1
|
Li J, Han Y, Zhao N, Lv L, Ma P, Zhang Y, Li M, Sun H, Deng J, Zhang Y. Identification of immune- and oxidative stress-related signature genes as potential targets for mRNA vaccines for pancreatic cancer patients. Medicine (Baltimore) 2024; 103:e38666. [PMID: 38968513 PMCID: PMC11224846 DOI: 10.1097/md.0000000000038666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Adenocarcinoma of the pancreas (PAAD) is one of the deadliest malignant tumors, and messenger ribonucleic acid vaccines, which constitute the latest generation of vaccine technology, are expected to lead to new ideas for the treatment of pancreatic cancer. The Cancer Genome Atlas-PAAD and Genotype-Tissue Expression data were merged and analyzed. Weighted gene coexpression network analysis was used to identify gene modules associated with tumor mutational burden among the genes related to both immunity and oxidative stress. Differentially expressed immune-related oxidative stress genes were screened via univariate Cox regression analysis, and these genes were analyzed via nonnegative matrix factorization. After immune infiltration analysis, least absolute shrinkage and selection operator regression combined with Cox regression was used to construct the model, and the usefulness of the model was predicted based on the receiver operating characteristic curve and decision curve analysis curves after model construction. Finally, metabolic pathway enrichment was analyzed using gene set enrichment analysis combined with Kyoto Encyclopedia of Genes and Genomes and gene ontology biological process analyses. This model consisting of the ERAP2, mesenchymal-epithelial transition factor (MET), CXCL9, and angiotensinogen (AGT) genes can be used to help predict the prognosis of pancreatic cancer patients more accurately than existing models. ERAP2 is involved in immune activation and is important in cancer immune evasion. MET binds to hepatocyte growth factor, leading to the dimerization and phosphorylation of c-MET. This activates various signaling pathways, including MAPK and PI3K, to regulate the proliferation, invasion, and migration of cancer cells. CXCL9 overexpression is associated with a poor patient prognosis and reduces the number of CD8 + cytotoxic T lymphocytes in the PAAD tumor microenvironment. AGT is cleaved by the renin enzyme to produce angiotensin 1, and AGT-converting enzyme cleaves angiotensin 1 to produce angiotensin 2. Exposure to AGT-converting enzyme inhibitors after pancreatic cancer diagnosis is associated with improved survival. The 4 genes identified in the present study - ERAP2, MET, CXCL9, and AGT - are expected to serve as targets for messenger ribonucleic acid vaccine development and need to be further investigated in depth.
Collapse
Affiliation(s)
- Jiaxu Li
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Yongjiao Han
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Ning Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Mingyuan Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Hua Sun
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, PR China
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, PR China
| |
Collapse
|
2
|
Weidle UH, Nopora A. CircRNAs in Pancreatic Cancer: New Tools for Target Identification and Therapeutic Intervention. Cancer Genomics Proteomics 2024; 21:327-349. [PMID: 38944427 PMCID: PMC11215428 DOI: 10.21873/cgp.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
3
|
Desai A, Xiao AH, Choi D, Toruner MD, Walden D, Halfdanarson TR, Alberts S, McWilliams RR, Mahipal A, Ahn D, Babiker H, Stybayeva G, Revzin A, Kizilbash S, Adjei A, Bekaii-Saab T, Mansfield AS, Carr RM, Ma WW. Molecular Characterization and Therapeutic Opportunities in KRAS Wildtype Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:1861. [PMID: 38791940 PMCID: PMC11119482 DOI: 10.3390/cancers16101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE To investigate the molecular characteristics of and potential for precision medicine in KRAS wildtype pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS We investigated 27 patients with KRASWT PDAC at our institution. Clinical data were obtained via chart review. Tumor specimens for each subject were interrogated for somatic single nucleotide variants, insertion and deletions, and copy number variants by DNA sequencing. Gene fusions were detected from RNA-seq. A patient-derived organoid (PDO) was developed from a patient with a MET translocation and expanded ex vivo to predict therapeutic sensitivity prior to enrollment in a phase 2 clinical trial. RESULTS Transcriptomic analysis showed our cohort may be stratified by the relative gene expression of the KRAS signaling cascade. The PDO derived from our patient harboring a TFG-MET rearrangement was found to have in vitro sensitivity to the multi-tyrosine kinase inhibitor crizotinib. The patient was enrolled in the phase 2 SPARTA clinical trial and received monotherapy with vebrelitinib, a c-MET inhibitor, and achieved a partial and durable response. CONCLUSIONS KRASWT PDAC is molecularly distinct from KRASMUT and enriched with potentially actionable genetic variants. In our study, transcriptomic profiling revealed that the KRAS signaling cascade may play a key role in KRASWT PDAC. Our report of a KRASWT PDAC patient with TFG-MET rearrangement who responded to a cMET inhibitor further supports the pursuit of precision oncology in this sub-population. Identification of targetable mutations, perhaps through approaches like RNA-seq, can help enable precision-driven approaches to select optimal treatment based on tumor characteristics.
Collapse
Affiliation(s)
- Aakash Desai
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | | | - Daheui Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA; (D.C.); (G.S.); (A.R.)
| | - Merih D. Toruner
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Daniel Walden
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ 85054, USA; (D.W.); (D.A.); (T.B.-S.)
| | - Thorvardur R. Halfdanarson
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Steven Alberts
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Robert R. McWilliams
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Amit Mahipal
- Department of Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA;
| | - Daniel Ahn
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ 85054, USA; (D.W.); (D.A.); (T.B.-S.)
| | - Hani Babiker
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA; (D.C.); (G.S.); (A.R.)
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA; (D.C.); (G.S.); (A.R.)
| | - Sani Kizilbash
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Alex Adjei
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Tanios Bekaii-Saab
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ 85054, USA; (D.W.); (D.A.); (T.B.-S.)
| | - Aaron S. Mansfield
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Ryan M. Carr
- Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA; (A.D.); (M.D.T.); (T.R.H.); (S.A.); (R.R.M.); (S.K.)
| | - Wen Wee Ma
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
4
|
Chen Z, Miao P, Lin H, Lu Y. AHNAK2 Promotes the Progression of Pancreatic Ductal Adenocarcinoma by Maintaining the Stability of c-MET. Cancer Manag Res 2024; 16:431-444. [PMID: 38751848 PMCID: PMC11095252 DOI: 10.2147/cmar.s451486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and rapidly progresses. The overall response rate of PDAC to current treatment methods is still unsatisfactory. Thus, identifying novel targets and clarifying the underlying mechanisms associated with PDAC progression may potentially offer additional treatment strategies. AHNAK2 is aberrantly expressed in a variety of tumors and exerts pro-tumorigenic effects. However, the biological role of AHNAK2 in PDAC remains poorly understood. Methods The expression of AHNAK2 in PDAC and paired non-tumor tissues was detected by immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). Lentivirus knockdown was performed to investigate the impact of AHNAK2 on the biological function of pancreatic cancer cells. The subcutaneous cell-derived xenograft (CDX) model and the KPC spontaneous mouse model with AHNAK2 silencing were used to observe the effects of AHNAK2 on tumor growth and prognosis. The expression of c-MET at protein level in response to HGF treatment was assessed using western blot. Results Our results demonstrated that AHNAK2 was highly expressed in PDAC clinical samples and associated with poor prognosis. Knockdown of AHNAK2 significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells. AHNAK2 knockdown or knockout resulted in tumor growth suppression and prolonged survival in mice with PDAC. In addition, AHNAK2 and c-MET expression levels showed a significant positive correlation at the post-transcriptional level. Mechanistically, AHNAK2 promoted tumor progression by preventing c-MET degradation and persistently activating the HGF/c-MET signaling pathway. Conclusion Overall, our study revealed that AHNAK2 plays an important role in PDAC progression by modulating the c-MET signaling pathway, and targeting AHNAK2 may be an effective therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Zhaohui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, People’s Republic of China
| | - Pengbiao Miao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Hongcao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, People’s Republic of China
| | - Yanan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
6
|
Deng X, He X, Yang Z, Huang J, Zhao L, Wen M, Hu X, Zou Z. Clustering analysis and prognostic model based on PI3K/AKT-related genes in pancreatic cancer. Front Oncol 2023; 13:1112104. [PMID: 37124502 PMCID: PMC10140326 DOI: 10.3389/fonc.2023.1112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Pancreatic cancer is one of most aggressive malignancies with a dismal prognosis. Activation of PI3K/AKT signaling is instrumental in pancreatic cancer tumorigenesis. The aims of this study were to identify the molecular clustering, prognostic value, relationship with tumor immunity and targeting of PI3K/AKT-related genes (PARGs) in pancreatic cancer using bioinformatics. Methods The GSEA website was searched for PARGs, and pancreatic cancer-related mRNA data and clinical profiles were obtained through TCGA downloads. Prognosis-related genes were identified by univariate Cox regression analysis, and samples were further clustered by unsupervised methods to identify significant differences in survival, clinical information and immune infiltration between categories. Next, a prognostic model was constructed using Lasso regression analysis. The model was well validated by univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis and ROC curves, and correlations between risk scores and patient pathological characteristics were identified. Finally, GSEA, drug prediction and immune checkpoint protein analyses were performed. Results Pancreatic cancers were divided into Cluster 1 (C1) and Cluster 2 (C1) according to PARG mRNA expression. C1 exhibited longer overall survival (OS) and higher immune scores and CTLA4 expression, whereas C2 exhibited more abundant PD-L1. A 6-PARG-based prognostic model was constructed to divide pancreatic cancer patients into a high-risk score (HRS) group and a low-risk score (LRS) group, where the HRS group exhibited worse OS. The risk score was defined as an independent predictor of OS. The HRS group was significantly associated with pancreatic cancer metastasis, aggregation and immune score. Furthermore, the HRS group exhibited immunosuppression and was sensitive to radiotherapy and guitarbine chemotherapy. Multidrug sensitivity prediction analysis indicated that the HRS group may be sensitive to PI3K/AKT signaling inhibitors (PIK-93, GSK2126458, CAL-101 and rapamycin) and ATP concentration regulators (Thapsigargin). In addition, we confirmed the oncogenic effect of protein phosphatase 2 regulatory subunit B'' subunit alpha (PPP2R3A) in pancreatic cancer in vitro and in vivo. Conclusions PARGs predict prognosis, tumor immune profile, radiotherapy and chemotherapy drug sensitivity and are potential predictive markers for pancreatic cancer treatment that can help clinicians make decisions and personalize treatment.
Collapse
Affiliation(s)
- Xiangying Deng
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xu He
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, China
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zehua Yang
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
| | - Jing Huang
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wen
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zizheng Zou
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, China
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zizheng Zou,
| |
Collapse
|
7
|
Alessandrini L, Franz L, Sbaraglia M, Saccardo T, Cappello F, Drigo A, Frigo AC, Marioni G. Tumor-Stroma Ratio and Programmed Cell Death Ligand 1 Expression in Preoperative Biopsy and Matched Laryngeal Carcinoma Surgical Specimen. Int J Mol Sci 2022; 23:ijms23148053. [PMID: 35887397 PMCID: PMC9319127 DOI: 10.3390/ijms23148053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Programmed cell death ligand 1 (PD-L1) seems to rely on close relations between neoplastic and immune cells in the tumor microenvironment. Tumor to stroma ratio (TSR) has been associated with prognosis in different malignancies. The aims of this exploratory investigation were to analyze for the first time the: (i) association between TSR, PD-L1 expression and other clinical−pathological features in laryngeal squamous cell carcinoma (LSCC) biopsies and paired surgical specimens; (ii) prognostic and predictive role of TSR and PD-L1. TSR, PD-L1 expression (in terms of combined positive score [CPS]), and other clinical−pathological features were analyzed in biopsies and surgical specimens of 43 consecutive LSCC cases. A CPS < 1 evaluated on surgical specimens was associated with a low TSR (stroma rich) on both biopsies and surgical specimens (p = 0.0143 and p = 0.0063). Low TSR showed a significant negative prognostic value when evaluated on both biopsies and surgical specimens (HR = 8.808, p = 0.0003 and HR = 11.207, p = 0.0002). CPS ≥ 1 appeared to be a favorable prognostic factor (HR = 0.100, p = 0.0265). The association between bioptic and surgical specimen TSR and PD-L1 expression should be further investigated for a potential impact on targeted treatments, also with regard to immunotherapeutic protocols.
Collapse
Affiliation(s)
- Lara Alessandrini
- Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.A.); (M.S.); (F.C.)
| | - Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
- Guided Therapeutics (GTx) Program International Scholar, University Health Network (UHN), Toronto, ON M5G2C4, Canada
| | - Marta Sbaraglia
- Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.A.); (M.S.); (F.C.)
| | - Tommaso Saccardo
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
| | - Filippo Cappello
- Department of Medicine DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.A.); (M.S.); (F.C.)
| | - Alessandro Drigo
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.F.); (T.S.); (A.D.)
- Correspondence: ; Tel.: +39-049-821-2029
| |
Collapse
|
8
|
Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules 2022; 12:biom12050702. [PMID: 35625629 PMCID: PMC9138344 DOI: 10.3390/biom12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.
Collapse
|
9
|
Li E, Huang X, Zhang G, Liang T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J Exp Clin Cancer Res 2021; 40:279. [PMID: 34479614 PMCID: PMC8414725 DOI: 10.1186/s13046-021-02055-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dysregulated expression and activation of receptor tyrosine kinases (RTKs) are associated with a range of human cancers. However, current RTK-targeting strategies exert little effect on pancreatic cancer, a highly malignant tumor with complex immune microenvironment. Given that immunotherapy for pancreatic cancer still remains challenging, this study aimed to elucidate the prognostic role of RTKs in pancreatic tumors with different immunological backgrounds and investigate their targeting potential in pancreatic cancer immunotherapy. METHODS Kaplan-Meier plotter was used to analyze the prognostic significance of each of the all-known RTKs to date in immune "hot" and "cold" pancreatic cancers. Gene Expression Profiling Interactive Analysis-2 was applied to assess the differential expression of RTKs between pancreatic tumors and normal pancreatic tissues, as well as its correlation with immune checkpoints (ICPs). One hundred and fifty in-house clinical tissue specimens of pancreatic cancer were collected for expression and correlation validation via immunohistochemical analysis. Two pancreatic cancer cell lines were used to demonstrate the regulatory effects of RTKs on ICPs by biochemistry and flow cytometry. Two in vivo models bearing pancreatic tumors were jointly applied to investigate the combinational regimen of RTK inhibition and immune checkpoint blockade for pancreatic cancer immunotherapy. RESULTS MET was identified as a pancreatic cancer-specific RTK, which is significantly associated with prognosis in both immune "hot" and "cold" pancreatic cancers. MET was observed to be highly upregulated in pancreatic cancer tissues, and positively correlated with PD-L1 levels. Elevated MET and PD-L1 expressions were closely associated with lymph node metastasis, tumor TNM stage, and overall survival in pancreatic cancer. Mechanistically, MET could interact with PD-L1, and maintain its expression level in multiple ways. MET deficiency was found to facilitate lymphocyte infiltration into pancreatic tumors. Finally, significant benefits of combining MET inhibition with PD-1/PD-L1 blockage were verified in both orthotopic and subcutaneous mouse models of pancreatic cancer. CONCLUSIONS This study systematically investigated the potential effectiveness of a novel pancreatic cancer immunotherapy targeting RTKs, and revealed the function of MET in PD-L1 regulation as well as the combined therapeutic efficacy of MET and PD-L1 in pancreatic cancer.
Collapse
Affiliation(s)
- Enliang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, 310009, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310058, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Mao M, Ling H, Lin Y, Chen Y, Xu B, Zheng R. Construction and Validation of an Immune-Based Prognostic Model for Pancreatic Adenocarcinoma Based on Public Databases. Front Genet 2021; 12:702102. [PMID: 34335699 PMCID: PMC8318842 DOI: 10.3389/fgene.2021.702102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal and aggressive tumor with poor prognoses. The predictive capability of immune-related genes (IRGs) in PAAD has yet to be explored. We aimed to explore prognostic-related immune genes and develop a prediction model for indicating prognosis in PAAD. Methods The messenger (m)RNA expression profiles acquired from public databases were comprehensively integrated and differentially expressed genes were identified. Univariate analysis was utilized to identify IRGs that related to overall survival. Whereafter, a multigene signature in the Cancer Genome Atlas cohort was established based on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Moreover, a transcription factors regulatory network was constructed to reveal potential molecular processes in PAAD. PAAD datasets downloaded from the Gene Expression Omnibus database were applied for the validations. Finally, correlation analysis between the prognostic model and immunocyte infiltration was investigated. Results Totally, 446 differentially expressed immune-related genes were screened in PAAD tissues and normal tissues, of which 43 IRGs were significantly related to the overall survival of PAAD patients. An immune-based prognostic model was developed, which contained eight IRGs. Univariate and multivariate Cox regression revealed that the risk score model was an independent prognostic indicator in PAAD (HR > 1, P < 0.001). Besides, the sensitivity of the model was evaluated by the receiver operating characteristic curve analysis. Finally, immunocyte infiltration analysis revealed that the eight-gene signature possibly played a pivotal role in the status of the PAAD immune microenvironment. Conclusion A novel prognostic model based on immune genes may serve to characterize the immune microenvironment and provide a basis for PAAD immunotherapy.
Collapse
Affiliation(s)
- Miaobin Mao
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Hongjian Ling
- The Graduate School, Fujian Medical University, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yuping Lin
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Tyrosine Phosphoproteomics of Patient-Derived Xenografts Reveals Ephrin Type-B Receptor 4 Tyrosine Kinase as a Therapeutic Target in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143404. [PMID: 34298619 PMCID: PMC8303779 DOI: 10.3390/cancers13143404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest solid malignancies. Pancreatic ductal adenocarcinoma accounts for 90% of pancreatic cancer cases with minimal response to traditional chemotherapies. Protein tyrosine kinases have been shown to be hyperactivated in cancers and thus can serve as therapeutic targets. Patient-derived tumor xenografts (PDXs) in animal models such as mice are an appropriate resource to identify such activated kinases. PDXs models are excellent for the identification of therapeutic targets as compared to cell line models as they better reflect an in vivo environment. We identified ephrin type-B receptor 4 (EphB4) as hyperactivated in PDXs derived from pancreatic ductal adenocarcinoma. Abstract Pancreatic ductal adenocarcinoma is a recalcitrant tumor with minimal response to conventional chemotherapeutic approaches. Oncogenic signaling by activated tyrosine kinases has been implicated in cancers resulting in activation of diverse effector signaling pathways. Thus, the discovery of aberrantly activated tyrosine kinases is of great interest in developing novel therapeutic strategies in the treatment and management of pancreatic cancer. Patient-derived tumor xenografts (PDXs) in mice serve as potentially valuable preclinical models as they maintain the histological and molecular heterogeneity of the original human tumor. Here, we employed high-resolution mass spectrometry combined with immunoaffinity purification using anti-phosphotyrosine antibodies to profile tyrosine phosphoproteome across 13 pancreatic ductal adenocarcinoma PDX models. This analysis resulted in the identification of 1199 tyrosine-phosphorylated sites mapping to 704 proteins. The mass spectrometric analysis revealed widespread and heterogeneous activation of both receptor and non-receptor tyrosine kinases. Preclinical studies confirmed ephrin type-B receptor 4 (EphB4) as a potential therapeutic target based on the efficacy of human serum albumin-conjugated soluble EphB4 in mice bearing orthotopic xenografts. Immunohistochemistry-based validation using tissue microarrays from 346 patients with PDAC showed significant expression of EphB4 in >70% of patients. In summary, we present a comprehensive landscape of tyrosine phosphoproteome with EphB4 as a promising therapeutic target in pancreatic ductal adenocarcinoma.
Collapse
|
12
|
Xelwa N, Candy GP, Devar J, Omoshoro-Jones J, Smith M, Nweke EE. Targeting Growth Factor Signaling Pathways in Pancreatic Cancer: Towards Inhibiting Chemoresistance. Front Oncol 2021; 11:683788. [PMID: 34195085 PMCID: PMC8236623 DOI: 10.3389/fonc.2021.683788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most deadly cancers, ranking amongst the top leading cause of cancer related deaths in developed countries. Features such as dense stroma microenvironment, abnormal signaling pathways, and genetic heterogeneity of the tumors contribute to its chemoresistant characteristics. Amongst these features, growth factors have been observed to play crucial roles in cancer cell survival, progression, and chemoresistance. Here we review the role of the individual growth factors in pancreatic cancer chemoresistance. Importantly, the interplay between the tumor microenvironment and chemoresistance is explored in the context of pivotal role played by growth factors. We further describe current and future potential therapeutic targeting of these factors.
Collapse
|
13
|
Huang C, Iovanna J, Santofimia-Castaño P. Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer. Int J Mol Sci 2021; 22:4970. [PMID: 34067040 PMCID: PMC8124541 DOI: 10.3390/ijms22094970] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic fibrosis is caused by the excessive deposits of extracellular matrix (ECM) and collagen fibers during repeated necrosis to repair damaged pancreatic tissue. Pancreatic fibrosis is frequently present in chronic pancreatitis (CP) and pancreatic cancer (PC). Clinically, pancreatic fibrosis is a pathological feature of pancreatitis and pancreatic cancer. However, many new studies have found that pancreatic fibrosis is involved in the transformation from pancreatitis to pancreatic cancer. Thus, the role of fibrosis in the crosstalk between pancreatitis and pancreatic cancer is critical and still elusive; therefore, it deserves more attention. Here, we review the development of pancreatic fibrosis in inflammation and cancer, and we discuss the therapeutic strategies for alleviating pancreatic fibrosis. We further propose that cellular stress response might be a key driver that links fibrosis to cancer initiation and progression. Therefore, targeting stress proteins, such as nuclear protein 1 (NUPR1), could be an interesting strategy for pancreatic fibrosis and PC treatment.
Collapse
Affiliation(s)
| | | | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France; (C.H.); (J.I.)
| |
Collapse
|
14
|
Zhang C, Zou Y, Zhu Y, Liu Y, Feng H, Niu F, He P, Liu H. Three Immune-Related Prognostic mRNAs as Therapeutic Targets for Pancreatic Cancer. Front Med (Lausanne) 2021; 8:649326. [PMID: 33869254 PMCID: PMC8047149 DOI: 10.3389/fmed.2021.649326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: Pancreatic cancer is a highly lethal malignancy globally. This study aimed to probe and validate immune-related prognostic mRNAs as therapeutic targets for pancreatic cancer. Methods: Gene transcriptome data of pancreatic cancer and normal pancreas were retrieved from TCGA-GTEx projects. Two thousand four hundred and ninety-eight immune-related genes were obtained from the IMMUPORT database. Abnormally expressed immune-related genes were then identified. Under univariate and multivariate cox models, a gene signature was constructed. Its predictive efficacy was assessed via ROCs. The interactions between the 21 genes were analyzed by Spearson analysis and PPI network. Using the GEPIA and The Human Protein Atlas databases, their expression and prognostic value were evaluated. The TIMER database was utilized to determine the relationships between MET, OAS1, and OASL mRNAs and immune infiltrates. Finally, their mRNA expression was externally verified in the GSE15471 and GSE62452 datasets. Results: An immune-related 21-gene signature was developed for predicting patients' prognosis. Following verification, this signature exhibited the well predictive performance. There were physical and functional interactions between them. MET, OAS1, and OASL mRNAs were all up-regulated in pancreatic cancer and associated with unfavorable prognosis. They showed strong correlations with tumor progression. Furthermore, the three mRNAs were distinctly associated with immune infiltrates. Their up-regulation was confirmed in the two external datasets. Conclusion: These findings identified three immune-related prognostic mRNAs MET, OAS1, and OASL, which may assist clinicians to choose targets for immunotherapy and make personalized treatment strategy for pancreatic cancer patients.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yueji Zou
- Department of Imaging, Penglai Traditional Chinese Medicine Hospital, Penglai, China
| | - Yanan Zhu
- Jiangsu ALF Biotechnology Co., Ltd., Nanjing, China
| | - Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haibo Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Qiu X, Hou QH, Shi QY, Jiang HX, Qin SY. Identification of Hub Prognosis-Associated Oxidative Stress Genes in Pancreatic Cancer Using Integrated Bioinformatics Analysis. Front Genet 2020; 11:595361. [PMID: 33363572 PMCID: PMC7753072 DOI: 10.3389/fgene.2020.595361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Intratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers. Methods We compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort. Results A total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC. Conclusion Our study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.
Collapse
Affiliation(s)
- Xin Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qin-Han Hou
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Yue Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:E9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
17
|
Depleting RhoA/Stress Fiber-Organized Fibronectin Matrices on Tumor Cells Non-Autonomously Aggravates Fibroblast-Driven Tumor Cell Growth. Int J Mol Sci 2020; 21:ijms21218272. [PMID: 33158289 PMCID: PMC7663795 DOI: 10.3390/ijms21218272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/15/2023] Open
Abstract
Fibronectin (FN) expressed by tumor cells has been known to be tumor suppressive but the pericellular FN (periFN) assembled on circulating tumor cells appears to evidently promote distant metastasis. Whereas the regulation of periFN assembly in suspended cells has currently been under investigation, how it is regulated in adherent tumor cells and the role of periFN in primary tumor growth remain elusive. Techniques of RNAi, plasmid transfections, immunoblotting, fluorescence/immunohistochemistry staining, cell proliferation assays, and primary tumor growth in C57BL6 mice and Fischer 344 rats were employed in this study. We found that endogenously synthesized FN in adherent tumor cells was required for periFN assembly which was aligned by RhoA-organized actin stress fiber (SF). Depleting periFN on adherent tumor cells congruently promoted in vivo tumor growth but surprisingly did not autonomously impact on in vitro tumor cell proliferation and apoptosis, suggestive of a non-autonomous role of periFN in in vivo tumor growth. We showed that the proliferative ability of shFN-expressing tumor cells was higher than shScramble cells did in the presence of fibroblasts. Altogether, these results suggested that depriving RhoA/SF-regulated periFN matrices non-autonomously promotes fibroblast-mediated tumor cell growth.
Collapse
|
18
|
Zu F, Liu P, Wang H, Zhu T, Sun J, Sheng W, Tan X. Integrated analysis identifies a pathway-related competing endogenous RNA network in the progression of pancreatic cancer. BMC Cancer 2020; 20:958. [PMID: 33008376 PMCID: PMC7532576 DOI: 10.1186/s12885-020-07470-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is well acknowledged that cancer-related pathways play pivotal roles in the progression of pancreatic cancer (PC). Employing Integrated analysis, we aim to identify the pathway-related ceRNA network associated with PC progression. METHODS We divided eight GEO datasets into three groups according to their platform, and combined TCGA and GTEx databases as a group. Additionally, we screened out the differentially expressed genes (DEGs) and performed functional enrichment analysis in each group, and recognized the top hub genes in the most enriched pathway. Furthermore, the upstream of miRNAs and lncRNAs were predicted and validated according to their expression and prognostic roles. Finally, the co-expression analysis was applied to identify a pathway-related ceRNA network in the progression of PC. RESULTS A total of 51 significant pathways that common enriched in all groups were spotted. Enrichment analysis indicated that pathway in cancer was greatly linked with tumor formation and progression. Next, the top 20 hug genes in this pathway were recognized, and stepwise prediction and validation from mRNA to lncRNA, including 11 hub genes, 4 key miRNAs, and 2 key lncRNAs, were applied to identify a meaningful ceRNA network according to ceRNA rules. Ultimately, we identified the PVT1/miR-20b/CCND1 axis as a promising pathway-related ceRNA axis in the progression of PC. CONCLUSION Overall, we elucidate the pathway-related ceRNA regulatory network of PVT1/miR-20b/CCND1 in the progression of PC, which can be considered as therapeutic targets and encouraging prognostic biomarkers for PC.
Collapse
Affiliation(s)
- Fuqiang Zu
- Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ting Zhu
- Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jian Sun
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, the First Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
19
|
Wang C, Xi W, Ji J, Cai Q, Zhao Q, Jiang J, Zhou C, Shi M, Zhang H, Zhu Z, Zhang J. The prognostic value of HGF-c-MET signaling pathway in Gastric Cancer: a study based on TCGA and GEO databases. Int J Med Sci 2020; 17:1946-1955. [PMID: 32788873 PMCID: PMC7415389 DOI: 10.7150/ijms.44952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is a heterogeneous tumor that underlying molecular mechanisms are largely unclear. This study aimed to elucidate the expression level of HGF-c-MET in gastric cancer patients and to investigate the prognostic and diagnostic value of HGF-c-MET. In silico analysis of the TCGA and GEO database found that HGF and c-MET mRNA expression are significantly higher in gastric cancer tissues than those in peritumor tissues. Both higher mRNA expression of HGF and c-MET were associated with a poorer prognosis. c-MET expression was modulated by methylation in the promoter regions. HGF was positively correlated with CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell. Furthermore, functional enrichment analysis and protein-protein interaction networks further shown that HGF-c-MET and related proteins mainly participated in growth factor receptor binding, protein tyrosine kinase activity and signaling receptor binding. Finally, outcome of GSEA analysis showed 13 shared KEGG pathways enriched in high expressed group of HGF and c-MET.
Collapse
Affiliation(s)
- Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Qianfu Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin er Road, Shanghai, 200025, China
| |
Collapse
|
20
|
Zeh HJ, Bahary N, Boone BA, Singhi AD, Miller-Ocuin JL, Normolle DP, Zureikat AH, Hogg ME, Bartlett DL, Lee KK, Tsung A, Marsh JW, Murthy P, Tang D, Seiser N, Amaravadi RK, Espina V, Liotta L, Lotze MT. A Randomized Phase II Preoperative Study of Autophagy Inhibition with High-Dose Hydroxychloroquine and Gemcitabine/Nab-Paclitaxel in Pancreatic Cancer Patients. Clin Cancer Res 2020; 26:3126-3134. [PMID: 32156749 DOI: 10.1158/1078-0432.ccr-19-4042] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE We hypothesized that autophagy inhibition would increase response to chemotherapy in the preoperative setting for patients with pancreatic adenocarcinoma. We performed a randomized controlled trial to assess the autophagy inhibitor hydroxychloroquine in combination with gemcitabine and nab-paclitaxel. PATIENTS AND METHODS Participants with potentially resectable tumors were randomized to two cycles of nab-paclitaxel and gemcitabine (PG) alone or with hydroxychloroquine (PGH), followed by resection. The primary endpoint was histopathologic response in the resected specimen. Secondary clinical endpoints included serum CA 19-9 biomarker response and margin negative R0 resection. Exploratory endpoints included markers of autophagy, immune infiltrate, and serum cytokines. RESULTS Thirty-four patients in the PGH arm and 30 in the PG arm were evaluable for the primary endpoint. The PGH arm demonstrated statistically improved Evans grade histopathologic responses (P = 0.00016), compared with control. In patients with elevated CA 19-9, a return to normal was associated with improved overall and recurrence-free survival (P < 0.0001). There were no differences in serious adverse events between arms and chemotherapy dose number was equivalent. The PGH arm had greater evidence of autophagy inhibition in their resected specimens (increased SQSTM1, P = 0.027, as well as increased immune cell tumor infiltration, P = 0.033). Overall survival (P = 0.59) and relapse-free survival (P = 0.55) did not differ between the two arms. CONCLUSIONS The addition of hydroxychloroquine to preoperative gemcitabine and nab-paclitaxel chemotherapy in patients with resectable pancreatic adenocarcinoma resulted in greater pathologic tumor response, improved serum biomarker response, and evidence of autophagy inhibition and immune activity.
Collapse
Affiliation(s)
- Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan Bahary
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brian A Boone
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel P Normolle
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melissa E Hogg
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kenneth K Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Wallis Marsh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Natalie Seiser
- HPB and Transplant Institute at St. Vincent's Medical Center, Los Angeles, California
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Hu CY, Xu XM, Hong B, Wu ZG, Qian Y, Weng TH, Liu YZ, Tang TM, Wang MH, Yao HP. Aberrant RON and MET Co-overexpression as Novel Prognostic Biomarkers of Shortened Patient Survival and Therapeutic Targets of Tyrosine Kinase Inhibitors in Pancreatic Cancer. Front Oncol 2019; 9:1377. [PMID: 31867280 PMCID: PMC6906148 DOI: 10.3389/fonc.2019.01377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
RON (recepteur d'origine nantais) and MET (hepatocyte growth factor receptor) are tyrosine kinase receptors. Various cancers have aberrant RON and MET expression and activation, which contribute to cancer cell proliferation, invasiveness, and metastasis. Here, we explored RON and MET expression in pancreatic cancer and their relationship with overall survival (OS) time, and evaluated their significance as therapeutic targets of tyrosine kinase inhibitors in pancreatic cancer. We enrolled 227 patients with pancreatic cancer in the study. RON and MET expression was analyzed by immunohistochemical staining. Four human pancreatic cancer cell lines expressing variable levels of RON or MET and four MET superfamily inhibitors (BMS777607, PHA665752, INCB28060, Tivantinib) were used. The effect of the four tyrosine kinase inhibitors on cell viability, migration, and apoptosis were determined using cell viability, scratch wound healing, and Caspase-Glo 3/7 assays. Cellular signaling was analyzed by immunoprecipitation and western blotting. The therapeutic efficacy of the tyrosine kinase inhibitors was determined with mouse xenograft pancreatic cancer models in vivo. There was wide aberrant RON and MET expression in the cancer tissues. In 227 pancreatic cancer samples, 33% had RON overexpression, 41% had MET overexpression, and 15.4% had RON and MET co-overexpression. RON and MET expression were highly correlated. RON and MET expression levels were significantly related to OS. Patients with RON and MET co-overexpression had poorer OS. BMS777607 and PHA665752 inhibited pancreatic cancer cell viability and migration, and promoted apoptosis by inhibiting RON and MET phosphorylation and further inhibiting the downstream signaling pathways in vitro. They also inhibited tumor growth and further inhibited phosphorylated (phosphor)-RON and phospho-MET expression in the mouse xenograft models in vivo effectively. INCB28060, which inhibits the MET signaling pathway alone, was not effective. RON and MET can be important indicators of prognosis in pancreatic cancer. Tyrosine kinase inhibitors targeting RON and MET in pancreatic cancer are a novel and potential approach for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chen-Yu Hu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Ming Xu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhi Liu
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao-Ming Tang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Biology Research Center, Amarillo, TX, United States.,Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, United States
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Kang X, Lin Z, Xu M, Pan J, Wang ZW. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif 2019; 52:e12605. [PMID: 30945363 PMCID: PMC6536421 DOI: 10.1111/cpr.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management.
Collapse
Affiliation(s)
- Xiaodiao Kang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minhui Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|