utsunomiya University, Utsunomiya 321-8505, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan.
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa 921-8836, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan.
| |
Collapse
|
37
|
Hernández JA. Salinity Tolerance in Plants: Trends and Perspectives. Int J Mol Sci 2019; 20:E2408. [PMID: 31096626 PMCID: PMC6567217 DOI: 10.3390/ijms20102408] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
Salinity stress is one of the more prevailing abiotic stresses which results in significant losses in agricultural crop production, particularly in arid and semi-arid areas [...].
Collapse
Affiliation(s)
- Jose Antonio Hernández
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
| |
Collapse
|