1
|
Kim DY, Kang YH, Kang MK. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins. J Mol Med (Berl) 2024:10.1007/s00109-024-02491-z. [PMID: 39363131 DOI: 10.1007/s00109-024-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea.
| |
Collapse
|
2
|
Park I, Nam H, Lee Y, Wickramasuriya SS, Smith AH, Rehberger TG, Lillehoj HS. The effect of gut microbiota-derived carnosine on mucosal integrity and immunity in broiler chickens challenged with Eimeria maxima. Poult Sci 2024; 103:103837. [PMID: 38848630 PMCID: PMC11214313 DOI: 10.1016/j.psj.2024.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
In the first study, an in vitro culture system was developed to investigate the effects of carnosine on macrophage proinflammatory cytokine response using an established chicken macrophage cell line (CMC), gut integrity using a chicken intestinal epithelial cell line (IEC), muscle differentiation in quail muscle cells (QMCs) and primary chicken embryonic muscle cells (PMCs), and direct anti-parasitic effect against Eimeria maxima sporozoites. Cells to be tested were seeded in 24-well plates and treated with carnosine at 4 different concentrations (0.1, 1.0, and 10.0 µg). After 18 h of incubation, cells were harvested to measure gene expression of proinflammatory cytokines in CMC, tight junction (TJ) proteins in IECs, and muscle cell growth markers in QMCs and PMCs. In vivo trials were conducted to investigate the effect of dietary carnosine on disease parameters in broiler chickens challenged with E. maxima. One hundred and twenty male broiler chickens (0-day-old) were allocated into 4 treatment groups: 1) basal diet without infection (NC), 2) basal diet with E. maxima infection (PC), 3) carnosine at 10.0 mg/kg feed with PC (HCS), and 4) carnosine at 1.0 mg/kg feed with PC (LCS). All groups except NC were orally infected with E. maxima on d 14. Jejunal samples were collected for lesion scoring and jejunum gut tissues were used for transcriptomic analysis of cytokines and TJ proteins. In vitro, carnosine treatment significantly decreased IL-1β gene expression in CMC following LPS stimulation. In vivo feeding studies showed that dietary carnosine increased BW and ADG of chickens in E. maxima-infected groups and reduced the jejunal lesion score and fecal oocyst shedding in HCS group. Jejunal IL-1β, IL-8, and IFN-γ expression were suppressed in the HCS group compared to PC. The expression levels of claudin-1 and occludin in IECs were also increased in HCS following carnosine treatment. In conclusion, these findings highlight the beneficial effects of dietary carnosine supplementation on intestinal immune responses and gut barrier function in broiler chickens exposed to E. maxima infection.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | | | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA.
| |
Collapse
|
3
|
Cho EC, Ahn S, Shin KO, Lee JB, Hwang HJ, Choi YJ. Protective Effect of Red Light-Emitting Diode against UV-B Radiation-Induced Skin Damage in SKH:HR-2 Hairless Mice. Curr Issues Mol Biol 2024; 46:5655-5667. [PMID: 38921009 PMCID: PMC11202801 DOI: 10.3390/cimb46060338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
In this in vivo study on hairless mice, we examined the effects of light-emitting diode (LED) treatment applied prior to ultraviolet B (UVB) irradiation. We found that pre-treating with LED improved skin morphological and histopathological conditions compared to those only exposed to UVB irradiation. In our study, histological evaluation of collagen and elastic fibers after LED treatment prior to UVB irradiation showed that this pretreatment significantly enhanced the quality of fibers, which were otherwise poor in density and irregularly arranged due to UV exposure alone. This suggests that LED treatment promotes collagen and elastin production, leading to improved skin properties. Additionally, we observed an increase in Claudin-1 expression and a reduction in nuclear factor-erythroid 2-related factor 2 (Nrf-2) and heme-oxygenase 1 (HO-1) expression within the LED-treated skin tissues, suggesting that LED therapy may modulate key skin barrier proteins and oxidative stress markers. These results demonstrate that pretreatment with LED light can enhance the skin's resistance to UVB-induced damage by modulating gene regulation associated with skin protection. Further investigations are needed to explore the broader biological effects of LED therapy on other tissues such as blood vessels. This study underscores the potential of LED therapy as a non-invasive approach to enhance skin repair and counteract the effects of photoaging caused by UV exposure.
Collapse
Affiliation(s)
- Eun-Chae Cho
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (E.-C.C.); (S.A.)
| | - Surin Ahn
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (E.-C.C.); (S.A.)
| | - Kyung-Ok Shin
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea;
| | | | - Hyo-Jeong Hwang
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea;
| |
Collapse
|
4
|
Arif S, Richer M, Larochelle S, Moulin VJ. Microvesicles derived from dermal myofibroblasts modify the integrity of the blood and lymphatic barriers using distinct endocytosis pathways. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e151. [PMID: 38939570 PMCID: PMC11080715 DOI: 10.1002/jex2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Microvesicles (MVs) are a subtype of extracellular vesicles that can transfer biological information from their producer cells to target cells. This communication can in turn affect both normal and pathological processes. Mounting evidence has revealed that dermal wound myofibroblasts (Wmyo) produce MVs, which can transfer biomolecules impacting receptor cells such as human dermal microvascular endothelial cells (HDMECs). While the effects of MVs on HDMECs are generally well described in the literature, little is known about the transport of MVs across the HDMEC barrier, and their potential effect on the barrier integrity remains unknown. Here, we investigated these roles of Wmyo-derived MVs on two sub-populations of HDMECs, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs). Using an in vitro model to mimic the endothelial barrier, we showed that MVs crossed the LEC barrier but not the BEC barrier. In addition, we demonstrated that MVs were able to influence the cell-cell junctions of HDMECs. Specifically, we observed that after internalization via the predominantly caveolin-dependent pathway, MVs induced the opening of junctions in BECs. Conversely, in LECs, MVs mainly use the macropinocytosis pathway and induce closure of these junctions. Moreover, proteins in the MV membrane were responsible for this effect, but not specifically those belonging to the VEGF family. Finally, we found that once the LEC barrier permeability was reduced by MV stimuli, MVs ceased to cross the barrier. Conversely, when the BEC barrier was rendered permeable following stimulation with MVs, they were subsequently able to cross the barrier via the paracellular pathway. Taken together, these results suggest that the study of Wmyo-derived MVs offers valuable insights into their interaction with the HDMEC barrier in the context of wound healing. They highlight the potential significance of these MVs in the overall process.
Collapse
Affiliation(s)
- Syrine Arif
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXCentre de recherche du CHU de Québec‐Université LavalQuebecCanada
| | - Megan Richer
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXCentre de recherche du CHU de Québec‐Université LavalQuebecCanada
| | - Sébastien Larochelle
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXCentre de recherche du CHU de Québec‐Université LavalQuebecCanada
| | - Véronique J. Moulin
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXCentre de recherche du CHU de Québec‐Université LavalQuebecCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuebecCanada
| |
Collapse
|
5
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
6
|
Kida M, Fatima I, Rozhkova E, Otero-Viñas M, Wu M, Kalin JH, Cole PA, Falanga V, Alani RM, Sharov AA. Inhibition of the CoREST Repressor Complex Promotes Wound Re-Epithelialization through the Regulation of Keratinocyte Migration. J Invest Dermatol 2024; 144:378-386.e2. [PMID: 37633457 PMCID: PMC10790709 DOI: 10.1016/j.jid.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Wound healing is a complex process involving phases of hemostasis, inflammation, proliferation, and remodeling. The regenerative process in the skin requires coordination between many regulators, including signaling molecules, transcription factors, and the epigenetic machinery. In this study, we show that chromatin regulators HDAC1 and LSD1, key components of the CoREST repressor complex, are upregulated in the regenerating epidermis during wound repair. We also show that corin, a synthetic dual inhibitor of the CoREST complex and HDAC1/LSD1 activities, significantly accelerates wound closure through enhanced re-epithelialization in a mouse tail wound model. Acetylated H3K9 (methylation of histone H3 at lysine 9) expression, a histone modification targeted by HDAC1, is increased in keratinocytes after topical treatment with 100 nM and 1 μM of corin. In vitro experiments demonstrate that corin promotes migration and inhibits the proliferation of human keratinocytes. Furthermore, expression levels of genes promoting keratinocyte migration, such as AREG, CD24, EPHB2, ITGAX, PTGS, SCT1, SERPINB2, SERPINE1, SLPI, SNAI2, and TWIST, increased in keratinocytes treated with corin. These data demonstrate that dual inhibition of class I histone deacetylases and LSD1 by corin may serve as a new approach for promoting wound re-epithelialization and provide a platform for further applications of corin for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Maki Kida
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Iqra Fatima
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Elena Rozhkova
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Marta Otero-Viñas
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; The Tissue Repair and Regeneration Laboratory (TR2Lab), Faculty of Sciences and Technology, University of Vic - Central University of Catalonia, Vic, Spain
| | - Muzhou Wu
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Jay H Kalin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vincent Falanga
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Rhoda M Alani
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Andrey A Sharov
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Zhan X, Wang D, Wang H, Chen H, Wu X, Li T, Qi J, Chen T, Wu D, Gao Y. Revitalizing Skin Repair: Unveiling the Healing Power of Livisin, a Natural Peptide Calcium Mimetic. Toxins (Basel) 2023; 16:21. [PMID: 38251238 PMCID: PMC10819626 DOI: 10.3390/toxins16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
When the skin is damaged, accelerating the repair of skin trauma and promoting the recovery of tissue function are crucial considerations in clinical treatment. Previously, we isolated and identified an active peptide (livisin) from the skin secretion of the frog Odorrana livida. Livisin exhibited strong protease inhibitory activity, water solubility, and stability, yet its wound-healing properties have not yet been studied. In this study, we assessed the impact of livisin on wound healing and investigated the underlying mechanism contributing to its effect. Our findings revealed livisin effectively stimulated the migration of keratinocytes, with the underlying mechanisms involved the activation of CaSR as a peptide calcium mimetic. This activation resulted in the stimulation of the CaSR/E-cadherin/EGFR/ERK signaling pathways. Moreover, the therapeutic effects of livisin were partially reduced by blocking the CaSR/E-cadherin/EGFR/ERK signaling pathway. The interaction between livisin and CaSR was further investigated by molecular docking. Additionally, studies using a mouse full-thickness wound model demonstrated livisin could accelerate skin wound healing by promoting re-epithelialization and collagen deposition. In conclusion, our study provides experimental evidence supporting the use of livisin in skin wound healing, highlighting its potential as an effective therapeutic option.
Collapse
Affiliation(s)
- Xuehui Zhan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Danni Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Hanfei Wang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Xinyi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Tao Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Junmei Qi
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (H.C.); (X.W.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (X.Z.); (D.W.); (H.W.); (T.L.); (J.Q.)
| |
Collapse
|
8
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Imantika E, Sasotya RS, Armawan E, Tjandraprawira KD, Rodiani R, Rahim T. Enhanced Proliferation and Adhesion Marker Gene Expression in Fibroblast Cells: Evaluating the Efficacy of a Non-Surgical Treatment for Urogenital Fistula. Med Sci Monit 2023; 29:e941641. [PMID: 37978796 PMCID: PMC10664302 DOI: 10.12659/msm.941641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Vesicovaginal fistula (VVF) due to posterior bladder wall and/or anterior vaginal wall necrosis is a condition that leads to urinary incontinence. Both microscopic and macroscopic VVFs severely impact quality of life. They are also associated with frequent recurrence after surgery. A non-surgical intervention for VVF is urgently required. A membrane bilayer could act as a mechanical tamponade and stimulate defect closure. MATERIAL AND METHODS This is an experimental study that explored the characteristics of mucoadhesive bilayer membrane complexes for non-operative treatment of VVF in vitro. We synthesized a mucoadhesive bilayer membrane, and inoculated it with cultured fibroblast cells. The mucoadhesive bilayer membrane was prepared with 3 different treatments: (1) estrogen; (2) lyophilized radiation-sterilized amnion (ALSR), a prepared amniotic membrane; and (3) arginine and glutamine (arginine+glutamine), 2 amino acids associated with wound repair. Expression levels of 3 genes, namely tumor growth factor beta (TGF-ß), lysil oxidase (LOX), and junctional adhesion molecules (JAMs), were measured using the Livak method and polymerase chain reaction (PCR). RESULTS On the fifth day after inoculation, there was no statistically significant difference in expression of the genes in the 3 conditions. However, on the tenth day, gene expression of the LOX and JAMs genes in the fibroblast cells inoculated onto the mucoadhesive bilayer membrane with arginine+glutamine was significantly higher than the expression in the fibroblast cells inoculated onto the mucoadhesive bilayer membrane with estrogen or with ALSR. CONCLUSIONS The mucoadhesive bilayer membrane complex with arginine+glutamine gave rise to the highest expression of the LOX and JAMs genes, indicating that the highest proliferation and cell adhesion were found in cells inoculated with the mucoadhesive bilayer membrane complex with arginine+glutamine.
Collapse
Affiliation(s)
- Efriyan Imantika
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lampung, Bandar Lampung, Lampung, Indonesia
| | - R.M. Sonny Sasotya
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
| | - Edwin Armawan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
| | - Kevin D. Tjandraprawira
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
| | - Rodiani Rodiani
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lampung, Bandar Lampung, Lampung, Indonesia
| | - Taufiqurrahman Rahim
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lampung, Bandar Lampung, Lampung, Indonesia
| |
Collapse
|
10
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
11
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
12
|
Azevedo ML, Silveira RG, Nedel F, Lund RG. MicroRNAs expressed during normal wound healing and their associated pathways: A systematic review and bioinformatics analysis. PLoS One 2023; 18:e0281913. [PMID: 37053170 PMCID: PMC10101427 DOI: 10.1371/journal.pone.0281913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/04/2023] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are responsible for regulating gene expression post-transcriptionally. Are involved in several biological processes, such as wound healing. Understanding the miRNAs involved in this process is fundamental for the development of new therapies. So, due to the need to understand the role of these molecules, we aimed systematically review the literature in order to identify which miRNAs are involved in the wound healing and determine, through bioinformatics analysis, which signaling pathways are associated with these miRNAs. An electronic search was performed in the following databases: National Library of Medicine National Institutes of Health (PubMed), Science Direct, Scifinder, Scopus and Web of Science, using the descriptors: "(microRNA [MeSH])" and "(skin [MeSH])" and "(wound healing [MeSH])". After the search, two independent and previously calibrated reviewers selected the articles that analyzed the expression pattern of miRNAs in wound healing in in vivo studies, using the software Zotero bibliography manager. Following, bioinformatic analysis was performed using the software DIANA Tools, mirPath v.3 and the data was interpreted. The bioinformatics analysis revealed that on the day 1 there were 13 union pathways, eight of which were statistically significant. Still on the day 1, among the miRNAs that had a decrease in their expression, 12 of 17 union pathways found were statistically significant. On the day 5, among the miRNAs with an increase in expression, 16 union pathways were found, 12 of which were statistically significant. Finally, among the miRNAs with decreased expression, 11 of 15 union pathways found were statistically significant. Although it has been found substantial heterogeneity in the studies, with this systematic review, it was possible to study the panorama of miRNAs that may be altered in the wound healing. The present review summarizes existing evidence of miRNAs associated to wound healing, and these findings can contribute to new therapeutic approaches.
Collapse
Affiliation(s)
- Morgana Lüdtke Azevedo
- Graduated Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Roberta Giorgi Silveira
- Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Nedel
- Graduated Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Rafael Guerra Lund
- Graduated Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
13
|
de Dios Andres P, Städler B. Micromotor-Assisted Keratinocytes Migration in a Floating Paper Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201251. [PMID: 35694770 DOI: 10.1002/smll.202201251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Indexed: 06/15/2023]
Abstract
In vitro epidermis models are important to evaluate and study disease progression and possible dermal drug delivery. An in vitro epidermis model using floating paper chips as a scaffold for proliferation and differentiation of primary human keratinocytes is reported. The formation of the four main layers of the epidermis (i.e., basal, spinosum, granulose, and cornified layers) is confirmed. The development of a cornified layer and the tight junction formation are evaluated as well as the alterations of organelles during the differentiation process. Further, this in vitro model is used to assess keratinocyte migration. Finally, magnetic micromotors are assembled, and their ability to aid cell migration on paper chips is confirmed when a static magnetic field is present. Taken together, this attempt to combine bottom-up synthetic biology with dermatology offers interesting opportunities for studying skin disease pathologies and evaluate possible treatments.
Collapse
Affiliation(s)
- Paula de Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
14
|
Li S, Yuan R, Fan Q, Zhang C, Han S, Li J, Xu Z, Sun K, Xu Q, Yao C, Yang S, Gao H. Ginsenoside Rb1 exerts therapeutic effects on ulcerative colitis through regulating the Nrf2/PIP2/NLRP3 inflammasome signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
15
|
Barrett S, Rippon MJ, Rogers AA. [Treatment of 52 patients with a self-adhesive siliconised superabsorbent dressing: a multicentre observational study]. Khirurgiia (Mosk) 2023:59-71. [PMID: 36748871 DOI: 10.17116/hirurgia202302159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To provide 'in use' clinical data to support exudate management in patients with moderately to highly exuding wounds with bordered superabsorbent wound dressing with a silicone adhesive interface Zetuvit Plus Silicone Border (Paul Hartmann Ltd., Germany). MATERIALS AND METHODS This study was an open-labelled non-comparative study. Patients included in the study were selected by the clinical investigator(s) according to whether the patient required a dressing for the management of moderately to highly exuding wounds such as pressure ulcers, diabetic foot ulcers, venous leg ulcer and arterial ulcers The patients were treated with A superabsorbent sterile wound dressing with bordered superabsorbent wound dressing with a silicone adhesive interface Zetuvit Plus Silicone Border (Paul Hartmann Ltd., Germany). RESULTS The Zetuvit Plus Silicone Border dressing had met the clinical objectives relating to exudate management, affirmed by the health professionals with a yes response in 94% of cases. Additionally, the health professionals rated the handling of exudate as excellent/good (78%) and most (80%) reported that they would use the superabsorbent wound dressing with a silicone adhesive interface again. Allied to this was the fact that the dressing improved the wound edge and periwound skin conditions (29% and 36% of patients, respectively). The dressing retained its position in 72% of patients. For wear time, the largest proportion of dressing changes, both pre-study and during the evaluation period, was every third day (45% and 44%, respectively). But there was a shift to extended wear time with use of the superabsorbent wound dressing with a silicone adhesive interface with 72% of patients' dressing changes being every third day or longer. CONCLUSION The superabsorbent silicone border dressing was successful in managing wound exudate in moderately to highly exuding wounds and consequently this had a beneficial impact on the wound edge and periwound skin. Overall, there was a positive effect on wound bed preparation and in turn the healing response was progressive.
Collapse
Affiliation(s)
- S Barrett
- Humber NHS Foundation Trust, U, Humber NHS Foundation Trust, UK
| | - M J Rippon
- Huddersfield University, Huddersfield, UK.,Daneriver Consultancy Ltd, Holmes Chapel, UK
| | | |
Collapse
|
16
|
Van Campenhout R, Cogliati B, Vinken M. Effects of acute and chronic disease on cell junctions in mouse liver. EXCLI JOURNAL 2023; 22:1-11. [PMID: 36660194 PMCID: PMC9837383 DOI: 10.17179/excli2022-5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2023]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in tissue architecture and homeostasis. Consequently, malfunctioning of cell junctions is linked with a wide range of disorders, including in liver. The present study was set up to investigate the effects of acute and chronic disease induced by chemical compounds on hepatic cell junctions in mice. Mice were either overdosed with paracetamol or repeatedly administered carbon tetrachloride followed by sampling at 24 hours or 8 weeks, respectively. mRNA and protein expression levels of adherens, gap and tight junction components were measured in liver using reverse transcription quantitative real-time polymerase chain reaction analysis and immunoblot techniques, respectively. It was found that protein levels of the adherens junction building blocks β-catenin and γ-catenin, the gap junction components Cx26 and Cx32, and the tight junction constituent zonula occludens 2 were decreased, while mRNA levels of the adherens junction building block E-cadherin, and the tight junction constituent zonula occludens 2 and claudin 1 were upregulated following paracetamol overdosing. Repeated administration of carbon tetrachloride increased protein levels of E-cadherin, β-catenin, Cx26, Cx32, Cx43 and claudin 1. The latter was reflected at the mRNA level. In conclusion, acute and chronic liver disease have different effects on cell junctions in liver.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium,*To whom correspondence should be addressed: Mathieu Vinken, Vrije Universiteit Brussel, Entity of In Vitro Toxicology and Dermato-Cosmetology, Laarbeeklaan 103, B-1090 Brussels, Belgium; Tel: +32-2-4774587, Fax: +32-2-4774582, E-mail:
| |
Collapse
|
17
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
18
|
Fang J, Yuan Q, Du Z, Fei M, Zhang Q, Yang L, Wang M, Yang W, Yu J, Wu G, Hu J. Ferroptosis in brain microvascular endothelial cells mediates blood-brain barrier disruption after traumatic brain injury. Biochem Biophys Res Commun 2022; 619:34-41. [PMID: 35728282 DOI: 10.1016/j.bbrc.2022.06.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Ferroptosis is a newly recognized form of regulated cell death. Recently, growing evidence has shown that ferroptosis is involved in the pathogenesis of traumatic brain injury (TBI). However, less attention has been paid to its role in brain microvascular endothelial cells (BMVECs) and blood-brain barrier (BBB) damage, the central pathological process in secondary brain injury of TBI. Here, we established a mechanical stretch injury bEnd.3 model and a Controlled Cortical Impact (CCI) mouse model to explore the ferroptosis-related markers in brain endothelial cells after TBI in vitro and in vivo. From the results of RNA-seq analysis, RT-qPCR and immunostaining, glutathione peroxidase 4 (GPX4) downregulation, Cyclooxygenase-2 (COX-2) upregulation, and iron accumulation were observed in brain endothelial cells after TBI both in vitro and in vivo. Furthermore, we utilized Ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, to investigate the protective effects of ferroptosis inhibition on BBB disruption and neurological deficits. From the results of immunostaining, transmission electron microscopy (TEM), and western blotting, we demonstrated that Fer-1 significantly reduced BMVECs death, BBB permeability, and tight junction loss at 3 days after TBI. The neurological tests including grid walking, rotarod test, and wire-hanging test showed that Fer-1 administration exerted neuroprotective effects in the early stage of TBI. Our findings provided evidences for inhibition of BMVECs ferroptosis as a promising therapeutic target against TBI-induced BBB disruption.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Zhuoying Du
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Lei Yang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Meihua Wang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Jian Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Gang Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| |
Collapse
|
19
|
Chen L, Li Z, Zheng Y, Zhou F, Zhao J, Zhai Q, Zhang Z, Liu T, Chen Y, Qi S. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact Mater 2021; 10:236-246. [PMID: 34901542 PMCID: PMC8636711 DOI: 10.1016/j.bioactmat.2021.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022] Open
Abstract
Scar contraction frequently happens in patients with deep burn injuries. Hitherto, porcine dermal extracellular matrix (dECM) has supplied microenvironments that assist in wound healing but fail to inhibit scar contraction. To overcome this drawback, we integrate dECM into three-dimensional (3D)-printed dermal analogues (PDA) to prevent scar contraction. We have developed thermally gelled, non-rheologically modified dECM powder (dECMp) inks and successfully transformed them into PDA that was endowed with a micron-scale spatial structure. The optimal crosslinked PDA exhibited desired structure, good mechanical properties as well as excellent biocompatibility. Moreover, in vivo experiments demonstrated that PDA could significantly reduced scar contraction and improved cosmetic upshots of split thickness skin grafts (STSG) than the commercially available dermal templates and STSG along. The PDA has also induced an early, intense neovascularization, and evoked a type-2-like immune response. PDA's superior beneficial effects may attribute to their desired porous structure, the well-balanced physicochemical properties, and the preserved dermis-specific ECM cues, which collectively modulated the expression of genes such as Wnt11, ATF3, and IL1β, and influenced the crucial endogenous signalling pathways. The findings of this study suggest that PDA is a clinical translatable material that possess high potential in reducing scar contraction. Current dermal analogues have supplied microenvironments that assist in wound healing but cannot inhibit scar contraction. dECMp ink was formulated and transformed into PDA endowed with a micron-scale designed spatial structure. The PDAs were neatly superior to split thickness skin grafts and commercial dermal templates in hindering scar contraction. The transcriptome data may reveal how at the molecular level the IS and skin wounds respond to biomaterial stimuli.
Collapse
Affiliation(s)
- Lei Chen
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Zhiyong Li
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongtai Zheng
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fei Zhou
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Jingling Zhao
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Qiyi Zhai
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Tianrun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongming Chen
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohai Qi
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
20
|
Jiang F, Liu X, Wang X, Hu J, Chang S, Cui X. LncRNA FGD5-AS1 accelerates intracerebral hemorrhage injury in mice by adsorbing miR-6838-5p to target VEGFA. Brain Res 2021; 1776:147751. [PMID: 34902342 DOI: 10.1016/j.brainres.2021.147751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 11/02/2022]
Abstract
Intracerebral hemorrhage (ICH) can usually cause severe neuroinflammation and blood-brain barrier (BBB) damage. Previous studies supported the important role of long non-coding RNAs (lncRNAs) in ICH treatment. This study aimed to explore the effect of lncRNA FGD5 antisense RNA 1 (FGD5-AS1) on ICH and its potential molecular mechanisms. C57BL/6 mice were injected with collagenase VII to establish an ICH mice model. In addition, brain cerebral microvascular endothelial cells (BMVECs) were treated by oxygen-glucose deprivation (OGD)/hemin to simulate ICH. RT-qPCR revealed that FGD5-AS1 was upregulated in serum of ICH patients and mice and in OGD/hemin-treated BMVECs. Luciferase reporter gene and pull-down assays predicted and verified that FGD5-AS1 bound to miR-6838-5p, and VEGFA was a target of miR-6838-5p. FGD5-AS1 knockdown decreased the inflammatory factor contents in brain tissues and BMVECs. FGD5-AS1 overexpression inhibited cell proliferation, invasion and tight junction protein levels, and promoted apoptosis, increased the permeability of BBB and secretion of pro-inflammatory factors. In addition, miR-6838-5p knockdown reversed the inhibitory effect of FGD5-AS1 knockdown on the PI3K/Akt signaling pathway. In conclusion, FGD5-AS1 may act as an important regulator to promote apoptosis, cell permeability and inflammatory response of BMVECs via the miR-6838-5p/VEGFA axis in ICH mice.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaohui Wang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jun Hu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Sha Chang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoli Cui
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China.
| |
Collapse
|
21
|
Chen YH, Chiu WC, Xiao Q, Chen YL, Shirakawa H, Yang SC. Synbiotics Alleviate Hepatic Damage, Intestinal Injury and Muscular Beclin-1 Elevation in Rats after Chronic Ethanol Administration. Int J Mol Sci 2021; 22:ijms222212547. [PMID: 34830430 PMCID: PMC8622351 DOI: 10.3390/ijms222212547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the beneficial effects of synbiotics on liver damage, intestinal health, and muscle loss, and their relevance in rats with chronic ethanol feeding. Thirty Wistar rats fed with a control liquid diet were divided into control and synbiotics groups, which were respectively provided with water or synbiotics solution (1.5 g/kg body weight/day) for 2 weeks. From the 3rd to 8th week, the control group was divided into a C group (control liquid diet + water) and an E group (ethanol liquid diet + water). The synbiotics group was separated in to three groups, SC, ASE, and PSE. The SC group was given a control liquid diet with synbiotics solution; the ASE group was given ethanol liquid diet with synbiotics solution, and the PSE group was given ethanol liquid diet and water. As the results, the E group exhibited liver damage, including increased AST and ALT activities, hepatic fatty changes, and higher CYP2E1 expression. Intestinal mRNA expressions of occludin and claudin-1 were significantly decreased and the plasma endotoxin level was significantly higher in the E group. In muscles, beclin-1 was significantly increased in the E group. Compared to the E group, the PSE and ASE groups had lower plasma ALT activities, hepatic fatty changes, and CYP2E1 expression. The PSE and ASE groups had significantly higher intestinal occludin and claudin-1 mRNA expressions and lower muscular beclin-1 expression when compared to the E group. In conclusion, synbiotics supplementation might reduce protein expression of muscle protein degradation biomarkers such as beclin-1 in rats with chronic ethanol feeding, which is speculated to be linked to the improvement of intestinal tight junction and the reduction of liver damage.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan;
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6553); Fax: +886-2-27373112
| |
Collapse
|
22
|
Kim YM, Hussain Z, Lee YJ, Park H. Altered Intestinal Permeability and Drug Repositioning in a Post-operative Ileus Guinea Pig Model. J Neurogastroenterol Motil 2021; 27:639-649. [PMID: 34642285 PMCID: PMC8521477 DOI: 10.5056/jnm21018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background/Aims The aim of this study is to identify the alteration in intestinal permeability with regard to the development of post-operative ileus (POI). Moreover, we investigated drug repositioning in the treatment of POI. Methods An experimental POI model was developed using guinea pigs. To measure intestinal permeability, harvested intestinal membranes of the ileum and proximal colon was used in an Ussing chamber. To identify the mechanisms associated with altered permeability, we measured leukocyte count and expression of calprotectin, claudin-1, claudin-2, and mast cell tryptase. We compared control, POI, and drug groups (mosapride [0.3 mg/kg and 1 mg/kg, orally], glutamine [500 mg/kg, orally], or ketotifen [1 mg/kg, orally] with regard to these parameters. Results Increased permeability after surgery significantly decreased after administration of mosapride, glutamine, or ketotifen. Leukocyte counts increased in the POI group and decreased significantly after administration of mosapride (0.3 mg/kg) in the ileum, and mosapride (0.3 mg/kg and 1 mg/kg), glutamine, or ketotifen in the proximal colon. Increased expression of calprotectin after surgery decreased after administration of mosapride (0.3 mg/kg), glutamine, or ketotifen in the ileum and proximal colon, and mosapride (1 mg/kg) in the ileum. The expression of claudin-1 decreased significantly and that of claudin-2 increased after operation. After administration of glutamine, the expression of both proteins was restored. Finally, mast cell tryptase levels increased in the POI group and decreased significantly after administration of ketotifen. Conclusions The alteration in intestinal permeability is one of the factors involved in the pathogenesis of POI. We repositioned 3 drugs (mosapride, glutamine, and ketotifen) as novel therapeutic agents for POI.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Giostri GS, Novak EM, Guarita-Souza LC. Treatment of acute wounds in hand with Calendula officinalis L.: A randomized trial. Tissue Barriers 2021; 10:1994822. [PMID: 34674610 DOI: 10.1080/21688370.2021.1994822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Most injuries in the hand and fingers, especially on the digital pulps, are suited for healing by secondary intention. Nevertheless, delay in epithelization seems to unfavorably restrict this technique. The purpose of this controlled randomized clinical trial is to analyze by means of photo planimetry the progression of the healing process by secondary intention in acute wounds of the hand using the standardized extract of Calendula officinalis L. (SEC). The cohort of eligible participants included two groups of 20 patients with skin loss in the hand and fingers treated by secondary intention. Control group (CG) used mineral oil and intervention group (IG) received SEC. Wound pictures were captured at each outpatient assessment until epithelization was achieved and measured with ImageJ. Intervention group (IG) and control group (CG) with 19 wounds each, primarily formed by men in their 40's with wounds in their index and ring fingers on the left side, showed homogeneous variables and similar initial wound areas. Epithelization time was shorter and healing speed was faster in IG (IG = 8.6 ± 4.7 days and 9.5 ± 5.8%day versus CG = 13.2 ± 7.4 days and 6.2 ± 2.9%day, ƿ < 0.05), leading to the conclusion that healing by secondary intention in acute wounds of the hand and fingers with SEC led to a faster epithelization.
Collapse
Affiliation(s)
- Giana Silveira Giostri
- School of Medicine, Pontifical Catholic University of Parana (PUCPR), Hospital Universitario Cajuru, Curitiba, Brazil
| | - Eduardo Murilo Novak
- School of Medicine, Pontifical Catholic University of Parana (PUCPR), Hospital Universitario Cajuru, Curitiba, Brazil
| | - Luiz Cesar Guarita-Souza
- School of Medicine, Pontifical Catholic University of Parana (PUCPR), Institute of Biological and Health Sciences (CCBS), Curitiba, Brazil
| |
Collapse
|
24
|
Ventura TMO, Ribeiro NR, Taira EA, de Souza-E-Silva CM, Rubira CMF, Santos PSDS, Buzalaf MAR. Radiotherapy changes acquired enamel pellicle proteome in head and neck cancer patients. J Dent 2021; 108:103642. [PMID: 33757866 DOI: 10.1016/j.jdent.2021.103642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To evaluate in vivo the proteomic profile of the acquired enamel pellicle (AEP) in patients with head and neck cancer (HNC) before, during and after radiotherapy. METHODS Nine patients, after prophylaxis, had their AEPs collected before (BRT), during (DRT; 2-5 weeks) and after (ART; 3-4 months) radiotherapy. AEP was also collected from nine healthy patients (Control). The proteins were extracted in biological triplicate and processed by label-free proteomics. RESULTS Statherin was increased more than 9-fold and several hemoglobin subunits were increased more than 5-fold DRT compared to BRT, while lactotransferrin, proline-rich proteins, cystatins, neutrophil defensins 1 and 3 and histatin-1 were decreased. ART, there was an increase in lactotransferrin and several isoforms of histones, while statherin and alpha-amylase proteins were decreased. MOAP-1 was exclusively found ART in comparison to BRT. When compared to Control, AEP of patients BRT showed an increase in proteins related to the perception of bitter taste, mucin-7 and alpha-amylases, while cystatin-S was decreased. CONCLUSIONS HNC and radiotherapy remarkably altered the proteome of the AEP. Antibacterial and acid-resistant proteins were decreased during radiotherapy. CLINICAL SIGNIFICANCE Our results provide important information for designing more effective dental products for these patients, in addition to contributing to a better understanding of the differential protective roles of the AEP proteins during radiotherapy. Moreover, some proteins identified in the AEP after radiotherapy may serve as prognostic markers for survival of HNC patients.
Collapse
Affiliation(s)
- Talita Mendes Oliveira Ventura
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Nathalia Regina Ribeiro
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Even Akemi Taira
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Cintia Maria de Souza-E-Silva
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Cássia Maria Fischer Rubira
- Department of Surgery, Stomatology, Pathology and Radiology - Discipline of Radiology and Stomatology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology - Discipline of Radiology and Stomatology, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences - Discipline of Biochemistry, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-90, Brazil.
| |
Collapse
|
25
|
Imafuku K, Kamaguchi M, Natsuga K, Nakamura H, Shimizu H, Iwata H. Zonula occludens-1 demonstrates a unique appearance in buccal mucosa over several layers. Cell Tissue Res 2021; 384:691-702. [PMID: 33635425 DOI: 10.1007/s00441-021-03425-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Tight junctions (TJs) firmly seal epithelial cells and are key players in the epithelial barrier. TJs consist of several proteins, including those of the transmembrane claudin family and the scaffold zonula occludens (ZO) family. Epithelial tissues are exposed to different conditions: to air in the stratified epithelium of the skin and to liquids in the monolayer of the intestine. The TJs in stratified oral mucosal epithelium have remained insufficiently elucidated in terms of distributions, appearances and barrier functions of TJ proteins in normal buccal mucosa. We investigated these and ZO-1 and claudin-1 were found to be expressed in the top third and in the bottom three quarters of the mucosal epithelium. ZO-1 in the buccal mucosa was found to have an irregular linear appearance. ZO-1 in the buccal mucosa continuously existed in several layers. Electron microscopy revealed the buccal mucosa to have kissing points. In a biotin permeation assay that sought to investigate inside-outside barrier function, the biotin tracer penetrated several ZO-1 layers but did not pass through all the ZO-1 layers. We found that the oral mucosal cell knockdown of TJP1 or CLDN1 resulted in decreases of TER but no significant change in FITC-dextran leakage. Our results suggest that the distribution and appearance of ZO-1 in the buccal mucosa differ from those in the skin. We were unable to prove barrier function in this study but we did show barrier function against small molecules in vivo and against ions in vitro.
Collapse
Affiliation(s)
- Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Mayumi Kamaguchi
- Department of Oral Diagnosis and Medicine, Faculty of Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Building B9 Ratzeburger Allee 160, 23562, Lubeck, Germany
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan.
| |
Collapse
|
26
|
Wang Y, Zhao H, Liu Y, Guo M, Tian Y, Huang P, Xing M. Arsenite induce neurotoxicity of common carp: Involvement of blood brain barrier, apoptosis and autophagy, and subsequently relieved by zinc (Ⅱ) supplementation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105765. [PMID: 33535132 DOI: 10.1016/j.aquatox.2021.105765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Arsenic pollution is a common threat to aquatic ecosystems. The effects of chronic exposure to arsenite on the brains of aquatic organisms are unknown. This study was designed to evaluate arsenic-induced brain damage in common carp (Cyprinus carpio) and the ameliorating effects of divalent zinc ion (Zn2+) supplementation from the aspects of oxidative stress (OxS), tight junction (TJ), apoptosis and autophagy. After arsenite exposure (2.83 mg/L) for 30 days, oxidative damage to the brain was determined, as indicated by inhibited antioxidants system (catalase-superoxide dismutase system, and glutathione system) and elevated levels of biomacromolecule peroxidation (malondialdehyde and 8-hydroxydeoxyguanosine). Moreover, we also found functional damage to the brain as suggested by injuries to the blood-brain barrier (decreases in tight junction) and nerve conduction (depletion of AChE). Mechanisticly, apoptotic and autophagic cell death were indicated by typical morphologies including karyopyknosis and autophagosome, accompanying by key bio-indicators (Bcl-2, caspase and autophagy related gene family proteins). In contrast, the coadministration of Zn2+ (1 mg/L) with arsenite effectively alleviated this damage as suggested by the recovery of the aforementioned bioindicators. This study provides new insight into the brain toxicity caused by arsenite and suggests the application of zinc preparations in the aquatic pollution of arsenic.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ye Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
27
|
Sharma A, Puri V, Kumar P, Singh I. Rifampicin-Loaded Alginate-Gelatin Fibers Incorporated within Transdermal Films as a Fiber-in-Film System for Wound Healing Applications. MEMBRANES 2020; 11:membranes11010007. [PMID: 33374601 PMCID: PMC7822433 DOI: 10.3390/membranes11010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/09/2023]
Abstract
The various biological and molecular cascades including different stages or phases such as inflammation, tissue proliferation, and remodeling phases, which significantly define the wound healing process. The natural matrix system is suggested to increase and sustain these cascades. Biocompatible biopolymers, sodium alginate and gelatin, and a drug (Rifampicin) were used for the preparation of fibers into a physical crosslinking solution using extrusion-gelation. The formed fibers were then loaded in transdermal films for wound healing applications. Rifampicin, an antibiotic, antibacterial agent was incorporated into fibers and afterwards the fibers were loaded into transdermal films. Initially, rifampicin fibers were developed using biopolymers including alginate and gelatin, and were further loaded into polymeric matrix which led to the formation of transdermal films. The transdermal films were coded as TF1, TF2, TF3 and TF4.The characterization technique, FTIR, was used to describe molecular transitions within fibers, transdermal films, and was further corroborated using SEM and XRD. In mechanical properties, the parameters, such as tensile strength and elongation-at-break (extensibility), were found to be ranged between 2.32 ± 0.45 N/mm2 to 14.32 ± 0.98 N/mm2 and 15.2% ± 0.98% to 30.54% ± 1.08%. The morphological analysis firmed the development of fibers and fiber-loaded transdermal films. Additionally, physical evaluation such as water uptake study, water transmission rate, swelling index, moisture content, and moisture uptake study were executed to describe comparative interpretation of the formulations developed. In vivo studies were executed using a full thickness cutaneous wound healing model, the transdermal films developed showed higher degree of contraction, i.e., 98.85% ± 4.04% as compared to marketed formulation (Povidone). The fiber-in-film is a promising delivery system for loading therapeutic agents for effective wound care management.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Vivek Puri
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic, Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa;
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (A.S.); (V.P.)
- Correspondence:
| |
Collapse
|
28
|
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020; 8:e10136. [PMID: 33150072 PMCID: PMC7583629 DOI: 10.7717/peerj.10136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into potential approaches to prevent PVR.
Collapse
Affiliation(s)
- Hui Zou
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenli Shan
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Ma
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinsong Zhao
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Alilou M, Marzocco S, Hofer D, Rapa SF, Asadpour R, Schwaiger S, Troppmair J, Stuppner H. Labdane-Type Diterpenes from the Aerial Parts of Rydingia persica: Their Absolute Configurations and Protective Effects on LPS-Induced Inflammation in Keratinocytes. JOURNAL OF NATURAL PRODUCTS 2020; 83:2456-2468. [PMID: 32786876 PMCID: PMC7460539 DOI: 10.1021/acs.jnatprod.0c00360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 05/17/2023]
Abstract
Phytochemical investigations of an extract of the aerial parts of Rydingia persica led to the isolation of 14 labdane-type diterpenoids, of which compounds 1-5, 8, and 12-14 turned out to be new natural products, while the remaining compounds were isolated for the first time from the genus Rydingia. Their structures were elucidated using 1D- and 2D-NMR and mass spectrometry, and their absolute configurations were determined by quantum chemical calculation methods. Furthermore, DP4+ NMR chemical shift probability calculations were performed for compounds 12-14, in order to elucidate the orientation of the ambiguous chiral center at C-15, prior to absolute configuration determination. The methanol extract of the aerial parts of R. persica along with subfractions obtained and selected isolated compounds were evaluated for their effects on inflammation-related factors such as nitrotyrosine formation, IL-6 release, and TNF-α release, along with tight-junction proteins claudin-1 and occludin expression in LPS-stimulated HaCaT cells. Occludin and claudin-1 are tight-junction proteins, which play a pivotal role in wound repair mechanisms. Overall, the subfractions and compounds isolated showed moderate to high activity, indicating that labdane-type diterpenoids contribute to the anti-inflammatory and wound-healing activity of R. persica.
Collapse
Affiliation(s)
- Mostafa Alilou
- Institute
of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Daniel-Swarovski
Research Laboratory, Department of Visceral, Transplant and Thoracic
Surgery, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Stefania Marzocco
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - David Hofer
- Institute
of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Shara Francesca Rapa
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rahman Asadpour
- Research
Institute and Education Center of Agriculture and Natural Resources
of Hormozgan, Tolu Street, 7915847669 Bandar Abbas, Hormozgan, Iran
| | - Stefan Schwaiger
- Institute
of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jakob Troppmair
- Daniel-Swarovski
Research Laboratory, Department of Visceral, Transplant and Thoracic
Surgery, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Barrett S, Rippon M, Rogers AA. Treatment of 52 patients with a self-adhesive siliconised superabsorbent dressing: a multicentre observational study. J Wound Care 2020; 29:340-349. [DOI: 10.12968/jowc.2020.29.6.340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: To provide ‘in use’ clinical data to support exudate management in patients with moderately to highly exuding wounds with bordered superabsorbent wound dressing with a silicone adhesive interface. Method: This study was an open-labelled non-comparative study. Patients included in the study were selected by the clinical investigator(s) according to whether the patient required a dressing for the management of moderately to highly exuding wounds. Results: The primary aim of this study was to evaluate the clinical objective in relation to exudate handling (moderate to high) with a superabsorbent silicone border dressing (Zetuvit Plus Silicone Border; SAP silicone border dressing; designated RespoSorb Silicone Border in some countries). The SAP border dressing had met the clinical objectives relating to exudate management, affirmed by the health professionals with a yes response in 94% of cases. Additionally, the health professionals rated the handling of exudate as excellent/good (78%) and most (80%) reported that they would use the SAP silicone border dressing again. Allied to this was the fact that the SAP silicone border dressing improved the wound edge and periwound skin conditions (29% and 36% of patients, respectively). Regarding dressing retention, the SAP silicone border dressing retained its position in 72% of patients. For wear time, the largest proportion of dressing changes, both pre-study and during the evaluation period, was every third day (45% and 44%, respectively). But there was a shift to extended wear time with use of the SAP silicone border dressing with 72% of patients' dressing changes being every third day or longer. Conclusion: The SAP silicone border dressing was successful in managing wound exudate in moderately to highly exuding wounds and consequently this had a beneficial impact on the wound edge and periwound skin. Overall, there was a positive effect on wound bed preparation and in turn the healing response was progressive. This study has shown that the SAP silicone border dressing successfully controlled exudate and provided positive benefits when used in the treatment of patients with moderately to highly exuding wounds.
Collapse
Affiliation(s)
| | - Mark Rippon
- Huddersfield University
- Daneriver Consultancy Ltd, Holmes Chapel
| | | |
Collapse
|
31
|
Jiménez-Meléndez A, Ramakrishnan C, Hehl AB, Russo G, Álvarez-García G. RNA-Seq Analyses Reveal That Endothelial Activation and Fibrosis Are Induced Early and Progressively by Besnoitia besnoiti Host Cell Invasion and Proliferation. Front Cell Infect Microbiol 2020; 10:218. [PMID: 32500038 PMCID: PMC7242738 DOI: 10.3389/fcimb.2020.00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of bovine besnoitiosis and the molecular bases that govern disease progression remain to be elucidated. Thus, we have employed an in vitro model of infection based on primary bovine aortic endothelial cells (BAEC), target cells during the acute infection. Host-parasite interactions were investigated by RNA-Seq at two post-infection (pi) time points: 12 hpi, when tachyzoites have already invaded host cells, and 32 hpi, when tachyzoites have replicated for at least two generations. Additionally, the gene expression profile of B. besnoiti tachyzoites was studied at both pi time points. Up to 446 differentially expressed B. taurus genes (DEGs) were found in BAEC between both pi time points: 249 DEGs were up-regulated and 197 DEGs were down-regulated at 32 hpi. Upregulation of different genes encoding cytokines, chemokines, leukocyte adhesion molecules predominantly at 12 hpi implies an activation of endothelial cells, whilst upregulation of genes involved in angiogenesis and extracellular matrix organization was detected at both time points. NF-κB and TNF-α signaling pathways appeared to be mainly modulated upon infection, coordinating the expression of several effector proteins with proinflammatory and pro-fibrotic phenotypes. These mediators are thought to be responsible for macrophage recruitment setting the basis for chronic inflammation and fibrosis characteristic of chronic besnoitiosis. Angiogenesis regulation also predominated, and this multistep process was evidenced by the upregulation of markers involved in both early (e.g., growth factors and matrix metalloproteinases) and late steps (e.g., integrins and vasohibin). Besnoitia besnoiti ortholog genes present in other Toxoplasmatinae members and involved in the lytic cycle have shown to be differentially expressed among the two time points studied, with a higher expression at 32 hpi (e.g., ROP40, ROP5B, MIC1, MIC10). This study gives molecular clues on B. besnoiti- BAECs interaction and shows the progression of type II endothelial cell activation upon parasite invasion and proliferation.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:253-265. [DOI: 10.1007/s00249-020-01431-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023]
|
33
|
Leonardo TR, Shi J, Chen D, Trivedi HM, Chen L. Differential Expression and Function of Bicellular Tight Junctions in Skin and Oral Wound Healing. Int J Mol Sci 2020; 21:ijms21082966. [PMID: 32340108 PMCID: PMC7216202 DOI: 10.3390/ijms21082966] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/20/2023] Open
Abstract
Bicellular tight junctions are multiprotein complexes that are required for maintenance of barrier function and fence function in epithelial tissues. Wound healing in the oral cavity leads to minimal scar formation compared to the skin, and the precise mechanisms for this regenerative response remain to be elucidated. We hypothesized that oral and skin tissues express a different tight junction repertoire both at baseline and during the wound healing response, and that these molecules may be critical to the differential repair between the two tissues. We re-analyzed a mouse skin and palate epithelium microarray dataset to identify the tight junction repertoire of these tissue types. We then re-analyzed a skin and tongue wound healing microarray dataset to see how expression levels of tight junction genes change over time in response to injury. We performed in vitro scratch assays on human oral and skin keratinocyte cell lines to assay for tight junction expression over time, tight junction expression in response to lipopolysaccharide and histamine treatment, and the effects of siRNA knockdown of claudin 1 or occludin on migration and proliferation. Our data showed that oral and skin epithelium expressed different tight junction genes at baseline and during the wound healing response. Knockdown of claudin 1 or occludin led to changes in proliferation and migration in human skin keratinocytes but not oral keratinocytes. Furthermore, we also showed that skin keratinocytes were more permeable than oral keratinocytes upon histamine treatment. In conclusion, this study highlights a specific subset of functional tight junction genes that are differentially expressed between the oral and skin tissues, which may contribute to the mechanisms leading to distinct healing phenotypes in response to injury in the two tissues.
Collapse
Affiliation(s)
- Trevor R. Leonardo
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (D.C.); (H.M.T.)
| | - Harsh M. Trivedi
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (D.C.); (H.M.T.)
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +1-312-413-5387; Fax: +1-312-996-0943
| |
Collapse
|
34
|
Altinova H, Hammes S, Palm M, Achenbach P, Gerardo-Nava J, Deumens R, Führmann T, van Neerven SGA, Hermans E, Weis J, Brook GA. Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury. Biomed Mater 2020; 15:015012. [DOI: 10.1088/1748-605x/ab5e52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
36
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|