1
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sequeda-Castañeda LG, Suárez-Carvajal LF, Téllez-Corral MA, Gutiérrez-Prieto SJ, Méndez-Pinzón HA. Evaluation of Ilex guayusa and Piper marginatum Extract Cytotoxicity on Human Dental Pulp Mesenchymal Stem Cells. Dent J (Basel) 2024; 12:189. [PMID: 38920890 PMCID: PMC11202831 DOI: 10.3390/dj12060189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Amelogenesis imperfecta is a hereditary disorder affecting dental enamel. Among its phenotypes, hypocalcified AI is characterized by mineral deficiency, leading to tissue wear and, consequently, dental sensitivity. Excessive fluoride intake (through drinking water, fluoride supplements, toothpaste, or by ingesting products such as pesticides or insecticides) can lead to a condition known as dental fluorosis, which manifests as stains and teeth discoloration affecting their structure. Our recent studies have shown that extracts from Colombian native plants, Ilex guayusa and Piper marginatum, deposit mineral ions such as phosphate and orthophosphate into the dental enamel structure; however, it is unknown whether these extracts produce toxic effects on the dental pulp. OBJECTIVE To assess cytotoxicity effects on human dental pulp stem cells (hDPSCs) exposed to extracts isolated from I. guayusa and P. marginatum and, hence, their safety for clinical use. METHODS Raman spectroscopy, fluorescence microscopy, and flow cytometry techniques were employed. For Raman spectroscopy, hDPSCs were seeded onto nanobiochips designed to provide surface-enhanced Raman spectroscopy (SERS effect), which enhances their Raman signal by several orders of magnitude. After eight days in culture, I. guayusa and P. marginatum extracts at different concentrations (10, 50, and 100 ppm) were added. Raman measurements were performed at 0, 12, and 24 h following extract application. Fluorescence microscopy was conducted using an OLIMPUS fv1000 microscope, a live-dead assay was performed using a kit employing a BD FACS Canto TM II flow cytometer, and data analysis was determined using a FlowJo program. RESULTS The Raman spectroscopy results showed spectra consistent with viable cells. These findings were corroborated using fluorescence microscopy and flow cytometry techniques, confirming high cellular viability. CONCLUSIONS The analyzed extracts exhibited low cytotoxicity, suggesting that they could be safely applied on enamel for remineralization purposes. The use of nanobiochips for SERS effect improved the cell viability assessment.
Collapse
Affiliation(s)
- Luis G. Sequeda-Castañeda
- Department of Chemistry, School of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Luisa F. Suárez-Carvajal
- Oral Rehabilitation, School of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | | | | | - Henry A. Méndez-Pinzón
- Department of Physics, School of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
3
|
Das A, Ramamurthy N, Srinivasan I, Milit Y. Assessment of Nanosilver Fluoride Application on the Microtensile Bond Strength of Glass Ionomer Cement and Resin-modified Glass Ionomer Cement on Primary Carious Dentin: An In Vitro Study. Int J Clin Pediatr Dent 2024; 17:565-569. [PMID: 39355194 PMCID: PMC11440662 DOI: 10.5005/jp-journals-10005-2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Background and objectives Nanosilver sodium fluoride (NSF) has recently gained popularity in dentistry as an alternative to silver diamine fluoride (SDF) due to its drawbacks of staining the tooth black and possibly causing soft tissue injury, which has been eliminated in NSF due to the nanoparticle size of silver. This study aims to assess the microtensile bond strength of glass ionomer cement (GIC) and resin-modified glass ionomer cement (RMGIC) with pretreatment of NSF on extracted primary carious teeth. Materials and methods Teeth were stored in 10% formalin. The roots were severed, and the pulp chambers were cleaned. The occlusal enamel was ground, reducing the dentin thickness by 1 mm. The specimens were covered with nail varnish, leaving only the area of flat dentin exposed. Caries were induced microbiologically by inoculating Streptococcus mutans. Group I-NSF with GIC restoration, group II-NSF with RMGIC restoration, group III-restoration with GIC, and group IV-restoration with RMGIC. After different surface treatments of the carious dentin were performed, each specimen was placed in the testing jig of a universal testing machine and stressed in tension at a crosshead speed of 1 mm/minute until bond failure was observed. They were air-dried and placed under a scanning electron microscope. The failure modes-adhesive, cohesive, and mixed failure were recorded for statistical evaluation. Results Maximum results of microtensile bond strength were seen in the pretreatment group with NSF sealant, followed by RMGIC restoration, and the least results were observed in the conventional GIC restoration group. Of all the types of failures in our study, adhesive was the maximum type. Interpretation and conclusion The microtensile bond strength of pretreatment with NSF showed higher values when compared to conventional restorations of GIC and RMGIC. The failure modes in each group were not significantly varied. Pretreatment with NSF will prevent secondary caries formation, and the restorations will also be stronger. How to cite this article Das A, Ramamurthy N, Srinivasan I, et al. Assessment of Nanosilver Fluoride Application on the Microtensile Bond Strength of Glass Ionomer Cement and Resin-modified Glass Ionomer Cement on Primary Carious Dentin: An In Vitro Study. Int J Clin Pediatr Dent 2024;17(5):565-569.
Collapse
Affiliation(s)
- Anushka Das
- Department of Pedodontics and Preventive Dentistry, MR Ambedkar Dental College and Hospital (MRADCH), Bengaluru, Karnataka, India
| | - Neeraja Ramamurthy
- Department of Pedodontics and Preventive Dentistry, MR Ambedkar Dental College and Hospital (MRADCH), Bengaluru, Karnataka, India
| | - Ila Srinivasan
- Department of Pedodontics and Preventive Dentistry, MR Ambedkar Dental College and Hospital (MRADCH), Bengaluru, Karnataka, India
| | - Yuthi Milit
- Department of Pedodontics and Preventive Dentistry, MR Ambedkar Dental College and Hospital (MRADCH), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Kjellevold M, Kippler M. Fluoride - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10327. [PMID: 38187801 PMCID: PMC10770722 DOI: 10.29219/fnr.v67.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Fluoride has a well-documented role in the prevention and treatment of dental caries, but the mechanism is attributed to local effects on the tooth enamel surface rather than systemic effects. Fluoride is not considered essential for humans, no deficiencies are known, and no optimal range, which will not result in moderate fluorosis in some individuals, can be set. Recently, research studies have shown evidence for a relationship between fluoride intake and cognitive outcomes and interaction with iodine nutrition, but the evidence is weak so more data are warranted. For performing longitudinal cohort studies in the Nordic and Baltic region, data on fluoride in food and beverages need to be implemented in food composition tables. As the preventive effects of fluoride are mainly from topical treatment, monitoring of fluoride intake and establishing reference values for fluoride in urine and plasma are warranted to establish safe intake values.
Collapse
Affiliation(s)
- Marian Kjellevold
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Lingli C, Hongmei N, Penghuan J, Hongli Z, Yuye L, Rui W, Fei R, Zhihong Y, Dongfang H, Yaming G. Inhibition of RhoA/ROCK signalling pathway activity improves neural damage and cognitive deficits in the fluorosis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115554. [PMID: 37806133 DOI: 10.1016/j.ecoenv.2023.115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Excessive fluoride intake poses health risks to humans and animals. Many studies have indicated that fluoride exposure can damage the cytoskeleton and synapses, which has negative effects on the intellectual development of humans and animals. Our previous study suggested that the RhoA/ROCK signalling pathway is activated by NaF exposure in HT-22 cells and plays a vital role in cytoskeletal assembly and synaptogenesis. However, the mechanism underlying RhoA/ROCK-mediated cytoskeletal injury induced by fluoride remains unclear. In this study, Neuro-2A cells and ICR mice were used to investigate the effects of RhoA/ROCK activation inhibition on NaF-induced synaptic dysfunction and cognitive impairment. We detected the expression of GAP, RhoA, ROCK1/2, and (p)-MLC in vivo and in vitro model. The results showed that NaF exposure activated the RhoA/ROCK/MLC signalling pathway. We measured the effects of RhoA/ROCK inhibition on synaptic injury and intellectual impairment induced by NaF exposure. In vitro, Y-27632 suppressed activated RhoA/ROCK, attenuated morphological and ultrastructural damage, and decreased the survival rate and synapse-functional protein expression caused by NaF. In vivo, the results showed that the RhoA/ROCK/MLC pathway was inhibited by fasudil and improved pathological damage in the hippocampus, cognitive impairment, and decreased expression of neurofunctional proteins induced by NaF. Overall, these results suggest that fasudil and Y-27632 can reverse neurotoxicity caused by fluoride exposure. Furthermore, inhibition of RhoA/ROCK may be a future treatment for CNS injury, and more detailed studies on other neurodegenerative disease models are required to confirm its effectiveness.
Collapse
Affiliation(s)
- Chen Lingli
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China; Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ning Hongmei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Jia Penghuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Zhang Hongli
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Liu Yuye
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Wang Rui
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ren Fei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Yin Zhihong
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Hu Dongfang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China
| | - Ge Yaming
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence, 453003, China.
| |
Collapse
|
6
|
Zeng Z, Li Q, Yan J, Huang L, Arulmani SRB, Zhang H, Xie S, Sio W. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review. CHEMOSPHERE 2023; 340:139808. [PMID: 37591373 DOI: 10.1016/j.chemosphere.2023.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Samuel Raj Babu Arulmani
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenghong Sio
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
7
|
Joseph A, Parveen N, Ranjan VP, Goel S. Drinking hot beverages from paper cups: Lifetime intake of microplastics. CHEMOSPHERE 2023; 317:137844. [PMID: 36640991 DOI: 10.1016/j.chemosphere.2023.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been found in many packaged food products such as salt, tea bags, milk, and fish. In a previous study by this group, MPs were found to leach into hot water from the plastic lining of disposable paper cups. No studies were found in the literature quantifying health risks or lifetime intake of MPs. At present, it is not possible to quantify health risks due to MPs because dose-response and toxicity assessments are not available. Therefore, the objective of the current study was to assess the intake of MPs and associated contaminants like fluoride that are released into these hot beverages. MPs in the previous study were quantified in terms of particle counts only and a simple method was adopted in the present study to convert the microplastics count into its respective mass. Chronic daily intake (CDI) and lifetime intake (LTI) of MPs through the ingestion pathway were calculated. CDI and Hazard Quotient (HQ) due to fluoride ingestion were also estimated following USEPA guidelines. Monte Carlo (MC) simulations were used to account for the variability in input variables such as concentration of MPs, body weight, averaging time, exposure duration, exposure frequency and ingestion rate to evaluate the impact on CDI and LTI values. The CDI was used to estimate the LTI of MPs and HQ for fluoride ingestion. MC simulations with 100,000 iterations resulted in an average CDI of 0.03 ± 0.025 mg of microplastic per kg of body weight per day and 7.04 ± 8.8 μg fluoride per kg body weight per day. This study takes us one step closer to estimating the human health risk due to the ingestion of microplastics and other contaminants through food items.
Collapse
Affiliation(s)
- Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
8
|
Ren C, Li HH, Zhang CY, Song XC. Effects of chronic fluorosis on the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114021. [PMID: 36049331 DOI: 10.1016/j.ecoenv.2022.114021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury, and pathogenesis. A large number of in vivo and in vitro studies and epidemiological investigations have found that chronic fluorosis can cause brain damage, resulting in abnormal brain structure and brain function.Chronic fluorosis not only causes a decline in concentration, learning, and memory, but also has mental symptoms such as anxiety, tension, and depression. Several possible mechanisms that have been proposed: the oxidative stress and inflammation theory, neural cell apoptosis theory, neurotransmitter imbalance theory, as well as the doctrine of the interaction of fluorine with other elements. However, the specific mechanism of chronic fluorosis on brain damage is still unclear. Thus, a better understanding of the mechanisms via which chronic fluorosis causes brain damage is of great significance to protect the physical and mental health of people in developing countries, especially those living in the endemic areas of fluorosis. In brief, further investigation concerning the influence of fluoride on the brain should be conducted as the neural damage induced by it may bring about a huge problem in public health, especially considering growing environmental pollution.
Collapse
Affiliation(s)
- Chao Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China.
| | - Hui-Hua Li
- Zhenjiang Mental Health Center, The Fifth People's Hospital of Zhenjiang City, Zhenjiang, Jiangsu Province 212000, China
| | - Cai-Yi Zhang
- Department of Psychiatry, Xuzhou Medical University Affiliated Xuzhou Oriental Hospital, No.379 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency psychology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, Jiangsu Province 221000, China; Department of Emergency, Xuzhou Medical University Affiliate Hospital, No.99 Huaihai Road, Xuzhou, Jiangsu Province 221000, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province 264000, China; Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai 264000, China.
| |
Collapse
|
9
|
Liu X, Yao C, Tang Y, Liu X, Duan C, Wang C, Han F, Xiang Y, Wu L, Li Y, Ji A, Cai T. Role of p53 methylation in manganese-induced cyclooxygenase-2 expression in BV2 microglial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113824. [PMID: 36068751 DOI: 10.1016/j.ecoenv.2022.113824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 05/21/2023]
Abstract
Manganese (Mn) is an essential cofactor for many enzymes and plays an important role in normal growth and development. However, excess exposure to manganese (Mn) may be an important environmental factor leading to neurodegeneration. The overexpression of microglial cyclooxygenase-2 (COX-2) plays a key role in neuroinflammation in neurodegenerative diseases. The existing data suggest that Mn can induce neuroinflammation by up-regulating COX-2 expression. However, the mechanisms involved in Mn-induced microglial COX-2 up-regulation remain to be determined. The aim of this study was to investigate the role of p53 in Mn-induced COX-2 expression in microglial cells. The results showed that Mn exposure induced the up-regulation of COX-2 and inhibited the expression of p53 in BV2 microglial cells. The addition of p53 activator and the over-expression of p53 blocked the expression of COX-2 and prostaglandin E2 (PGE2), a COX-2 downstream effector, induced by Mn. Further, Mn increased the methylation of p53 DNA in microglia, while the addition of demethylation reagent 5-Aza-dC enhanced the expression of p53 but decreased the expression of COX-2. These results suggested that Mn may inhibit p53 expression through induction of DNA methylation, which can further induce the expression of COX-2 in microglial cells.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
10
|
Di Paola D, Capparucci F, Lanteri G, Crupi R, Marino Y, Franco GA, Cuzzocrea S, Spanò N, Gugliandolo E, Peritore AF. Environmental Toxicity Assessment of Sodium Fluoride and Platinum-Derived Drugs Co-Exposure on Aquatic Organisms. TOXICS 2022; 10:toxics10050272. [PMID: 35622686 PMCID: PMC9145728 DOI: 10.3390/toxics10050272] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022]
Abstract
Pharmaceuticals are widely acknowledged to be a threat to aquatic life. Over the last two decades, the steady use of biologically active chemicals for human health has been mirrored by a rise in the leaking of these chemicals into natural environments. The aim of this work was to detect the toxicity of sodium fluoride (NaF) exposure and platinum-derived drugs in an ecological setting on aquatic organism development. From 24 to 96 h post-fertilization, zebrafish embryos were treated to dosages of NaF 10 mg/L−1 + cisplatin (CDDP) 100 μM, one with NaF 10 mg/L−1 + carboplatin (CARP) 25 μM, one with NaF 10 mg/L−1 + CDDP 100 μM + CARP 25 μM. Fluoride exposure in combination with Cisplatin and Carboplatin (non-toxic concentration) had an effect on survival and hatching rate according to this study. Additionally, it significantly disturbed the antioxidant defense system and increased ROS in zebrafish larvae. NaF 10 mg/L−1 associated with CDDP 100 μM and CARP 25 μM, increased the production of apoptosis-related proteins (caspase 3, bax, and bcl-2) and the downregulation of acetylcholinesterase (AChE) activity, while no effect was seen for the single exposure.
Collapse
Affiliation(s)
- Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Nunziacarla Spanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
- Correspondence: (S.C.); (N.S.); Tel.: +39-906-765-208 (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (R.C.); (E.G.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (F.C.); (G.L.); (Y.M.); (G.A.F.); (A.F.P.)
| |
Collapse
|
11
|
González-Ruiz V, Cores Á, Caja MM, Sridharan V, Villacampa M, Martín MA, Olives AI, Menéndez JC. Fluorescence Sensors Based on Hydroxycarbazole for the Determination of Neurodegeneration-Related Halide Anions. BIOSENSORS 2022; 12:175. [PMID: 35323445 PMCID: PMC8946780 DOI: 10.3390/bios12030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
The environmental presence of anions of natural origin or anthropogenic origin is gradually increasing. As a tool to tackle this problem, carbazole derivatives are an attractive gateway to the development of luminescent chemosensors. Considering the different mechanisms proposed for anion recognition, the fluorescence properties and anion-binding response of several newly synthesised carbazole derivatives were studied. Potential anion sensors were designed so that they combined the native fluorescence of carbazole with the presence of hydrogen bonding donor groups in critical positions for anion recognition. These compounds were synthesised by a feasible and non-expensive procedure using palladium-promoted cyclodehydrogenation of suitable diarylamine under microwave irradiation. In comparison to the other carbazole derivatives studied, 1-hydroxycarbazole proved to be useful as a fluorescent sensor for anions, as it was able to sensitively recognise fluoride and chloride anions by establishing hydrogen bond interactions through the hydrogen atoms on the pyrrolic nitrogen and the hydroxy group. Solvent effects and excited-state proton transfer (ESPT) of the carbazole derivatives are described to discard the role of the anions as Brönsted bases on the observed fluorescence behaviour of the sensors. The anion-sensor interaction was confirmed by 1H-NMR. Molecular modelling was employed to propose a mode of recognition of the sensor in terms of complex stability and interatomic distances. 1-hydroxycarbazole was employed for the quantitation of fluoride and chloride anions in commercially available medicinal spring water and mouthwash samples.
Collapse
Affiliation(s)
- Víctor González-Ruiz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Swiss Centre for Applied Human Toxicology (SCATH), 4055 Basel, Switzerland
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
| | - M. Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
| | - Vellaisamy Sridharan
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
| |
Collapse
|
12
|
Adkins EA, Yolton K, Strawn JR, Lippert F, Ryan PH, Brunst KJ. Fluoride exposure during early adolescence and its association with internalizing symptoms. ENVIRONMENTAL RESEARCH 2022; 204:112296. [PMID: 34755609 PMCID: PMC8725192 DOI: 10.1016/j.envres.2021.112296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Early, chronic, low-level fluoride exposure has been linked to attention-deficit hyperactivity disorder (ADHD) and learning deficits in children. Rodent studies suggest a link between fluoride exposure and internalizing behaviors. No human studies have examined the impact of fluoride on internalizing behaviors during adolescence. OBJECTIVE Evaluate the relationship between urinary fluoride and early adolescent internalizing symptoms in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). METHODS Participants in CCAAPS provided non-fasting spot urine samples at age 12 years (n = 286). Urine samples were analyzed using a microdiffusion method to determine childhood urinary fluoride (CUF) concentrations and were log-transformed for analyses. Caregivers of CCAAPS participants completed the Behavior Assessment System for Children-2 (BASC-2) at the age 12 study visit to assess internalizing symptoms (e.g., anxiety, depression, somatization), and a composite score of the three domains; T-scores ≥ 60 were used to identify adolescents in a clinically "at-risk" range. Race, age of the adolescent, household income, maternal age at birth, caregiver depression, caregiver-child relationships, and age 12-year serum cotinine concentrations were considered covariates in regression models. Sex-specific effects of fluoride exposures were investigated through the inclusion of interaction terms. RESULTS Higher CUF concentrations were significantly associated with increased somatization (β = 3.64, 95% CI 0.49, 6.81) and internalizing composite T-scores in a clinically "at-risk" range (OR = 2.9, 95% CI 1.24, 6.9). Compared to females, males with higher CUF concentrations had more internalizing (pinteraction = 0.04) and somatization symptoms (pinteraction = 0.02) and were nearly seven times more likely to exhibit "at-risk" internalizing symptomology. CUF concentrations were not significantly associated with depression or anxiety symptoms. CONCLUSIONS This is the first study to link fluoride exposure and internalizing symptoms, specifically somatization. Somatization represents an interface of physical and psychological health. Continued follow-up will help shed light on the sex-specific relationship between fluoride and mental health and the role of somatization.
Collapse
Affiliation(s)
- Emily A Adkins
- Department of Environmental and Public Health Sciences, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC, 5041, Cincinnati, OH, 45229, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219, USA
| | - Frank Lippert
- Department of Cariology, Operative Dentistry, and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, 415 Lansing Street, Indianapolis, IN, 46202, USA
| | - Patrick H Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kelly J Brunst
- Department of Environmental and Public Health Sciences, University of Cincinnati, 160 Panzeca Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
13
|
Pal A, Karmakar M, Bhatta SR, Thakur A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Hussien HM, Ghareeb DA, Ahmed HEA, Hafez HS, Saleh SR. Pharmacological implications of ipriflavone against environmental metal-induced neurodegeneration and dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65349-65362. [PMID: 34235690 DOI: 10.1007/s11356-021-15193-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Long-term exposure to environmental neurotoxic metals is implicated in the induction of dementia and cognitive decline. The present study aims to illustrate the therapeutic role of ipriflavone as a synthetic isoflavone against environmental metal-induced cognitive impairment in rats. Dementia was induced by a mixture of aluminum, cadmium, and fluoride for 90 days followed by ipriflavone for a further 30 days. Metal-treated animals exhibited abnormal behaviors in the Morris water maze task. Neuropathological biomarkers including oxidative stress (TBARS, NO, SOD, GPX, GST, and GSH), inflammation (TNF- α, IL-6, and IL-1β), neurotransmission (AChE and MAO), and insulin resistance (insulin, insulin receptor, and insulin-degrading enzyme) were altered, which consequently elevated the level of amyloid-β42 and tau protein in the hippocampus tissues inducing neuronal injury. Ipriflavone significantly (P < 0.05) ameliorated the neurobehavioral abnormalities and the cognitive dysfunction biomarkers via antioxidant/anti-inflammatory mechanism. Moreover, ipriflavone downregulated the mRNA expression level of amyloid precursor protein and tau protein, preventing amyloid plaques and neurofibrillary tangle aggregation at P < 0.05. A molecular docking study revealed that ipriflavone has a potent binding affinity towards AChE more than donepezil and acts as a strong AChE inhibitor. Our data concluded that the therapeutic potential of ipriflavone against dementia could provide a new strategy in AD treatment.
Collapse
Affiliation(s)
- Hend M Hussien
- Department of Pharmacology and Therapeutics Department, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Smouha, Sidi Gaber, P.O. Box 37, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Samar R Saleh
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
15
|
Nowak A, Kojder K, Zielonka-Brzezicka J, Wróbel J, Bosiacki M, Fabiańska M, Wróbel M, Sołek-Pastuszka J, Klimowicz A. The Use of Ginkgo Biloba L. as a Neuroprotective Agent in the Alzheimer's Disease. Front Pharmacol 2021; 12:775034. [PMID: 34803717 PMCID: PMC8599153 DOI: 10.3389/fphar.2021.775034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease, a neurodegenerative disease, is one of the most common causes of dementia if elderly people worldwide. Alzheimer's disease leads to the alienation of individuals and their exclusion from social and professional life. It is characterized mainly by the degradation of memory and disorientation, which occurs as a result of the loss of neuronal structure and function in different brain areas. In recent years, more and more attention has been paid to use in the treatment of natural bioactive compounds that will be effective in neurodegenerative diseases, including Alzheimer's disease. G. biloba L. and its most frequently used standardized extract (EGb 761), have been used for many years in supportive therapy and in the prevention of cognitive disorders. The paper presents an overview of reports on the pathogenesis of Alzheimer's disease, as well as a summary of the properties of G. biloba extract and its effects on the possible pathogenesis of the disease. By exploring more about the pathogenesis of the disease and the benefits of G. biloba extract for patients with Alzheimer's disease, it will be possible to create an individualized therapeutic protocol to optimize the treatment.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Szczecin, Poland
| | - Mariola Wróbel
- Department of Landscape Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
16
|
Effects of Fluorine on Neutrophil Extracellular Trap Formation through Regulating AMPK/p38 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6693921. [PMID: 34394830 PMCID: PMC8355961 DOI: 10.1155/2021/6693921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/29/2021] [Indexed: 01/02/2023]
Abstract
Fluorine is an important trace element that is widely dispersed, and studies showed that fluorine could cause severe toxicity to fish. The aim of this study was to investigate the effects of fluorine on neutrophil extracellular trap (NET) formation in common carp and clarify the possible mechanism. The neutrophils were isolated and exposed to 0.25, 0.5, or 1 mM sodium fluoride (NaF). The results showed that NaF could induce the formation of NETs which exhibited a DNA-based network structure modified with histones and myeloperoxidase (MPO). Furthermore, NaF led to the production of reactive oxygen species (ROS) in neutrophils. Western blot results showed that NaF significantly increased the phosphorylation of AMPK and p38. In addition, our results showed that NaF-induced NET formation could be inhibited by an AMPK or p38 inhibitor. In conclusion, our results showed that NaF induced NET formation in neutrophils through regulation of the AMPK/p38 signaling pathway.
Collapse
|
17
|
Sukhareva O, Mariychuk R, Sukharev S, Delegan-Kokaiko S, Kushtan S. Application of microextraction techniques for indirect spectrophotometric determination of fluorides in river waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111702. [PMID: 33257179 DOI: 10.1016/j.jenvman.2020.111702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The present study is dedicated to development of improved method for determination of trace amounts of fluorides in natural waters which is based on the interaction of fluorides with ion associate (IA) of Al(III), salicylic aldehyde acylhydrazones (benzhydrazone (SABH) and 4-picolinhydrazone (SAPH)) and polymethine dye Astra Phloxine FF (AP). Comparison of analytical forms [Al(SABH)2]⋅AP and [Al(SAPH)2]⋅AP showed that the analytical system Al(III)-SAPH-AP is more effective, namely, a higher level of preconcentration of the analytical form is ensured by and extraction equilibrium is achieved faster. Based on the study, we propose a new, fast, simple, reliable, sensitive, and accurate method of the indirect UV-Vis-spectrophotometric determination of fluorides grounded on the interaction of fluorides with IA of Al(III), SAPH and AP with the utilization of vortex-assisted liquid-liquid microextraction (VALLME). The method is based on the discoloration of the microextract of IA of Al(III), SAPH and AP (Al-SAPH-AP) in presence of fluoride ions due to the formation of fluoride complexes of aluminum with higher stability. The effect of various factors has been studied. The optimal conditions of the UV-Vis-spectrophotometric determination of fluorides were defined as: pH 7.0-10.0, 1.0⋅10-6 mol⋅L-1 Al(III); 4.0⋅10-5 mol⋅L-1 SAPH; 1.0⋅10-6 mol⋅L-1 AP; λ = 560 nm. VALLME have been carried out in 250 μL of CCl4 at 20:1 vol ratios of aqueous and organic phases, with vortexing at 3000 rpm for 15 s followed by centrifugation at 2000 rpm for 2 min. The determination of fluorides is feasible in the presence of various interferences. The calibration curve shows the linear dependence in the range of 0.3-114 μg⋅L-1 of the fluorides concentration (R2 = 0.993) with the limit of detection of 0.086 μg⋅L-1 and the limit of determination of 0.284 μg⋅L-1. The accuracy of the proposed protocol of fluorides determination was verified towards a reference method on the samples of natural rivers waters (RSD 2.6-3.1%, recovery 98.3-101.4%).
Collapse
Affiliation(s)
- Oksana Sukhareva
- Department of Analytical Chemistry, Uzhhorod National University, Pidhirna Street 46, Uzhhorod, UA, 88000, Ukraine.
| | - Ruslan Mariychuk
- Department of Ecology, University of Presov, 17 November Street 1, Presov, SK, 08116, Slovak Republic.
| | - Sergii Sukharev
- Department of Ecology and Environment Protection, Uzhhorod National University, Pidhirna Street 46, Uzhhorod, UA, 88000, Ukraine.
| | - Svitlana Delegan-Kokaiko
- Department of Ecology and Environment Protection, Uzhhorod National University, Pidhirna Street 46, Uzhhorod, UA, 88000, Ukraine.
| | - Stanislav Kushtan
- Department of Ecology and Environment Protection, Uzhhorod National University, Pidhirna Street 46, Uzhhorod, UA, 88000, Ukraine.
| |
Collapse
|
18
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
19
|
Mechanisms of Fluoride Toxicity: From Enzymes to Underlying Integrative Networks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluoride has been employed in laboratory investigations since the early 20th century. These studies opened the understanding of fluoride interventions to fundamental biological processes. Millions of people living in endemic fluorosis areas suffer from various pathological disturbances. The practice of community water fluoridation used prophylactically against dental caries increased concern of adverse fluoride effects. We assessed the publications on fluoride toxicity until June 2020. We present evidence that fluoride is an enzymatic poison, inducing oxidative stress, hormonal disruptions, and neurotoxicity. Fluoride in synergy with aluminum acts as a false signal in G protein cascades of hormonal and neuronal regulations in much lower concentrations than fluoride acting alone. Our review shows the impact of fluoride on human health. We suggest focusing the research on fluoride toxicity to the underlying integrative networks. Ignorance of the pluripotent toxic effects of fluoride might contribute to unexpected epidemics in the future.
Collapse
|
20
|
Sun M, Liu H, Su Y, Yang W, Lv Y. Off/On Amino-Functionalized Polyhedral Oligomeric Silsesquioxane-Perylene Diimides Based Hydrophilic Luminescent Polymer for Aqueous Fluoride Ion Detection. Anal Chem 2020; 92:5294-5301. [PMID: 32093470 DOI: 10.1021/acs.analchem.9b05840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluoride ion detection in water focuses much attention due to the serious healthy impact in human pathologies. For fluoride recognition, the chemical affinity between fluoride and silicon has been developed on the basis of the degradation mechanism. However, most fluorescent probes are the "turn off" type due to the aggregation of the degradational products. Herein, we first developed an "off-on" hydrophilic luminescent polymer composed of amino-functionalized polyhedral oligomeric silsesquioxane (AE-POSS) and perylene diimides (PDIs) for fluoride ion in water. The AE-PDI polymer was "turned off" because of the photoinduced electron transfer (PET) between PDI and AE-POSS, and then after reaction with F-, the fluorescent emission could "turn on" obviously because the PET was blocked by the degradation of the cage. The PET from amino-POSS to PDI was proved by FL spectrum and energies of HOMO and LUMO orbitals. 29Si, 19F NMR, and 1H NMR titration, XRD, FTIR, size analysis, and ion chromatography were applied to demonstrate the degradation mechanism. These results indicated that the higher quantum yield could be obtained by introducing the amide group in the PDI and the products of AE-PDI polymer might exist in the form of complex compounds with partial condensation of organosiloxane. With high selectivity and sensitivity (detection limit of 16.2 ppb), this probe was successfully applied for F- detection in actual water samples.
Collapse
Affiliation(s)
- Mingxia Sun
- College of Architecture & Environment Sichuan University, Chengdu, Sichuan 610064, China
| | - Houjing Liu
- College of Architecture & Environment Sichuan University, Chengdu, Sichuan 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Wenxi Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
21
|
Goschorska M, Gutowska I, Baranowska-Bosiacka I, Barczak K, Chlubek D. The Use of Antioxidants in the Treatment of Migraine. Antioxidants (Basel) 2020; 9:E116. [PMID: 32012936 PMCID: PMC7070237 DOI: 10.3390/antiox9020116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite numerous studies concerning the pathophysiology of migraine, the exact molecular mechanism of disturbances underlying migraine is still unknown. Furthermore, oxidative stress is considered to play a significant role in migraine pathogenesis. The notion of oxidative stress in migraine patients has been discussed for several decades. Over the past few years, among the substances that could potentially be used for migraine treatment, particular attention has been paid to the so-called nutraceutics, including antioxidants. Antioxidants supplied with food prevent oxidative stress by inhibiting initiation, propagation, and the oxidative chain reaction itself. Additionally, the agents used so far in the prevention of migraine indeed show some anti-oxidative action. The antioxidants discussed in the present paper are increasingly more often used by migraine patients not only due to mild or even a lack of side effects but also because of their effectiveness (decreased frequency of migraine episodes or shortening of an episode duration). The present review provides a summary of the studies on nutraceuticals with antioxidative properties.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| |
Collapse
|
22
|
Wang HW, Zhang Y, Tan PP, Jia LS, Chen Y, Zhou BH. Mitochondrial respiratory chain dysfunction mediated by ROS is a primary point of fluoride-induced damage in Hepa1-6 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113359. [PMID: 31614248 DOI: 10.1016/j.envpol.2019.113359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 05/20/2023]
Abstract
To evaluate the mechanism of fluoride (F) mitochondrial toxicity, we cultured Hepa1-6 cells with different F concentrations (0, 1 and 2 mmoL/L) and determined cell pathological morphology, mitochondrial respiratory chain damage and cell cycle change. Results showed that the activities and mRNA expression levels of antioxidant enzymes considerably decreased, whereas the contents of reactive oxygen species (ROS), malondialdehyde (MDA) and nitric oxide (NO) markedly increased. Breakage of mitochondrial cristae and substantial vacuolated mitochondria were observed by transmission electron microscopy. These results indicate the F-induced oxidative damage in Hepa1-6 cells. The enzyme activities of mitochondrial complexes I, II, III and IV were disordered in Hepa1-6 cells treated by excessive F, thereby indicating a remarkable down-regulation. Further research showed that complex subunits also demonstrated the development of disorder, in which the protein expressions levels of NDUFV2 and SDHA were substantially down-regulated, whereas those of CYC1 and COX Ⅳ were markedly up-regulated. Reductions in ATP and mitochondrial membrane potential were detected with the dysfunction of the mitochondrial respiratory chain. The G2/M phase arrest of the cell cycle in Hepa1-6 cells was measured via flow cytometry, and the up-regulated protein expressions of Cyt c, caspase 9, caspase 3 and substantial apoptotic cells were determined. In summary, this study demonstrated that ROS-mediated mitochondrial respiratory chain dysfunction causes F-induced Hepa1-6 cell damage.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Pan-Pan Tan
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Liu-Shu Jia
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yu Chen
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang 471003, Henan, China.
| |
Collapse
|
23
|
Xu X, Chen W, Yang M, Liu XJ, Wang F, Yu RQ, Jiang JH. Mitochondrial-targeted near-infrared fluorescence probe for selective detection of fluoride ions in living cells. Talanta 2019; 204:655-662. [DOI: 10.1016/j.talanta.2019.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
|
24
|
Riva L, Fiorati A, Sganappa A, Melone L, Punta C, Cametti M. Naked-Eye Heterogeneous Sensing of Fluoride Ions by Co-Polymeric Nanosponge Systems Comprising Aromatic-Imide-Functionalized Nanocellulose and Branched Polyethyleneimine. Chempluschem 2019; 84:1512-1518. [PMID: 31943927 DOI: 10.1002/cplu.201900348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/08/2019] [Indexed: 12/24/2022]
Abstract
Heterogeneous colorimetric sensors for fluoride ions were obtained by cross-linking TEMPO-oxidized cellulose nanofibers (TOCNF) with chemically modified branched polyethyleneimine 25 kDa (bPEI). Functionalization of bPEI primary amino groups with aromatic anhydrides led to the formation of the corresponding mono- and bis-imides on the grafted polymers (f-bPEI). A microwave-assisted procedure allowed the optimization of the synthetic protocol by reducing reaction time from 17 h to 30 minutes. Hydrogels obtained by mixing different ratios of TOCNF, bPEI and f-bPEI were lyophilized and thermally treated at about 100 °C to promote the formation of amide bonds between the amino groups of poly-cationic polymers and the carboxylic groups of cellulose nanofibers. This approach generated a series of cellulose nanosponges S1-S3 which were characterized by FT-IR and by solid state 13 C CPMAS NMR. These sponge materials can act as colorimetric sensors for the selective naked-eye recognition of fluoride ions over chloride, phosphate and acetate ions at concentrations of up to 0.05 M in DMSO. Moreover, when the sponges were functionalized with perylene tetracarboxylic diimide, successful naked-eye detection was achieved with only 0.02 % w/w of chromophore units per gram of material.
Collapse
Affiliation(s)
- Laura Riva
- Department of Chemistry Materials and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italia
| | - Andrea Fiorati
- Department of Chemistry Materials and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italia
| | - Aurora Sganappa
- Department of Chemistry Materials and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italia
| | - Lucio Melone
- Department of Chemistry Materials and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italia.,Università Telematica e-Campus, Via Isimbardi 10, 22060, Novedrate, Como, Italia
| | - Carlo Punta
- Department of Chemistry Materials and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italia
| | - Massimo Cametti
- Department of Chemistry Materials and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italia
| |
Collapse
|