1
|
Qiao RB, Dai WH, Li W, Yang X, He DM, Gao R, Cui YQ, Wang RX, Ma XY, Wang FJ, Liang HP. The cytochrome P4501A1 (CYP1A1) inhibitor bergamottin enhances host tolerance to multidrug-resistant Vibrio vulnificus infection. Chin J Traumatol 2024; 27:295-304. [PMID: 38981821 PMCID: PMC11401496 DOI: 10.1016/j.cjtee.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
PURPOSE Vibrio vulnificus (V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body's infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistant V. Vulnificus and the protection of their vital organs. METHODS An increasing concentration gradient method was used to induce multidrug-resistant V. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistant V. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis. RESULTS In mice infected with multidrug-resistant V. Vulnificus, bergamottin prolonged survival (p = 0.014), reduced the serum creatinine (p = 0.002), urea nitrogen (p = 0.030), aspartate aminotransferase (p = 0.029), and alanine aminotransferase (p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β: p = 0.010, IL-6: p = 0.029, TNF-α: p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β: p = 0.010, IL-6: p = 0.011, TNF-α: p = 0.037) and kidney (IL-1β: p = 0.016, IL-6: p = 0.011, TNF-α: p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistant V. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid (p = 0.225), liver (p = 0.186), or kidney (p = 0.637). CONCLUSION Bergamottin enhances the tolerance of mice to multidrug-resistant V. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies for V. Vulnificus.
Collapse
Affiliation(s)
- Ruo-Bai Qiao
- The College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China; The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Wei-Hong Dai
- Emergency Department, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
| | - Wei Li
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Xue Yang
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Dong-Mei He
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Rui Gao
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Yin-Qin Cui
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Ri-Xing Wang
- Emergency Department, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
| | - Xiao-Yuan Ma
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Fang-Jie Wang
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China.
| | - Hua-Ping Liang
- The College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China; The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Yin J, Zhang J, Liu Y, Duan C, Wang J. Bergamottin Inhibits Bovine Viral Diarrhea Virus Replication by Suppressing ROS-Mediated Endoplasmic Reticulum Stress and Apoptosis. Viruses 2024; 16:1287. [PMID: 39205261 PMCID: PMC11360249 DOI: 10.3390/v16081287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important etiological agents that causes serious economic losses to the global livestock industry. Vaccines usually provide limited efficacy against BVDV due to the emergence of mutant strains. Therefore, developing novel strategies to combat BVDV infection is urgently needed. Bergamottin (Berg), a natural furanocoumarin compound, possesses various pharmaceutical bioactivities, but its effect on BVDV infection remains unknown. The present study aimed to investigate the antiviral effect and underlying mechanism of Berg against BVDV infection. The results showed that Berg exhibited an inhibitory effect on BVDV replication in MDBK cells by disrupting the viral replication and release, rather than directly inactivating virus particles. Mechanistically, Berg inhibits BVDV replication by suppressing endoplasmic reticulum (ER) stress-mediated apoptosis via reducing reactive oxygen species (ROS) generation. Studies in vivo demonstrated that oral gavage of Berg at doses of 50 mg/kg and 75 mg/kg significantly reduced the viral load within the intestines and spleen in BVDV-challenged mice. Furthermore, histopathological damage and oxidative stress caused by BVDV were also mitigated with Berg treatment. Our data indicated that Berg suppressed BVDV propagation both in vitro and in vivo, suggesting it as a promising antiviral option against BVDV.
Collapse
Affiliation(s)
- Jinhua Yin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.Y.); (J.Z.); (Y.L.)
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.Y.); (J.Z.); (Y.L.)
| | - Yi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.Y.); (J.Z.); (Y.L.)
| | - Cong Duan
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.Y.); (J.Z.); (Y.L.)
| |
Collapse
|
3
|
Zia M, Parveen S, Shafiq N, Rashid M, Farooq A, Dauelbait M, Shahab M, Salamatullah AM, Brogi S, Bourhia M. Exploring Citrus sinensis Phytochemicals as Potential Inhibitors for Breast Cancer Genes BRCA1 and BRCA2 Using Pharmacophore Modeling, Molecular Docking, MD Simulations, and DFT Analysis. ACS OMEGA 2024; 9:2161-2182. [PMID: 38250382 PMCID: PMC10795055 DOI: 10.1021/acsomega.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Structure-activity relationship (SAR) is considered to be an effective in silico approach when discovering potential antagonists for breast cancer due to gene mutation. Major challenges are faced by conventional SAR in predicting novel antagonists due to the discovery of diverse antagonistic compounds. Methodologyand Results: In predicting breast cancer antagonists, a multistep screening of phytochemicals isolated from the seeds of the Citrus sinensis plant was applied using feasible complementary methodologies. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed through the Flare project, in which conformational analysis, pharmacophore generation, and compound alignment were done. Ten hit compounds were obtained through the development of the 3D-QSAR model. For exploring the mechanism of action of active compounds against cocrystal inhibitors, molecular docking analysis was done through Molegro software (MVD) to identify lead compounds. Three new proteins, namely, 1T15, 3EU7, and 1T29, displayed the best Moldock scores. The quality of the docking study was assessed by a molecular dynamics simulation. Based on binding affinities to the receptor in the docking studies, three lead compounds (stigmasterol P8, epoxybergamottin P28, and nobiletin P29) were obtained, and they passed through absorption, distribution, metabolism, and excretion (ADME) studies via the SwissADME online service, which proved that P28 and P29 were the most active allosteric inhibitors with the lowest toxicity level against breast cancer. Then, density functional theory (DFT) studies were performed to measure the active compound's reactivity, hardness, and softness with the help of Gaussian 09 software. CONCLUSIONS This multistep screening of phytochemicals revealed high-reliability antagonists of breast cancer by 3D-QSAR using flare, docking analysis, and DFT studies. The present study helps in providing a proper guideline for the development of novel inhibitors of BRCA1 and BRCA2.
Collapse
Affiliation(s)
- Mehreen Zia
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Shagufta Parveen
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Nusrat Shafiq
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Maryam Rashid
- Synthetic
and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Ariba Farooq
- Department
of Chemistry, University of Lahore, Lahore 54000, Pakistan
| | - Musaab Dauelbait
- Department
of Scientific Translation, Faculty of Translation, University of Bahri, Khartoum 11111, Sudan
| | - Muhammad Shahab
- State
Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ahmad Mohammad Salamatullah
- Department
of Food Science & Nutrition, College of Food and Agricultural
Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Simone Brogi
- Department
of Pharmacy, Pisa University, Pisa 56124, Italy
| | - Mohammed Bourhia
- Department
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
- Laboratory
of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty
of Medicine and Pharmacy, University Hassan
II, B. P. 5696, Casablanca, Morocco
| |
Collapse
|
4
|
Sarma S, Dowerah D, Basumatary M, Phonglo A, Deka RC. Inhibitory potential of furanocoumarins against cyclin dependent kinase 4 using integrated docking, molecular dynamics and ONIOM methods. J Biomol Struct Dyn 2024:1-30. [PMID: 38189343 DOI: 10.1080/07391102.2023.2300755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
Cyclin Dependent Kinase 4 (CDK4) is vital in the process of cell-cycle and serves as a G1 phase checkpoint in cell division. Selective antagonists of CDK4 which are in use as clinical chemotherapeutics cause various side-effects in patients. Furanocoumarins induce anti-cancerous effects in a range of human tumours. Therefore, targeting these compounds against CDK4 is anticipated to enhance therapeutic effectiveness. This work intended to explore the CDK4 inhibitory potential of 50 furanocoumarin molecules, using a comprehensive approach that integrates the processes of docking, drug-likeness, pharmacokinetic analysis, molecular dynamics simulations and ONIOM (Our own N-layered Integrated molecular Orbital and Molecular mechanics) methods. The top five best docked compounds obtained from docking studies were screened for subsequent analysis. The molecules displayed good pharmacokinetic properties and no toxicity. Epoxybergamottin, dihydroxybergamottin and notopterol were found to inhabit the ATP-binding zone of CDK4 with substantial stability and negative binding free energy forming hydrogen bonds with key catalytic residues of the protein. Notopterol exhibiting the highest binding energy was subjected to ONIOM calculations wherein the hydrogen bonding interactions were retained with significant negative interaction energy. Hence, through these series of computerised methods, notopterol was screened as a potent CDK4 inhibitor and can act as a starting point in successive processes of drug design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Srutishree Sarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Moumita Basumatary
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Ambalika Phonglo
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Ramesh Ch Deka
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| |
Collapse
|
5
|
Zhu Z, Xu Y, Chen L, Zhang M, Li X. Bergamottin Inhibits PRRSV Replication by Blocking Viral Non-Structural Proteins Expression and Viral RNA Synthesis. Viruses 2023; 15:1367. [PMID: 37376666 DOI: 10.3390/v15061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes economic losses in the swine industry worldwide. However, current vaccines cannot provide effective protection against PRRSV, and PRRSV-specific treatments for infected herds are still unavailable. In this study, we found that bergamottin showed strong inhibitory effects against PRRSV replication. Bergamottin inhibited PRRSV at the stage of the replication cycle. Mechanically, bergamottin promoted the activation of IRF3 and NF-κB signaling, leading to the increased expression of proinflammatory cytokines and interferon, which inhibited viral replication to some extent. In addition, bergamottion could reduce the expression of the non-structural proteins (Nsps), leading to the interruption of replication and transcription complex (RTC) formation and viral dsRNA synthesis, ultimately restraining PRRSV replication. Our study identified that bergamottin possesses potential value as an antiviral agent against PRRSV in vitro.
Collapse
Affiliation(s)
- Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuqian Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lulu Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Meng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Villalaín J. Bergamottin: location, aggregation and interaction with the plasma membrane. J Biomol Struct Dyn 2023; 41:12026-12037. [PMID: 36602143 DOI: 10.1080/07391102.2022.2164521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Bioactive furanocoumarins, a group of natural secondary metabolites common in higher plants, are recognized for their benefits to human health and have been shown to have numerous biological properties. However, the knowledge of its biomolecular mechanism is not known. One of the main furanocoumarins is bergamottin (BGM), which is characterized by a planar three-ringed structure and a hydrocarbon chain, which give BGM its high lipid/water partition coefficient. Because of that, and although the biological mechanism of BGM is not known, BGM bioactive properties could be ascribed to its potential to interact with the biological membrane, modulating its structure, changing its dynamics and at the same time that it might interact with lipids. For our goal, we have applied molecular dynamics to determine the position of BGM in a complex membrane and discern the possibility of certain interactions with membrane lipids. Our findings establish that BGM tends to locate in the middle of the hydrocarbon layer of the membrane, inserts in between the hydrocarbon chains of the phospholipids in an oblique position with respect to the membrane plane, increasing the fluidity of the membrane. Significantly, BGM tends to be surrounded by POPC molecules but exclude the molecule of CHOL. Outstandingly, BGM molecules associate spontaneously creating aggregates, which does not preclude them from interacting with and inserting into the membrane. The bioactive properties of BGM could be ascribed to its membranotropic effects and support the improvement of these molecules as therapeutic molecules, giving place to new opportunities for potential medical improvements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", Elche-Alicante, Spain
| |
Collapse
|
7
|
Yazici E, Şahin E, Alvuroğlu E, Yuluğ E, Menteşe A. Bergamottin reduces liver damage by suppressing inflammation, endoplasmic reticulum and oxidative stress in cafeteria diet-fed mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7838583. [PMID: 36193062 PMCID: PMC9526628 DOI: 10.1155/2022/7838583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
The permeability of glioblastoma, as well as its escaping the immune system, makes them one of the most deadly human malignancies. By avoiding programmed cell death (apoptosis), unlimited cell growth and metastatic ability could dramatically affect the immune system. Genetic mutations, epigenetic changes, and overexpression of oncogenes can cause this process. On the other hand, the blood-brain barrier (BBB) and intratumor heterogeneity are important factors causing resistance to therapy. Several signaling pathways have been identified in this field, including the Janus tyrosine kinase (JAK) converter and signal transducer and activator of transcription (STAT) activator pathways, which are closely related. In addition, the JAK/STAT signaling pathway contributes to a wide array of tumorigenesis functions, including replication, anti-apoptosis, angiogenesis, and immune suppression. Introducing this pathway as the main tumorigenesis and treatment resistance center can give a better understanding of how it operates. In light of this, it is an important goal in treating many disorders, particularly cancer. The inhibition of this signaling pathway is being considered an approach to the treatment of glioblastoma. The use of natural products alternatively to conventional therapies is another area of research interest among researchers. Some natural products that originate from plants or natural sources can interfere with JAK/STAT signaling in human malignant cells, also by stopping the progression and phosphorylation of JAK/STAT, inducing apoptosis, and stopping the cell cycle. Natural products are a viable alternative to conventional chemotherapy because of their cost-effectiveness, wide availability, and almost no side effects.
Collapse
|
9
|
Liu S, Li S, Ho CT. Dietary bioactives and essential oils of lemon and lime fruits. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Zhang H, Yang S, Lin T. Bergamottin exerts anticancer effects on human colon cancer cells via induction of apoptosis, G2/M cell cycle arrest and deactivation of the Ras/Raf/ERK signalling pathway. Arch Med Sci 2022; 18:1572-1581. [PMID: 36457958 PMCID: PMC9710293 DOI: 10.5114/aoms.2019.86226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/26/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Accumulating evidence has shown the potential of bergamottin as an anticancer agent. The present study was undertaken to evaluate the anticancer affects of bergamottin (μM) against colon cancer cells. MATERIAL AND METHODS Antiproliferative effects were evaluated by WST-1 cell viability assay. Apoptotic effects were studied by DAPI and Annexin V/PI staining. Cell cycle analysis was carried out by flow cytometry. Transwell assay was used to study the effects on cell invasion. Protein expression was estimated by the western blot method. RESULTS The results showed that bergamottin suppresses the proliferation of all the human colon cancer cell lines. Nonetheless, the growth inhibitory effects of bergamottin on the HT-29 and RKO cells were more significant (IC50, 12.5 μM). The anticancer effects of bergamottin on the HT-29 and RKO cells were mainly due to apoptosis. Bergamottin could considerably increase the expression of Bax and reduce the expression Bcl-2. The cleavage of caspase-3, 8 and 9 was also enhanced upon bergamottin treatment of the colon cancer cells. Flow cytometric analysis showed that bergamottin also induced G2/M cell cycle arrest of the HT-29 and RKO cells. Additionally, bergamottin could also suppress the invasion of HT-29 and RKO cells. The Raf/MEK/ERK pathway is regarded as one of the essential pathways involved in the development and progression of cancers. Herein, it was observed that bergamottin could concentration dependently block this pathway in colon cancer cells. In vivo study revealed that bergamottin could also suppress the growth of tumours in xenografted mice models. CONCLUSIONS Taken together, bergamottin suppresses the proliferation of colon cancer cells and may be utilised in the development of chemotherapy for colon cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - ShuTao Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Myrtsi ED, Angelis A, Koulocheri SD, Mitakou S, Haroutounian SA. Retrieval of High Added Value Natural Bioactive Coumarins from Mandarin Juice-Making Industrial Byproduct. Molecules 2021; 26:7527. [PMID: 34946609 PMCID: PMC8708529 DOI: 10.3390/molecules26247527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Cold pressed essential oil (CPEO) of mandarin (Citrus reticulata Blanco), a by-product of the juice-making industrial process known to contain large amounts of polymethoxyflavones, was exploited for its content in high added value natural coumarins. The study herein afforded a method referring to the evaporation of CPEO volatile fraction under mild conditions (reduced pressure and temperature below 35 °C) as azeotrope with isopropanol. This allowed the isolation of high added value coumarins from the non-volatile fragment using preparative High Performance Liquid Chromatography (HPLC). Pilot-scale application of this procedure afforded for each kg of CPEO processed the following natural bioactive coumarins in chemically pure forms: heraclenol (38-55 mg), 8-gerayloxypsoralen (35-51 mg), auraptene (22-33 mg), and bergamottin (14-19 mg). The structures of coumarins were verified by Nuclear Magnetic Resonance (NMR) spectroscopy and HPLC co-injection with authentic standards. Thus, the low market value mandarin CPEO with current value of 17 to 22 EUR/kg can be valorized through the production of four highly bioactive natural compounds worth 3479 to 5057 EUR/kg, indicating the great potentials of this methodology in the terms of the circular economy.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| | - Apostolis Angelis
- Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| | - Sofia Mitakou
- Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| |
Collapse
|
12
|
Fessner ND, Grimm C, Srdič M, Weber H, Kroutil W, Schwaneberg U, Glieder A. Natural Product Diversification by One‐Step Biocatalysis using Human P450 3A4. ChemCatChem 2021. [DOI: 10.1002/cctc.202101564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular Biotechnology NAWI Graz Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Christopher Grimm
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Matic Srdič
- SeSaM-Biotech GmbH Forckenbeckstraße 50 52074 Aachen Germany
- Bisy GmbH Wuenschendorf 292 Hofstätten an der Raab 8200 Hofstaetten Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry NAWI Graz Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Anton Glieder
- Institute of Molecular Biotechnology NAWI Graz Graz University of Technology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
13
|
An N, Yang T, Zhang XX, Xu MX. Bergamottin alleviates LPS-induced acute lung injury by inducing SIRT1 and suppressing NF-κB. Innate Immun 2021; 27:543-552. [PMID: 34812690 PMCID: PMC8762093 DOI: 10.1177/17534259211062553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. In vivo studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.
Collapse
Affiliation(s)
- Ning An
- Institue of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Tao Yang
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xia Zhang
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Xia Xu
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Vetrichelvan O, Gorjala P, Goodman O, Mitra R. Bergamottin a CYP3A inhibitor found in grapefruit juice inhibits prostate cancer cell growth by downregulating androgen receptor signaling and promoting G0/G1 cell cycle block and apoptosis. PLoS One 2021; 16:e0257984. [PMID: 34570813 PMCID: PMC8476002 DOI: 10.1371/journal.pone.0257984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Several therapies have been developed to treat advanced prostate cancer, but these therapies often have severe side effects. To improve the outcome with fewer side effects we focused on the furanocoumarin bergamottin, a natural product found in grapefruit juice and a potent CYP3A inhibitor. Our recent studies have shown that CYP3A5 inhibition can block androgen receptor (AR) signaling, critical for prostate cancer growth. We observed that bergamottin reduces prostate cancer (PC) cell growth by decreasing both total and nuclear AR (AR activation) reducing downstream AR signaling. Bergamottin’s role in reducing AR activation was confirmed by confocal microscopy studies and reduction in prostate specific antigen (PSA) levels, which is a marker for prostate cancer. Further studies revealed that bergamottin promotes cell cycle block and accumulates G0/G1 cells. The cell cycle block was accompanied with reduction in cyclin D, cyclin B, CDK4, P-cdc2 (Y15) and P-wee1 (S642). We also observed that bergamottin triggers apoptosis in prostate cancer cell lines as evident by TUNEL staining and PARP cleavage. Our data suggests that bergamottin may suppress prostate cancer growth, especially in African American (AA) patients carrying wild type CYP3A5 often presenting aggressive disease.
Collapse
Affiliation(s)
- Opalina Vetrichelvan
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Priyatham Gorjala
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Oscar Goodman
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America.,Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, United States of America
| | - Ranjana Mitra
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| |
Collapse
|
16
|
Zhao Z, Liao N. Bergamottin Induces DNA Damage and Inhibits Malignant Progression in Melanoma by Modulating miR-145/Cyclin D1 Axis. Onco Targets Ther 2021; 14:3769-3781. [PMID: 34168462 PMCID: PMC8216741 DOI: 10.2147/ott.s275322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Melanoma is a prevalent skin cancer with the high rate of metastasis and mortality, affecting the increasing number of people worldwide. Bergamottin (BGM) is a natural furanocoumarin derived from grapefruits and presents the potential anti-cancer activity in several tumor models. However, the role of BGM in the development of melanoma remains unclear. Here, we aimed to explore the effect of BGM on the DNA damage and progression of melanoma. Methods The effect of BGM on the melanoma progression was analyzed by CCK-8 assays, colony formation assays, transwell assays, Annexin V-FITC Apoptosis Detection Kit, cell-cycle analysis, in vivo tumorigenicity analysis. The mechanism investigation was performed using luciferase reporter gene assays, qPCR assays, and Western blot analysis. Results We identified that BGM repressed cell proliferation, migration, and invasion of melanoma cells. BGM induced cell cycle arrest at the G0/G1 phase and enhanced apoptosis of melanoma cells. The DNA damage in the melanoma cells was stimulated by the BGM treatment. Meanwhile, BGM was able to up-regulate the expression of miR-145 and miR-145 targeted Cyclin D1 in the melanoma cells. Furthermore, BGM inhibited the progression of melanoma by targeting miR-145/Cyclin D1 axis in vitro. BGM attenuated the tumor growth of melanoma in vivo. Conclusion Thus, we conclude that BGM induces DNA damage and inhibits tumor progression in melanoma by modulating the miR-145/Cyclin D1 axis. Our finding provides new insights into the mechanism by which BGM modulates the development of melanoma. BGM may be applied as a potential anti-tumor candidate for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Zhongfang Zhao
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, People's Republic of China
| | - Nong Liao
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510150, People's Republic of China
| |
Collapse
|
17
|
Jöhrer K, Ҫiҫek SS. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers (Basel) 2021; 13:2678. [PMID: 34072312 PMCID: PMC8198565 DOI: 10.3390/cancers13112678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
A literature search on plant natural products with antimyeloma activity until the end of 2020 resulted in 92 compounds with effects on at least one human myeloma cell line. Compounds were divided in different compound classes and both their structure-activity-relationships as well as eventual correlations with the pathways described for Multiple Myeloma were discussed. Each of the major compound classes in this review (alkaloids, phenolics, terpenes) revealed interesting candidates, such as dioncophyllines, a group of naphtylisoquinoline alkaloids, which showed pronounced and selective induction of apoptosis when substituted in position 7 of the isoquinoline moiety. Interestingly, out of the phenolic compound class, two of the most noteworthy constituents belong to the relatively small subclass of xanthones, rendering this group a good starting point for possible further drug development. The class of terpenoids also provides noteworthy constituents, such as the highly oxygenated diterpenoid oridonin, which exhibited antiproliferative effects equal to those of bortezomib on RPMI8226 cells. Moreover, triterpenoids containing a lactone ring and/or quinone-like substructures, e.g., bruceantin, whitaferin A, withanolide F, celastrol, and pristimerin, displayed remarkable activity, with the latter two compounds acting as inhibitors of both NF-κB and proteasome chymotrypsin-like activity.
Collapse
Affiliation(s)
- Karin Jöhrer
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria;
| | - Serhat Sezai Ҫiҫek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
18
|
Mechanistic study of bergamottin-induced inactivation of CYP2C9. Food Chem Toxicol 2021; 153:112278. [PMID: 34019943 DOI: 10.1016/j.fct.2021.112278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
Abstract
Bergamottin (BGM) is a major furanocoumarin constituent of grapefruit and is reported to have inhibitory effects on cytochrome P450 enzymes. This study investigated the chemical interactions between BGM and the enzyme CYP2C9. BGM exhibited time-, concentration-, and NADPH-dependent inhibition of CYP2C9. Co-incubation with diclofenac, a reversible inhibitor of CYP2C9, attenuated the time-dependent enzyme inhibition. Exhaustive dialysis did not restore enzyme activity post-inhibition. Glutathione (GSH) and catalase/superoxide dismutase failed to reverse BGM-induced CYP2C9 inactivation. A GSH trapping study suggested that BGM was metabolized to an epoxide and/or γ-ketoenal that may have been responsible for the enzyme inactivation. In conclusion, BGM can be characterized as a mechanism-based inactivator of CYP2C9 acting via the formation of an epoxide and/or γ-ketoenal.
Collapse
|
19
|
Bergamottin and 5-Geranyloxy-7-methoxycoumarin Cooperate in the Cytotoxic Effect of Citrus bergamia (Bergamot) Essential Oil in Human Neuroblastoma SH-SY5Y Cell Line. Toxins (Basel) 2021; 13:toxins13040275. [PMID: 33920139 PMCID: PMC8069240 DOI: 10.3390/toxins13040275] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/23/2023] Open
Abstract
The plant kingdom has always been a treasure trove for valuable bioactive compounds, and Citrus fruits stand out among the others. Bergamottin (BRG) and 5-geranyloxy-7-methoxycoumarin (5-G-7-MOC) are two coumarins found in different Citrus species with well-acknowledged pharmacological properties. Previously, they have been claimed to be relevant in the anti-proliferative effects exerted by bergamot essential oil (BEO) in the SH-SY5Y human neuroblastoma cells. This study was designed to verify this assumption and to assess the mechanisms underlying the anti-proliferative effect of both compounds. Our results demonstrate that BRG and 5-G-7-MOC are able to reduce the proliferation of SH-SY5Y cells, inducing apoptosis and increasing cell population in sub-G0/G1 phase. Moreover, we demonstrated the pro-oxidant activity of the two coumarins that increased reactive oxygen species and impaired mitochondrial membrane potential. From a molecular point of view, BRG and 5-G-7-MOC were able to modulate apoptosis related factors at both protein and gene levels. Lastly, we evaluated the synergistic effect of their combination, finding that the highest synergy was observed at a concentration ratio similar to that occurring in the BEO, supporting our initial hypothesis. Taken together, our results deepen the knowledge regarding the effect of BRG and 5-G-7-MOC in SH-SY5Y cells, emphasizing the relevance of their cooperation in achieving this effect.
Collapse
|
20
|
A Novel Role of Bergamottin in Attenuating Cancer Associated Cachexia by Diverse Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13061347. [PMID: 33802674 PMCID: PMC8002497 DOI: 10.3390/cancers13061347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cachexia has been generally associated with cancer causing skeletal muscle atrophy, adipose tissue atrophy, weight loss, anorexia, asthenia, and anemia, which can significantly reduce the quality of life. Our aim was to evaluate the potential effects of bergamottin on cancer-cachexia-induced muscle and fat loss. We observed a decrease in the levels of the muscle atrophy factors MuRF-1 and Atrogin-1 and increases in C/EBPα and PPARγ expression levels by bergamottin under in vitro settings. The in vivo effect of bergamottin on the inhibition of weight loss in mice and its potential inhibitory effects on cancer-induced cachexia were confirmed through analysis using tissue samples from a pancreatic cancer mouse model. Abstract Purpose: The potential effects of bergamotiin (BGM) on the suppression of cancer cachexia was evaluated under in vitro and in vivo conditions to investigate its possible inhibitory effects on the muscle and fat loss. Method: The differentiated C2C12 and 3T3L1 cells were treated with BGM after the induction of cancer-cachexia with pancreatic cancer conditioned media (CM). The expression levels of the various molecules involved in the differentiation and loss of muscle and fat (MuRF-1, Atrogin-1, C/EBPα, and PPARγ) were analyzed by Western blot and oil red O staining. For in vivo experiment, MIA PaCa-2 cells were injected into the mice (n = 6), and then BGM (1 mg/kg) was intraperitoneally administered to analyze muscle and adipose tissue by Hematoxylin and Eosin staining and Western blot. Result: BGM displayed a significant effect on the inhibition of muscle and fat catabolism under both in vitro and in vivo conditions. The results of the in vivo experiment revealed a remarkable suppressive effect of BGM on the weight loss in mice. Conclusions: The potential effects of BGM on the inhibition of muscle and fat catabolism in vitro and in vivo were thus confirmed. Based on the results, the impact of BGM on cancer cachexia could be possibly analyzed in the future clinical studies.
Collapse
|
21
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
22
|
Gkionis L, Campbell RA, Aojula H, Harris LK, Tirella A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int J Pharm 2020; 590:119926. [PMID: 33010397 DOI: 10.1016/j.ijpharm.2020.119926] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Developing more efficient manufacturing methods for nano therapeutic systems is becoming important, not only to better control their physico-chemical characteristics and therapeutic efficacy but also to ensure scale-up is cost-effective. The principle of cross-flow chemistry allows precise control over manufacturing parameters for the fabrication of uniform liposomal formulations, as well as providing reproducible manufacturing scale-up compared to conventional methods. We have herein investigated the use of microfluidics to produce PEGylated DSPC liposomes loaded with doxorubicin and compared their performance against identical formulations prepared by the thin-film method. The isoprenylated coumarin umbelliprenin was selected as a co-therapeutic. Umbelliprenin-loaded and doxorubicin:umbelliprenin co-loaded liposomes were fabricated using the optimised microfluidic set-up. The role of umbelliprenin as lipid bilayer fluidity modulation was characterized, and we investigated its role on liposomes size, size distribution, shape and stability compared to doxorubicin-loaded liposomes. Finally, the toxicity of all liposomal formulations was tested on a panel of human breast cancer cells (MCF-7, MDA-MB 231, BT-474) to identify the most potent formulation by liposomal fabrication method and loaded compound(s). We herein show that the microfluidic system is an alternative method to produce doxorubicin:umbelliprenin co-loaded liposomes, allowing fine control over liposome size (100-250 nm), shape, uniformity and doxorubicin drug loading (>80%). Umbelliprenin was shown to confer fluidity to model lipid biomembranes, which helps to explain the more homogeneous size and shape of co-loaded liposomes compared to liposomes without umbelliprenin. The toxicity of doxorubicin:umbelliprenin co-loaded liposomes was lower than that of free doxorubicin, due to the delayed release of doxorubicin from liposomes. An alternative, rapid and easy manufacturing method for the production of liposomes has been established using microfluidics to effectively produce uniform doxorubicin:umbelliprenin co-loaded liposomal formulations with proven cytotoxicity in human breast cancer cell lines in vitro.
Collapse
Affiliation(s)
- Leonidas Gkionis
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Harmesh Aojula
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
23
|
Fliszár-Nyúl E, Mohos V, Csepregi R, Mladěnka P, Poór M. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates. Biomed Pharmacother 2020; 131:110732. [PMID: 32942157 DOI: 10.1016/j.biopha.2020.110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polyphenolic compounds (including flavonoids, chalcones, phenolic acids, and furanocoumarins) represent a common part of our diet, but are also the active ingredients of several dietary supplements and/or medications. These compounds undergo extensive metabolism by human biotransformation enzymes and the microbial flora of the colon. CYP2D6 enzyme metabolizes approximately 25% of the drugs, some of which has narrow therapeutic window. Therefore, its inhibition can lead to the development of pharmacokinetic interactions and the disruption of drug therapy. In this study, the inhibitory effects of 17 plant-derived compounds and 19 colonic flavonoid metabolites on CYP2D6 were examined, employing two assays with different test substrates. The O-demethylation of dextromethorphan was tested employing CypExpress 2D6 kit coupled to HPLC analysis; while the O-demethylation of another CYP2D6 specific substrate (AMMC) was investigated in a plate reader assay with BioVision Fluorometric CYP2D6 kit. Interestingly, some compounds (e.g., bergamottin) inhibited both dextromethorphan and AMMC demethylation; however, certain substances proved to be inhibitors only in one of the assays applied. Our results demonstrate that some polyphenols and colonic metabolites are inhibitors of CYP2D6-catalyzed reactions. Nevertheless, the inhibitory effects showed strong substrate dependence.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
24
|
Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int J Mol Sci 2020; 21:E5622. [PMID: 32781533 PMCID: PMC7460698 DOI: 10.3390/ijms21165622] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most extreme medical conditions in both developing and developed countries around the world, causing millions of deaths each year. Chemotherapy and/or radiotherapy are key for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer overall requires novel efficacious treatment modalities. Natural medications offer feasible alternative options against malignancy in contrast to western medication. Furanocoumarins' defensive and restorative impacts have been observed in leukemia, glioma, breast, lung, renal, liver, colon, cervical, ovarian, and prostate malignancies. Experimental findings have shown that furanocoumarins activate multiple signaling pathways, leading to apoptosis, autophagy, antioxidant, antimetastatic, and cell cycle arrest in malignant cells. Additionally, furanocoumarins have been shown to have chemo preventive and chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Here, we address different pathways which are activated by furanocoumarins and their therapeutic efficacy in various tumors. Ideally, this review will trigger interest in furanocoumarins and their potential efficacy and safety as a cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Hamed Mirzae
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715973474, Iran;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
25
|
Palaniappan TK, Šlekienė L, Jonasson AK, Gilthorpe J, Gunhaga L. CAM-Delam: an in vivo approach to visualize and quantify the delamination and invasion capacity of human cancer cells. Sci Rep 2020; 10:10472. [PMID: 32591581 PMCID: PMC7320147 DOI: 10.1038/s41598-020-67492-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/04/2020] [Indexed: 11/12/2022] Open
Abstract
The development of metastases is the major cause of cancer related death. To develop a standardized method that define the ability of human cancer cells to degrade the basement membrane, e.g. the delamination capacity, is of importance to assess metastatic aggressiveness. We now present the in vivo CAM-Delam assay to visualize and quantify the ability of human cancer cells to delaminate and invade. The method includes seeding cancer cells on the chick chorioallantoic membrane (CAM), followed by the evaluation of cancer-induced delamination and potential invasion within hours to a few days. By testing a range of human cancer cell lines in the CAM-Delam assay, our results show that the delamination capacity can be divided into four categories and used to quantify metastatic aggressiveness. Our results emphasize the usefulness of this assay for quantifying delamination capacity as a measurement of metastatic aggressiveness, and in unraveling the molecular mechanisms that regulate delamination, invasion, formation of micro-metastases and modulations of the tumor microenvironment. This method will be useful in both the preclinical and clinical characterization of tumor biopsies, and in the validation of compounds that may improve survival in metastatic cancer.
Collapse
Affiliation(s)
| | - Lina Šlekienė
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Anna-Karin Jonasson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Jonathan Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
26
|
Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR, Bishayee A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells 2020; 9:E1451. [PMID: 32545187 PMCID: PMC7348822 DOI: 10.3390/cells9061451] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a prevalent cause of mortality around the world. Aberrated activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway promotes tumorigenesis. Natural agents, including phytochemicals, exhibit potent anticancer activities via various mechanisms. However, the therapeutic potency of phytoconstituents as inhibitors of JAK/STAT signaling against cancer has only come into focus in recent days. The current review highlights phytochemicals that can suppress the JAK/STAT pathway in order to impede cancer cell growth. Various databases, such as PubMed, ScienceDirect, Web of Science, SpringerLink, Scopus, and Google Scholar, were searched using relevant keywords. Once the authors were in agreement regarding the suitability of a study, a full-length form of the relevant article was obtained, and the information was gathered and cited. All the complete articles that were incorporated after the literature collection rejection criteria were applied were perused in-depth and material was extracted based on the importance, relevance, and advancement of the apprehending of the JAK/STAT pathway and their relation to phytochemicals. Based on the critical and comprehensive analysis of literature presented in this review, phytochemicals from diverse plant origins exert therapeutic and cancer preventive effects, at least in part, through regulation of the JAK/STAT pathway. Nevertheless, more preclinical and clinical research is necessary to completely comprehend the capability of modulating JAK/STAT signaling to achieve efficient cancer control and treatment.
Collapse
Affiliation(s)
- Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Utsab Chakraborty
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Courtney R. Croley
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| |
Collapse
|
27
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother Res 2020; 34:1745-1760. [PMID: 32157749 DOI: 10.1002/ptr.6642] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Curcumin is a naturally occurring nutraceutical compound with a number of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antitumor, and cardioprotective. This plant-derived chemical has demonstrated great potential in targeting various signaling pathways to exert its protective effects. Signal transducers and activator of transcription (STAT) is one of the molecular pathways involved in a variety of biological processes such as cell proliferation and cell apoptosis. Accumulating data demonstrates that the STAT pathway is an important target in treatment of a number of disorders, particularly cancer. Curcumin is capable of affecting STAT signaling pathway in induction of its therapeutic impacts. Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway. Furthermore, studies show that inhibition of JAK/STAT pathway by curcumin is involved in reduced migration and invasion of cancer cells. Curcumin normalizes the expression of JAK/STAT signaling pathway to exert anti-diabetic, renoprotective, and neuroprotective impacts. At the present review, we provide a comprehensive discussion about the effect of curcumin on JAK/STAT signaling pathway to direct further studies in this field.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham G Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
28
|
Banik K, Ranaware AM, Harsha C, Nitesh T, Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G, Kunnumakkara AB. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol Res 2020; 153:104635. [DOI: 10.1016/j.phrs.2020.104635] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
29
|
Sumorek-Wiadro J, Zając A, Maciejczyk A, Jakubowicz-Gil J. Furanocoumarins in anticancer therapy - For and against. Fitoterapia 2020; 142:104492. [PMID: 32032635 DOI: 10.1016/j.fitote.2020.104492] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Furanocoumarins are a class of natural compounds produced by several plants, including those consumed by humans. They have been used medicinally in eastern countries for ages. Given the growing body of evidence about their anticancer potential and observations that naturally occurring compounds potentiate the antitumor activity of chemotherapeutics, more attention is paid to elucidation of the nature of furanocoumarins and the possibility of using thereof in practice. The general mechanism by which furanocoumarins eliminate cancer cells is based on cell cycle blockage and initiation of programmed death like apoptosis or autophagy. The precise molecular mechanism of such an action depends on the chemical structure of furanocoumarins, which is based on the furan ring attached to the coumarin backbone in a linear or angular form as well as the type, location, and number of the substituents attached. The review summarizes the current evidence of the antitumor properties of linear and angular furanocoumarins with special emphasis on the molecular mechanism of elimination of cancer cells via apoptosis and autophagy. Negative aspects of the use of coumarins in anticancer therapy will be also discussed especially in the context of their phototoxicity and potential cancerogenic effect.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Aleksandra Maciejczyk
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
30
|
Zsidó BZ, Balog M, Erős N, Poór M, Mohos V, Fliszár-Nyúl E, Hetényi C, Nagane M, Hideg K, Kálai T, Bognár B. Synthesis of Spin-Labelled Bergamottin: A Potent CYP3A4 Inhibitor with Antiproliferative Activity. Int J Mol Sci 2020; 21:ijms21020508. [PMID: 31941150 PMCID: PMC7013880 DOI: 10.3390/ijms21020508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Bergamottin (BM, 1), a component of grapefruit juice, acts as an inhibitor of some isoforms of the cytochrome P450 (CYP) enzyme, particularly CYP3A4. Herein, a new bergamottin containing a nitroxide moiety (SL-bergamottin, SL-BM, 10) was synthesized; chemically characterized, evaluated as a potential inhibitor of the CYP2C19, CYP3A4, and CYP2C9 enzymes; and compared to BM and known inhibitors such as ketoconazole (KET) (3A4), warfarin (WAR) (2C9), and ticlopidine (TIC) (2C19). The antitumor activity of the new SL-bergamottin was also investigated. Among the compounds studied, BM showed the strongest inhibition of the CYP2C9 and 2C19 enzymes. SL-BM is a more potent inhibitor of CYP3A4 than the parent compound; this finding was also supported by docking studies, suggesting that the binding positions of BM and SL-BM to the active site of CYP3A4 are very similar, but that SL-BM had a better ∆Gbind value than that of BM. The nitroxide moiety markedly increased the antitumor activity of BM toward HeLa cells and marginally increased its toxicity toward a normal cell line. In conclusion, modification of the geranyl sidechain of BM can result in new CYP3A4 enzyme inhibitors with strong antitumor effects.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary (C.H.)
| | - Mária Balog
- Institute of Organic and Medicinal Chemistry, University of Pécs, Medical School, Honvéd utca 1, H-7624 Pécs, Hungary; (M.B.); (N.E.); (K.H.); (T.K.)
| | - Nikolett Erős
- Institute of Organic and Medicinal Chemistry, University of Pécs, Medical School, Honvéd utca 1, H-7624 Pécs, Hungary; (M.B.); (N.E.); (K.H.); (T.K.)
| | - Miklós Poór
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, H-7624 Pécs, Hungary; (M.P.); (V.M.); (E.F.-N.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Violetta Mohos
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, H-7624 Pécs, Hungary; (M.P.); (V.M.); (E.F.-N.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, H-7624 Pécs, Hungary; (M.P.); (V.M.); (E.F.-N.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary (C.H.)
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan;
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Medical School, Honvéd utca 1, H-7624 Pécs, Hungary; (M.B.); (N.E.); (K.H.); (T.K.)
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, Medical School, Honvéd utca 1, H-7624 Pécs, Hungary; (M.B.); (N.E.); (K.H.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Balázs Bognár
- Institute of Organic and Medicinal Chemistry, University of Pécs, Medical School, Honvéd utca 1, H-7624 Pécs, Hungary; (M.B.); (N.E.); (K.H.); (T.K.)
- Correspondence: or ; Tel.: +36-536-220
| |
Collapse
|
31
|
Deng W, Liu K, Cao S, Sun J, Zhong B, Chun J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020; 25:molecules25010217. [PMID: 31948058 PMCID: PMC6982870 DOI: 10.3390/molecules25010217] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 01/13/2023] Open
Abstract
Grapefruit essential oil has been proven to have wide range of bioactivities. However, bioactivity of its molecular distillate has not been well studied. In this study, a light phase oil was obtained by molecular distillation from cold-pressed grapefruit essential oil and GC-MS was used to identify its chemical composition. The antimicrobial activity of the light phase oil was tested by filter paper diffusion method, and the anticancer activity was determined by the Cell Counting Kit-8 (CCK-8) assay. Twenty-four components were detected with a total relative content of 99.74%, including 97.48% of terpenes and 1.66% of oxygenated terpenes. The light phase oil had the best antimicrobial effect on Bacillus subtilis, followed by Escherichia coli, Staphylococcus aureus and Salmonellaty phimurium. DPPH and ABTS assays demonstrated that the light phase oil had good antioxidant activity. The CCK-8 assay of cell proliferation showed that the light phase oil had a good inhibitory effect on the proliferation of HepG2 liver cancer cells and HCT116 colon cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiong Chun
- Correspondence: ; Tel.: +86-797-839-3068
| |
Collapse
|
32
|
Hwang ST, Kim C, Lee JH, Chinnathambi A, Alharbi SA, Shair OHM, Sethi G, Ahn KS. Cycloastragenol can negate constitutive STAT3 activation and promote paclitaxel-induced apoptosis in human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152907. [PMID: 30981183 DOI: 10.1016/j.phymed.2019.152907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cycloastragenol (CAG), a triterpene aglycone is commonly prescribed for treating hypertension, cardiovascular disease, diabetic nephropathy, viral hepatitis, and various inflammatory-linked diseases. HYPOTHESIS We investigated CAG for its action on signal transducer and activator of transcription 3 (STAT3) activation cascades, and its potential to sensitize gastric cancer cells to paclitaxel-induced apoptosis. METHODS The effect of CAG on STAT3 phosphorylation and other hallmarks of cancer was deciphered using diverse assays in both SNU-1 and SNU-16 cells. RESULTS We observed that CAG exhibited cytotoxic activity against SNU-1 and SNU-16 cells to a greater extent as compared to normal GES-1 cells. CAG predominantly caused negative regulation of STAT3 phosphorylation at tyrosine 705 through the abrogation of Src and Janus-activated kinases (JAK1/2) activation. We noted that CAG impaired translocation of STAT3 protein as well as its DNA binding activity. It further decreased cellular proliferation and mediated its anticancer effects predominantly by causing substantial apoptosis rather than autophagy. In addition, CAG potentiated paclitaxel-induced anti-oncogenic effects in gastric tumor cells. CONCLUSIONS Our results indicate that CAG can function to impede STAT3 activation in human gastric tumor cells and therefore it may be a suitable candidate agent for therapy of gastric cancer.
Collapse
Affiliation(s)
- Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
33
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|