1
|
Sun A, Fan L, Zhang Z, Liu Y, Chen X, Peng Y, Li X. A metabolomics approach reveals the pharmacological effects and mechanisms of Cistanche tubulosa stems and its combination with fluoxetine on depression in comorbid with sexual dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118891. [PMID: 39362326 DOI: 10.1016/j.jep.2024.118891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried succulent stems of Cistanche tubulosa (Schenk) Wight are utilized in traditional medicine for tonifying kidney yang, which have shown to be effective in alleviating depression-like behaviors or male sexual dysfunction, respectively. However, the pharmacological effects and mechanisms of C. tubulosa and its combinations in the treatment of depression in comorbid with sexual dysfunction remain unclear. AIM OF THE STUDY This study aims to elucidate the pharmacological effects and mechanisms of C. tubulosa aqueous extract (CTE) and its combination with fluoxetine (FLX) on depression in comorbid with sexual dysfunction. MATERIALS AND METHODS A mouse model of depression in comorbid with sexual dysfunction was created using the chronic unpredictable mild stress (CUMS) procedure. The therapeutic effects of CTE and its combination with FLX were assessed using depressive-like and mating behavior experiments, histopathological analysis, and hypothalamic-pituitary-gonadal (HPG) axis function evaluation. The mechanisms were explored by integrated serum and testicular metabolomics combined with network correlation analysis. RESULTS CTE was confirmed to significantly improve depressive-like behaviors, reduce mating abilities, testicular histopathological damage, and HPG axis hormone secretion disorders in CUMS mice. Subsequently, mechanism exploration findings indicated that CTE might exert its effect by regulating potential efficacy-related biomarkers (isobutyrylglycine, citric acid, D-galactose) to improve certain metabolic pathways centered around steroid hormone biosynthesis and tricarboxylic acid (TCA) cycle. Furthermore, the combination of CTE and FLX exhibited stronger antidepressant effects than FLX alone, and ameliorated the exacerbated sexual dysfunction induced by FLX. These effects were achieved through the regulation of potential efficacy-related biomarkers (17α-hydroxypregnenolone, tetrahydrodeoxy-corticosterone, sphingosine, cortol, thymine, and L-histidine), thereby improving disorders in glycerophospholipid and histidine metabolism. CONCLUSION In conclusion, the amelioration effects of CTE and its combination with FLX on depression in comorbid with sexual dysfunction were confirmed for the first time. This key mechanism may be achieved by modulating the levels of potential efficacy-related biomarkers, and then emphatically intervene in steroid hormone biosynthesis, TCA cycle, glycerophospholipid and histidine metabolism. The study offers a new perspective for the development and utilization of C. tubulosa.
Collapse
Affiliation(s)
- An Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxu Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Hassanen EI, Mansour HA, Issa MY, Ibrahim MA, Mohamed WA, Mahmoud MA. Epigallocatechin gallate-rich fraction alleviates histamine-induced neurotoxicity in rats via inactivating caspase-3/JNK signaling pathways. Food Chem Toxicol 2024; 193:115021. [PMID: 39322001 DOI: 10.1016/j.fct.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Ingestion of prominent levels of histamine (HIS) leads to dangerous effects on biological systems. The most frequent and active catechin in green tea is epigallocatechin gallate which has strong antioxidant properties. Our research intended to investigate the possible neuroprotective effect of epigallocatechin gallate-rich fraction (EGCGR) against HIS-inducing neurotoxicity. Six groups of male rats (n = 5) were used as follows: (1) Distilled water, (2&3) EGCGR (100-200 mg/kg BWT/day, respectively), (4) HIS (1750 mg/kg BWT/week, (5&6) HIS + EGCGR. Administration of HIS for 14 days induced severe neurobehavioral changes including depression, incoordination, and loss of spatial memory. Extensive neuronal degeneration with diffuse gliosis was the prominent histopathological lesion observed and confirmed by strong immunostaining of casp-3, Cox-2, and GFAP. Additionally, the HIS group showed a significantly higher MDA level with lower CAT and GSH activity than the control group. Moreover, HIS promoted apoptosis, which is indicated by increasing JNK, and Bax and decreasing Bcl-2 gene expressions. Otherwise, the oral intake of EGCGR with HIS improved all neurotoxicological parameters induced by HIS. We concluded that HIS could cause neurotoxicity via an upset of the equilibrium between oxidants and antioxidants which trigger apoptosis through modulation of JNK signaling pathway. Furthermore, EGCGR has either direct or indirect antihistaminic effects.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Zhao H, Sun K, Nan X, Ding W, Ma J, Li X. Hepatocyte apoptosis is triggered by hepatic inflammation in common carp acutely exposed to microcystin-LR or chronically exposed to Microcystis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117230. [PMID: 39442250 DOI: 10.1016/j.ecoenv.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cyanobacterial blooms pose a serious threat to the survival of fish because of the hepatotoxicity of microcystins produced by toxic cyanobacteria such as Microcystis. Many studies have investigated the hepatotoxicity of microcystins in common carp, a freshwater fish distributed worldwide, but the hepatotoxicity mechanism has not been fully clarified. The present study aimed to investigate the mechanism underlying the hepatic inflammatory response and hepatocyte apoptosis induced by acute microcystin-LR exposure via intraperitoneal injection (71 μg/kg and 119 μg/kg) or gavage (357.08 μg/kg) and chronic exposure to toxic Microcystis blooms. The results of acute exposure revealed that microcystin-LR caused an increase in serum transaminase activity and increased the levels of inflammatory factors and inflammatory mediators, inducing a significant inflammatory response in the liver of common carp. Moreover, biochemical detection revealed that hepatocyte apoptosis occurred in the fish. Moreover, chronic toxic Microcystis exposure also caused hepatic inflammation and subsequent apoptosis mediated by the tumour necrosis factor-α (TNF-α) pathway and the mitochondrial pathway similar to acute exposure. Therefore, our study suggests that the inflammatory response induced by microcystin-LR exacerbates apoptosis, likely mediated by TNF-α. In summary, both acute microcystin-LR exposure and chronic toxic Microcystis exposure can cause inflammation in the liver of common carp, which subsequently triggers hepatocyte apoptosis mediated by the TNF-α pathway and the mitochondrial pathway. This study helps elucidate the mechanism of liver damage induced by cyanobacterial blooms in natural water.
Collapse
Affiliation(s)
- Haoyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Kehui Sun
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaodan Nan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Weikai Ding
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Zhen J, Zhang Y, Li Y, Zhou Y, Cai Y, Huang G, Xu A. The gut microbiota intervenes in glucose tolerance and inflammation by regulating the biosynthesis of taurodeoxycholic acid and carnosine. Front Cell Infect Microbiol 2024; 14:1423662. [PMID: 39206042 PMCID: PMC11351283 DOI: 10.3389/fcimb.2024.1423662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aims to investigate the pathogenesis of hyperglycemia and its associated vasculopathy using multiomics analyses in diabetes and impaired glucose tolerance, and validate the mechanism using the cell experiments. Methods In this study, we conducted a comprehensive analysis of the metagenomic sequencing data of diabetes to explore the key genera related to its occurrence. Subsequently, participants diagnosed with impaired glucose tolerance (IGT), and healthy subjects, were recruited for fecal and blood sample collection. The dysbiosis of the gut microbiota (GM) and its associated metabolites were analyzed using 16S rDNA sequencing and liquid chromatograph mass spectrometry, respectively. The regulation of gene and protein expression was evaluated through mRNA sequencing and data-independent acquisition technology, respectively. The specific mechanism by which GM dysbiosis affects hyperglycemia and its related vasculopathy was investigated using real-time qPCR, Western blotting, and enzyme-linked immunosorbent assay techniques in HepG2 cells and neutrophils. Results Based on the published data, the key alterable genera in the GM associated with diabetes were identified as Blautia, Lactobacillus, Bacteroides, Prevotella, Faecalibacterium, Bifidobacterium, Ruminococcus, Clostridium, and Lachnoclostridium. The related metabolic pathways were identified as cholate degradation and L-histidine biosynthesis. Noteworthy, Blautia and Faecalibacterium displayed similar alterations in patients with IGT compared to those observed in patients with diabetes, and the GM metabolites, tauroursodeoxycholic acid (TUDCA) and carnosine (CARN, a downstream metabolite of histidine and alanine) were both found to be decreased, which in turn regulated the expression of proteins in plasma and mRNAs in neutrophils. Subsequent experiments focused on insulin-like growth factor-binding protein 3 and interleukin-6 due to their impact on blood glucose regulation and associated vascular inflammation. Both proteins were found to be suppressed by TUDCA and CARN in HepG2 cells and neutrophils. Conclusion Dysbiosis of the GM occurred throughout the entire progression from IGT to diabetes, characterized by an increase in Blautia and a decrease in Faecalibacterium, leading to reduced levels of TUDCA and CARN, which alleviated their inhibition on the expression of insulin-like growth factor-binding protein 3 and interleukin-6, contributing to the development of hyperglycemia and associated vasculopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Cheng R, Wang J, Wu Q, Peng P, Liao G, Luo X, Liang Z, Huang J, Qin M. The Predictive Value of Serum DAO, HDC, and MMP8 for the Gastrointestinal Injury in the Early Stage of Acute Pancreatitis in an Animal Model and a Clinical Study. Int J Gen Med 2024; 17:1937-1948. [PMID: 38736673 PMCID: PMC11088402 DOI: 10.2147/ijgm.s461352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose This study was aimed at exploring the use of the acute gastrointestinal injury (AGI) grade and sensitive biomarkers to investigate gastrointestinal (GI) injury in early stage of acute pancreatitis (AP). Patients and Methods The AGI grade was used to evaluate intestinal function. Any GI injury above grade I (grades II-IV) was considered as severe. An AP rat model was created by retrograde injection of 4% sodium taurocholate. The pancreatic and intestinal histopathology scores were calculated by hematoxylin-eosin staining. Human and rat sera were assessed using ELISA. Tight junction (TJ) proteins were detected by Western blotting. Results In clinical study, the GI injury rate in mild acute pancreatitis (MAP), moderate severe acute pancreatitis (MSAP), and severe acute pancreatitis (SAP) groups was 26.8%, 78.4%, and 94.8%, respectively (P < 0.05). Diamine oxidase (DAO), histidine decarboxylase (HDC), and matrix metalloproteinase 8 (MMP8) serum levels were higher in AP patients than in healthy people (P < 0.05). Patients with GI injury had higher serum levels of DAO, HDC, and MMP8 than those without GI injury (P < 0.05). In animal experiments, the serum levels of DAO, HDC, and MMP8 were higher in the AP group than in normal and sham-operated (SO) groups (P < 0.05). The expressions of tricellulin, claudin-1, ZO-1, and occludin were significantly lower in the AP group than in normal and SO groups (P < 0.05). Conclusion The serum levels of DAO, HDC, and MMP8 are novel biomarkers of GI injury in the early stage of AP; their elevation indicates the development of GI injury in AP. The intestinal TJ disruption may be a primary mechanism of GI injury and requires more in-depth research.
Collapse
Affiliation(s)
- Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jie Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Qing Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Peng Peng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Guolin Liao
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Xiuping Luo
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Zhihai Liang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| |
Collapse
|
7
|
Li W, Li W, Zhao Q, Wu P, Huang X, Jin W, Wang B, Li S, Liu W, Zhang G, Kang X. Combined analysis of the microbiome, metabolome and transcriptome of silkie chickens in response to avian pathogenic E. coli (APEC). Microb Pathog 2024; 189:106586. [PMID: 38382628 DOI: 10.1016/j.micpath.2024.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Avian colibacillosis is a bacterial disease caused by avian pathogenic Escherichia coli (APEC) that results in great losses in the poultry industry every year. Individual Silkie chickens of the same breed that are given the same feed in the same feeding conditions have different levels of resistance or susceptibility to APEC. Differences in gut microbes, gut metabolites, and gene expression in the spleen of APEC-resistant and APEC-susceptible chickens were compared, and multiple omics associations were analyzed to explore the mechanism of resistance to APEC in Silkie chickens. Compared with those in the APEC-susceptible group, the APEC-resistant group showed significantly increased abundances of many gut microorganisms, including Bacillus, Thermoactinomyces, Arthrobacter, and Ureibacillus, which were positively correlated with norvaline, l-arginine, and valyl-glycine levels. Intestinal tryptophan, indole, and indole derivative-related differentially abundant metabolites played an active role in combatting APEC infection. In the spleen, "response to stimulus" was the most significantly enriched GO term, and "cytokine‒cytokine receptor interaction" was the most significantly enriched KEGG pathway. The arginine biosynthesis and PPAR signaling pathways were the KEGG pathways that were significantly enriched with differentially abundant metabolites and differentially expressed genes. This study provides new insight into the prevention and treatment of APEC infection in Silkie chickens and lays a foundation to study the mechanism of APEC infection in poultry.
Collapse
Affiliation(s)
- Wenqing Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wanli Li
- The Shennong Laboratory, Zhengzhou Henan 450002, China; Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou 450002, China.
| | - Qinghan Zhao
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Pinhui Wu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinmeng Huang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Jin
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou 450002, China
| | - Bingxun Wang
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou 450002, China
| | - Shengli Li
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou 450002, China
| | - Wei Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guozhi Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- The Shennong Laboratory, Zhengzhou Henan 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Wu YL, Zhu AQ, Zhou XT, Zhang KW, Yuan XJ, Yuan M, He J, Pineda MA, Li KP. A Novel Ultrafiltrate Extract of Propolis Exerts Anti-inflammatory Activity through Metabolic Rewiring. Chem Biodivers 2024; 21:e202301315. [PMID: 38189169 DOI: 10.1002/cbdv.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both in vitro and in vivo. Total flavonoids and total phenolic acids content in P30K were 244.6 mg/g and 275.8 mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30 μg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11β-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.
Collapse
Affiliation(s)
- Yong-Lin Wu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - An-Qi Zhu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xiao-Ting Zhou
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Ke-Wei Zhang
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xu-Jiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Min Yuan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Jian He
- BYHEALTH Institute of Nutrition & Health., Guangzhou, 510000, China
| | - Miguel A Pineda
- Centre for the Cellular Microenvironment, University of Glasgow, University Place, Glasgow, G12 8TA, UK
| | - Kun-Ping Li
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| |
Collapse
|
9
|
Jiao D, Jiao F, Qian ZJ, Luo L, Wang Y, Shen YD, Lei HT, Xu ZL. Formation and Detection of Gizzerosine in Animal Feed Matrices: Progress and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3247-3258. [PMID: 38320115 DOI: 10.1021/acs.jafc.3c05973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Gizzerosine is responsible for gizzard erosion and black vomit, owing to excessive gastric acid secretion in poultry. It is a biogenic amine that forms during feed processing. Gizzerosine, a derivative of histamine, is a serious threat to animal feed safety and poultry production because it is more potent after ingestion and more harmful to poultry than histamine. The difficulty of obtaining gizzerosine and the lack of simple, rapid, and sensitive in vitro detection techniques have hindered studies on the effects of gizzerosine on gizzard health and poultry production. In this review, we evaluated the natural formation and the chemical synthesis methods of gizzerosine and introduced seven detection methods and their principles for analyzing gizzerosine. This review summarizes the issues of gizzerosine research and suggests methods for the future development of gizzerosine detection methods.
Collapse
Affiliation(s)
- Di Jiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fan Jiao
- Gong Yi Shi Di San Chu Ji Zhong Xue, Zhengzhou 451200, China
| | - Zhen-Jie Qian
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
11
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
12
|
Yadav S, Kumar A, Singh S, Ahmad S, Singh G, Khan AR, Chaurasia RN, Kumar D. NMR based Serum metabolomics revealed metabolic signatures associated with oxidative stress and mitochondrial damage in brain stroke. Metab Brain Dis 2024; 39:283-294. [PMID: 38095788 DOI: 10.1007/s11011-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024]
Abstract
Brain stroke (BS, also known as a cerebrovascular accident), represents a serious global health crisis. It has been a leading cause of permanent disability and unfortunately, frequent fatalities due to lack of timely medical intervention. While progress has been made in prevention and management, the complexities and consequences of stroke continue to pose significant challenges, especially, its impact on patient's quality of life and independence. During stroke, there is a substantial decrease in oxygen supply to the brain leading to alteration of cellular metabolic pathways, including those involved in mitochondrial-damage, leading to mitochondrial-dysfunction. The present proof-of-the-concept metabolomics study has been performed to gain insights into the metabolic pathways altered following a brain stroke and discover new potential targets for timely interventions to mitigate the effects of cellular and mitochondrial damage in BS. The serum metabolic profiles of 108 BS-patients were measured using 800 MHz NMR spectroscopy and compared with 60 age and sex matched normal control (NC) subjects. Compared to NC, the serum levels of glutamate, TCA-cycle intermediates (such as citrate, succinate, etc.), and membrane metabolites (betaine, choline, etc.) were found to be decreased BS patients, whereas those of methionine, mannose, mannitol, phenylalanine, urea, creatine and organic acids (such as 3-hydroxybutyrate and acetone) were found to be elevated in BS patients. These metabolic changes hinted towards hypoxia mediated mitochondrial dysfunction in BS-patients. Further, the area under receiver operating characteristic curve (ROC) values for five metabolic features (methionine, mannitol, phenylalanine, mannose and urea) found to be more than 0.9 suggesting their high sensitivity and specificity for differentiating BS from NC subjects.
Collapse
Affiliation(s)
- Sachin Yadav
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Abhai Kumar
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Smita Singh
- Department of Zoology, Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Shahnawaz Ahmad
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gurvinder Singh
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
13
|
Capobianco I, Di Vincenzo F, Puca P, Becherucci G, Mentella MC, Petito V, Scaldaferri F. Adverse Food Reactions in Inflammatory Bowel Disease: State of the Art and Future Perspectives. Nutrients 2024; 16:351. [PMID: 38337636 PMCID: PMC10857040 DOI: 10.3390/nu16030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Limited knowledge is available about the relationship between food allergies or intolerances and inflammatory bowel disease (IBD). Clinicians frequently encounter patients who report food allergies or intolerances, and gastroenterologists struggle distinguishing between patients with organic disorders and those with functional disorders, which the patients themselves may associate with specific dietary components. This task becomes even more arduous when managing patients with significant underlying organic conditions, like IBD. The aim of this review is to summarize and emphasize any actual associations between food allergies and intolerances and inflammatory diseases, such as ulcerative colitis and Crohn's disease. Through a narrative disceptation of the current literature, we highlight the increased prevalence of various food intolerances, including lactose, fructose, histamine, nickel, and non-celiac gluten sensitivity, in individuals with IBD. Additionally, we explore the association between increased epithelial barrier permeability in IBD and the development of food sensitization. By doing so, we aim to enhance clinicians' awareness of the nutritional management of patients with IBD when facing complaints or evidence of food allergies or intolerances.
Collapse
Affiliation(s)
- Ivan Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
| | - Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
| | - Guia Becherucci
- UOC Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (M.C.M.)
| | - Maria Chiara Mentella
- UOC Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (M.C.M.)
| | - Valentina Petito
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.D.V.); (P.P.); (F.S.)
- IBD Unit, UOC CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
14
|
Wang W, Xu K, Shang M, Li X, Tong X, Liu Z, Zhou L, Zheng S. The biological mechanism and emerging therapeutic interventions of liver aging. Int J Biol Sci 2024; 20:280-295. [PMID: 38164175 PMCID: PMC10750291 DOI: 10.7150/ijbs.87679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 01/03/2024] Open
Abstract
Research on liver aging has become prominent and has attracted considerable interest in uncovering the mechanism and therapeutic targets of aging to expand lifespan. In addition, multi-omics studies are widely used to perform further mechanistic investigations on liver aging. In this review, we illustrate the changes that occur with aging in the liver, present the current models of liver aging, and emphasize existing multi-omics studies on liver aging. We integrated the multi-omics data of enrolled studies and reanalyzed them to identify key pathways and targets of liver aging. The results indicated that C-X-C motif chemokine ligand 9 (Cxcl9) was a regulator of liver aging. In addition, we provide a flowchart for liver aging research using multi-omics analysis and molecular experiments to help researchers conduct further research. Finally, we present emerging therapeutic treatments that prolong lifespan. In summary, using cells and animal models of liver aging, we can apply a multi-omics approach to find key metabolic pathways and target genes to mitigate the adverse effects of liver aging.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Xinyu Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310000, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou 310003, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310000, China
| |
Collapse
|
15
|
Toennesen B, Schmid JM, Sørensen BS, Fricker M, Hoffmann HJH. A five-gene qPCR signature can classify type 2 asthma comparably to microscopy of induced sputum from severe asthma patients. Eur Clin Respir J 2023; 11:2293318. [PMID: 38178813 PMCID: PMC10763913 DOI: 10.1080/20018525.2023.2293318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma is a heterogenous disease characterized by airway inflammation and variable expiratory airflow limitation resulting in variable respiratory symptoms. Characterization of airway inflammation is important to choose the optimal treatment for severe asthma patients eligible for biological treatment. However, counting cells in induced sputum samples are a time-consuming process, highly dependent on personal skills. Replacing eosinophil and neutrophil cell counting with qPCR for transcripts of selected mast cell, and basophil genes may provide more reproducible results. Aims The objective of this study was to compare qPCR with microscopy in asthma endotyping. Methods A qPCR method measuring five mast cell/basophil genes was applied on induced sputum samples from 30 severe asthma patients and compared with microscopy. Target gene Ct-values (CPA3, GATA2, HDC, MS4A2, TPSAB1/TPSB2) were referenced to household β-actin Ct values as a measure of relative mRNA abundance of the target in each sample. Target/β-actin-ratios in eosinophilic and non-eosinophilic groups determined by microscopy with an eosinophil threshold of 3% in 400 cells were compared using Mann-Whitney U Test. Spearman´s correlations were used to test for correlation between targets vs. FENO and targets vs. blood eosinophil counts. Results The study demonstrated a statistical difference in relative mRNA abundance for four mast cell/basophil specific genes. CPA3, GATA2, HDC and MS4A2 were elevated in eosinophilic asthma versus non-eosinophilic asthma patients. The study found that GATA2, CPA3, MS4A2 and TPSAB1/TPSB2 transcripts are positively correlated with FENO. Neither the five mast cell genes nor the five-gene signature correlated with blood eosinophils. The five-gene signature with a target/β-actin-ratio cut-off ≥2 generated sensitivity = 87%, specificity = 94%, NPV = 88% and PPV = 92% compared to microscopy. Conclusion This study confirms the contribution of mast cells in the pathogenesis of EA and suggests that mast cell mRNA markers could be one of the biomarkers used to identify EA.
Collapse
Affiliation(s)
- B. Toennesen
- Department of Clinical Medicine, Aarhus University & Department of Respiratory Diseases and Allergy, Aarhus, Denmark
| | - J. M. Schmid
- Department of Clinical Medicine, Aarhus University & Department of Respiratory Diseases and Allergy, Aarhus, Denmark
| | - B. S. Sørensen
- Department of Clinical Medicine, Aarhus University & Department of Clinical Biochemistry, Aarhus, Denmark
| | - M. Fricker
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia & Hunter Medical Research Institute, New Lambton Heights, NSW, Australia, Newcastle, Australia
| | - H. J. H. Hoffmann
- Department of Clinical Medicine, Aarhus University & Department of Respiratory Diseases and Allergy, Aarhus, Denmark
| |
Collapse
|
16
|
Wang Y, Shao Z, Song C, Zhou H, Zhao J, Zong K, Zhou G, Meng D. Clinopodium chinense Kuntze ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by reducing systematic inflammation and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116330. [PMID: 36868438 DOI: 10.1016/j.jep.2023.116330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC), traditional Chinese medicine with anti-inflammatory, anti-diarrheal, and hemostatic activities, has been used to treat dysentery and bleeding diseases for thousands of years, which are similar to the symptoms of ulcerative colitis (UC). AIM OF THE STUDY To obtain a novel treatment for UC, an integrated strategy was developed in this study to investigate the effect and mechanism of CC against UC. MATERIALS AND METHODS The chemical characterization of CC was scanned by UPLC-MS/MS. Network pharmacology analysis was performed to predict the active ingredients and pharmacological mechanisms of CC against UC. Further, the results of network pharmacology were validated using LPS-induced RAW 264.7 cells and DSS-induced UC mice. The production of pro-inflammatory mediators and biochemical parameters was tested using the ELISA kits. The expression of NF-κB, COX-2, and iNOS proteins was evaluated using Western blot analysis. Body weight, disease activity index, colon length, histopathological examination, and metabolomics analysis in colon tissues were carried out to confirm the effect and mechanism of CC. RESULTS Based on the chemical characterization and literature collection, a rich database of ingredients in CC was constructed. Network pharmacology analysis provided five core components as well as revealed that the mechanism of CC against UC was highly related to inflammation, especially the NF-κB signaling pathway. In vitro experiments showed CC could inhibit inflammation by LPS-TLR4-NF-κB-iNOS/COX-2 signaling pathway in RAW264.7 cells. Meanwhile, in vivo experimental results proved that CC significantly alleviated pathological features with increased body weight and colonic length, decreased DAI and oxidative damage, as well as mediated inflammatory factors like NO, PGE2, IL-6, IL-10, and TNF-ɑ. In addition, colon metabolomics analysis revealed CC could restore the abnormal endogenous metabolite levels in UC. 18 screened biomarkers were further enriched in four pathways including Arachidonic acid metabolism, Histidine metabolism, Alanine, aspartate and glutamate metabolism as well as the Pentose phosphate pathway. CONCLUSION This study demonstrates that CC could alleviate UC by reducing systematic inflammation and regulating metabolism, which is beneficial for providing scientific data for the development of UC treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhutao Shao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Ce Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Jiaming Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Kunqi Zong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Guangxin Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
17
|
Dvornikova KA, Platonova ON, Bystrova EY. Inflammatory Bowel Disease: Crosstalk between Histamine, Immunity, and Disease. Int J Mol Sci 2023; 24:9937. [PMID: 37373085 DOI: 10.3390/ijms24129937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is increasingly recognized as a serious, worldwide public health concern. It is generally acknowledged that a variety of factors play a role in the pathogenesis of this group of chronic inflammatory diseases. The diversity of molecular actors involved in IBD does not allow us to fully assess the causal relationships existing in such interactions. Given the high immunomodulatory activity of histamine and the complex immune-mediated nature of inflammatory bowel disease, the role of histamine and its receptors in the gut may be significant. This paper has been prepared to provide a schematic of the most important and possible molecular signaling pathways related to histamine and its receptors and to assess their relevance for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Olga N Platonova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| | - Elena Y Bystrova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| |
Collapse
|
18
|
Hua C, Liang Q, Chen S, Zhu J, Tang Y, Chen X, Song Y, van der Veen S, Cheng H. Human umbilical cord mesenchymal stem cell treatment alleviates symptoms in an atopic dermatitis-like mouse model. Stem Cell Res Ther 2023; 14:147. [PMID: 37248497 DOI: 10.1186/s13287-023-03365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is one of the most common immune and inflammatory skin disorders, leading to insufferable itching and skin abnormalities that seriously affect life quality of patients. There are still huge unmet needs for long-term and effective disease control, despite currently available therapies. Evidenced by some preclinical and clinical studies of AD treatment with stem cells, stem cell treatment could significantly and effectively ameliorate AD symptoms. OBJECTIVES To elucidate underlying mechanisms of how stem cells therapy alleviates AD-like symptoms. METHODS An AD-like mouse model was constructed and treated with mesenchymal stem cells (MSCs) subcutaneously or subcutaneously combined with intravenously. The differentially expressed genes were sorted out from RNA sequencing results of dorsal skin and blood. RESULTS Two injection routes of MSCs could alleviate AD-like symptoms and pathologic changes of the skin and immune organs. RNA sequencing of dorsal skin sections and blood provided gene expression signatures for amelioration of skin defects, inflammatory and immune modulation by MSCs, as well as common AD molecular markers for the skin and blood, which may benefit for clinical diagnosis. IL-1β and its signaling pathway were specifically found to be associated with the development of AD-like dermatitis lesions. MSC treatment effectively inhibited the JAK-STAT pathway and receptors of IL-4, IL-13, IL-17, and IgE. CONCLUSIONS MSC therapy could regulate abnormal immune and inflammatory status in AD. Mechanistic exploration will contribute to the development of personalized AD treatment based on MSCs.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichang Liang
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Zhu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Tang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Choi YA, Dhakal H, Lee S, Kim N, Lee B, Kwon TK, Khang D, Kim SH. IRF3 Activation in Mast Cells Promotes FcεRI-Mediated Allergic Inflammation. Cells 2023; 12:1493. [PMID: 37296614 PMCID: PMC10252328 DOI: 10.3390/cells12111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
(1) Background: This study aims to elucidate a novel non-transcriptional action of IRF3 in addition to its role as a transcription factor in mast cell activation and associated allergic inflammation; (2) Methods: For in vitro experiments, mouse bone-marrow-derived mast cells (mBMMCs) and a rat basophilic leukemia cell line (RBL-2H3) were used for investigating the underlying mechanism of IRF3 in mast-cell-mediated allergic inflammation. For in vivo experiments, wild-type and Irf3 knockout mice were used for evaluating IgE-mediated local and systemic anaphylaxis; (3) Results: Passive cutaneous anaphylaxis (PCA)-induced tissues showed highly increased IRF3 activity. In addition, the activation of IRF3 was observed in DNP-HSA-treated mast cells. Phosphorylated IRF3 by DNP-HSA was spatially co-localized with tryptase according to the mast cell activation process, and FcεRI-mediated signaling pathways directly regulated that activity. The alteration of IRF3 affected the production of granule contents in the mast cells and the anaphylaxis responses, including PCA- and ovalbumin-induced active systemic anaphylaxis. Furthermore, IRF3 influenced the post-translational processing of histidine decarboxylase (HDC), which is required for granule maturation; and (4) Conclusion: Through this study, we demonstrated the novel function of IRF3 as an important factor inducing mast cell activation and as an upstream molecule for HDC activity.
Collapse
Affiliation(s)
- Young-Ae Choi
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| | - Hima Dhakal
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea;
| | - Namkyung Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea;
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-A.C.); (H.D.); (N.K.)
| |
Collapse
|
20
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
21
|
Hatipoglu OF, Nishinaka T, Nishibori M, Watanabe M, Toyomura T, Mori S, Yaykasli KO, Wake H, Takahashi H. Histamine promotes angiogenesis through a histamine H1 receptor-PKC-VEGF-mediated pathway in human endothelial cells. J Pharmacol Sci 2023; 151:177-186. [PMID: 36925216 DOI: 10.1016/j.jphs.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Histamine is a well-known inflammatory mediator, but how histamine induces angiogenesis remains poorly understood. In the present study, we demonstrated a dose-dependent dynamic tube formation in the human endothelial cell line EA.hy926 in the presence of histamine that was completely blocked by histamine H1 receptor (H1R) and protein kinase C (PKC) inhibitors. However, histamine H2, H3, and H4 receptor inhibitors did not inhibit tube formation, suggesting that H1R-PKC signaling is involved in histamine-induced tube formation. Moreover, we found an H1-specific induction of vascular endothelial growth factor (VEGF) expression. Inhibition of VEGF receptor 2 (VEGFR2) suppressed the histamine-induced tube formation, indicating that VEGF is downstream of histamine signaling. Additionally, we demonstrated that histamine stimulation induces the expression of critical regulators of angiogenesis such as matrix metalloproteinase (MMP)-9 and MMP-14 metalloproteases, as histamine-induced tube formation is blocked by MMP inhibitors. In summary, our study indicates that histamine can activate the H1R in human endothelial cells and thereby promote tube formation through the PKC, MMP, and VEGF signaling pathways.
Collapse
Affiliation(s)
- Omer Faruk Hatipoglu
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Dug Development, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan
| | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hidenori Wake
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan.
| | - Hideo Takahashi
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
22
|
Hu G, Wang L, Li X, Qi J. Rapidly and accurately screening histidine decarboxylase inhibitors from Radix Paeoniae alba using ultrafiltration-high performance liquid chromatography/mass spectrometry combined with enzyme channel blocking and directional enrichment technique. J Chromatogr A 2023; 1693:463859. [PMID: 36868086 DOI: 10.1016/j.chroma.2023.463859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Histidine Decarboxylase (HDC), an unique enzyme responsible for the synthesis of histamine, which is an important mediator in allergy. Inhibition of HDC activity to decrease histamine production is one way to alleviate allergic symptoms. Traditional Chinese medicines (TCMs) with reported anti-allergy effect is one of important source to search for natural HDC inhibitor. Ultrafiltration combined with high-performance liquid chromatography/mass spectrometry (UF-HPLC/MS) is an effective method for screening HDC inhibitor from TCMs. Nevertheless, false-positive and false-negative results caused by the non-specific binding and the neglection of the trace active compounds are major problems in this method. In this study, an integrated strategy that combined UF-HPLC/MS with enzyme channel blocking (ECB) technique and directional enrichment (DE) technique was developed to seek natural HDC inhibitors from Radix Paeoniae alba (RPA), and at the same time, to reduce false-positive and false-negative results. HDC activity was detected to determine the validity of the screened compounds by RP-HPLC-FD in vitro. Molecular docking was applied to assay the binding affinity and binding sites. As a result, three compounds were screened from low content components of RPA after the DE. Among them, two non-specific compounds were eliminated by ECB, and the specific compound was identified as catechin, which has obvious HDC inhibition activity with IC50 0.52 mM. Furthermore, gallic acid (IC50 1.8 mM) and paeoniflorin (IC50>2 mM) from high content components of RPA were determined having HDC inhibitory activity. In conclusion, the integrated strategy of UF-HPLC/MS combined with ECB and DE technique is an effective mode for rapid and accurate screening and identification of natural HDC inhibitors from TCMs.
Collapse
Affiliation(s)
- Guizhou Hu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210012, PR China
| | - Xinqi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
23
|
Rahimzadeh G, Tay A, Travica N, Lacy K, Mohamed S, Nahavandi D, Pławiak P, Qazani MC, Asadi H. Nutritional and Behavioral Countermeasures as Medication Approaches to Relieve Motion Sickness: A Comprehensive Review. Nutrients 2023; 15:nu15061320. [PMID: 36986050 PMCID: PMC10052985 DOI: 10.3390/nu15061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The mismatch in signals perceived by the vestibular and visual systems to the brain, also referred to as motion sickness syndrome, has been diagnosed as a challenging condition with no clear mechanism. Motion sickness causes undesirable symptoms during travel and in virtual environments that affect people negatively. Treatments are directed toward reducing conflicting sensory inputs, accelerating the process of adaptation, and controlling nausea and vomiting. The long-term use of current medications is often hindered by their various side effects. Hence, this review aims to identify non-pharmacological strategies that can be employed to reduce or prevent motion sickness in both real and virtual environments. Research suggests that activation of the parasympathetic nervous system using pleasant music and diaphragmatic breathing can help alleviate symptoms of motion sickness. Certain micronutrients such as hesperidin, menthol, vitamin C, and gingerol were shown to have a positive impact on alleviating motion sickness. However, the effects of macronutrients are more complex and can be influenced by factors such as the food matrix and composition. Herbal dietary formulations such as Tianxian and Tamzin were shown to be as effective as medications. Therefore, nutritional interventions along with behavioral countermeasures could be considered as inexpensive and simple approaches to mitigate motion sickness. Finally, we discussed possible mechanisms underlying these interventions, the most significant limitations, research gaps, and future research directions for motion sickness.
Collapse
Affiliation(s)
- Ghazal Rahimzadeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| | - Abdullatif Tay
- PepsiCo Inc., Food Safety and Global Process Authority, 433 W Van Buren St., Chicago, IL 60607, USA
- Correspondence: (A.T.); (S.M.); Tel.: +61-3-522-72599 (S.M.)
| | - Nikolaj Travica
- Food & Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Kathleen Lacy
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia
| | - Shady Mohamed
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
- Correspondence: (A.T.); (S.M.); Tel.: +61-3-522-72599 (S.M.)
| | - Darius Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| | - Mohammadreza Chalak Qazani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| | - Houshyar Asadi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
24
|
Bando K, Tanaka Y, Winias S, Sugawara S, Mizoguchi I, Endo Y. IL-33 induces histidine decarboxylase, especially in c-kit + cells and mast cells, and roles of histamine include negative regulation of IL-33-induced eosinophilia. Inflamm Res 2023; 72:651-667. [PMID: 36723628 DOI: 10.1007/s00011-023-01699-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE AND METHODS IL-33 is present in endothelial, epithelial, and fibroblast-like cells and released upon cell injury. IL-33 reportedly induces mast-cell degranulation and is involved in various diseases, including allergic diseases. So, IL-33-related diseases seem to overlap with histamine-related diseases. In addition to the release from mast cells, histamine is newly formed by the induction of histidine decarboxylase (HDC). Some inflammatory and/or hematopoietic cytokines (IL-1, IL-3, etc.) are known to induce HDC, and the histamine produced by HDC induction is released without storage. We examined the involvement of HDC and histamine in the effects of IL-33. RESULTS A single intraperitoneal injection of IL-33 into mice induced HDC directly and/or via other cytokines (including IL-5) within a few hours in various tissues, particularly strongly in hematopoietic organs. The major cells exhibiting HDC-induction were mast cells and c-kit+ cells in the bone marrow. HDC was also induced in non-mast cells in non-hematopoietic organs. HDC, histamine, and histamine H4 receptors (H4Rs) contributed to the suppression of IL-33-induced eosinophilia. CONCLUSION IL-33 directly and indirectly (via IL-5) induces HDC in various cells, particularly potently in c-kit+ cells and mature mast cells, and the newly formed histamine contributes to the negative regulation of IL-33-induced eosinophilia via H4Rs.
Collapse
Affiliation(s)
- Kanan Bando
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| | - Yukinori Tanaka
- Division of Dento-Oral Anesthesiology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Saka Winias
- Division of Dento-Oral Anesthesiology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Sendai, 980-8575, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Sendai, 980-8575, Japan
| |
Collapse
|
25
|
Song F, Yang X, Zhu B, Xiong Y, Song Z, Yang X, Zheng Y. Histamine deficiency deteriorates LPS-induced periodontal diseases in a murine model via NLRP3/Caspase-1 pathway. Int Immunopharmacol 2023; 115:109630. [PMID: 36571917 DOI: 10.1016/j.intimp.2022.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
Histamine is a versatile biogenic amine, generated by the unique enzyme histidine decarboxylase (Hdc). Accumulating evidence has proven that histamine plays important roles in numerous biological and pathophysiological processes. However, the role and mechanism of Hdc/Histamine signaling in periodontal diseases remain unclear. In our current study, the concentration of histamine increased in the serum, and Hdc gene expression was upregulated in the gingiva of WT mice with LPS-induced periodontal inflammation. With Hdc-GFP mice, we identified that Hdc/GFP in the periodontium was expressed in CD11b+ myeloid cells, rather than in tryptase-positive mast cells. Hdc-expressing CD11b+Gr-1+ neutrophils significantly increased in the peripheral blood of Hdc-GFP mice one day after LPS injection. Lack of histamine in Hdc-/- mice not only promoted the activation and infiltration of more CD11b+ cells into the peripheral blood but also upregulated mRNA expression levels of IL-1β, IL-6, MCP-1and MMP9 in the gingiva compared to WT mice one day after LPS stimulation. 28 days after LPS treatment, we observed that Hdc-/- mice exhibited more alveolar bone loss and more osteoclasts than WT mice, which was slightly ameliorated by the administration of exogenous histamine. In vivo and in vitro mechanistic studies revealed that the mRNA expression levels of proinflammatory cytokines and protein levels of NLRP3, Caspase-1, and cleaved-Caspase-1 were upregulated after blocking histamine receptor 1 and 2, especially histamine receptor 1. Taken together, CD11b+Gr-1+ neutrophils are the predominant Hdc-expressing sites in periodontal inflammation, and deficiency of endogenous histamine in Hdc-/- mice exacerbates the destruction of the periodontium. Disruption of the histamine/H1R/H2R axis aggravates the inflammatory immune response via NLRP3/Casapse-1 pathway.
Collapse
Affiliation(s)
- Fujie Song
- Department of First Dental Clinic, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xiyang Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baoling Zhu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yaoyang Xiong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhifeng Song
- Department of oral mucosa and periodontal clinic, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200433, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China..
| | - Yuanli Zheng
- Department of First Dental Clinic, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
26
|
Janus T, Korbal U, Żukowski M, Lewosiuk A, Koper K, Żukowska A, Brzeźniakiewicz-Janus K. Histamine and Serotonin Levels in Bone Marrow Stem Cells Niche as Potential Biomarkers of Systemic Mastocytosis and Myeloproliferative Disorders. Stem Cell Rev Rep 2022; 19:807-816. [PMID: 36577910 PMCID: PMC10070308 DOI: 10.1007/s12015-022-10502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Bone marrow studies currently provide a lot of valuable information in the diagnostics of hematological diseases including hematopoietic stem cells disorders. Our studies on low-molecular weight organic compounds in bone marrow stem cell niche in various pathogenic conditions, revealed relatively high variability of histamine levels in different groups of hematological diseases. It was also found that serotonin levels were significantly lower than those typically measured in peripheral blood as well as many have the influence on stem cells proliferative potential. This paper presents findings from quantitative and statistical analyses of histamine and serotonin levels. Bone marrow collected from patients undergoing routine diagnostic procedures for hematological diseases and receiving inpatient treatment were analyzed. Histamine and serotonin levels were measured using hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry. Obtained data were analyzed statistically and correlated with the diagnosed groups of hematological diseases and the parameters of complete blood counts. Histamine was found in all tested samples, including those from patients without malignancy, and the reported levels were comparable to the reference values in blood. This observation allows us to assume that bone marrow cells can produce and accumulate histamine. Moreover, the statistical analysis revealed a significant relationship between histamine levels and diagnosed mastocytosis, and between histamine levels and myeloproliferative neoplasms. Different results were obtained for serotonin, and its concentrations in most cases were below the limit of quantification of the method used (< 0.2 ng/mL), which can only be compared to peripheral blood plasma. In a few cases, significantly higher serotonin levels were observed and it concerned diseases associated with an increased number of megakaryocytes in the bone marrow.
Collapse
Affiliation(s)
- Tomasz Janus
- Department of Forensic and Clinical Toxicology, Pomeranian Medical University in Szczecin, Al. Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Urszula Korbal
- Department of Forensic and Clinical Toxicology, Pomeranian Medical University in Szczecin, Al. Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Maciej Żukowski
- Department of Anesthesiology, Intensive Therapy and Poisoning, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Agnieszka Lewosiuk
- Department and Clinic of Hematology, Oncology and Radiotherapy of theUniversity of Zielona Góra, Zielona Góra, Poland
| | - Katarzyna Koper
- Department and Clinic of Hematology, Oncology and Radiotherapy of theUniversity of Zielona Góra, Zielona Góra, Poland
| | - Agnieszka Żukowska
- Department of Infection Control, District General Hospital in Stargard, Stargard, Poland
| | | |
Collapse
|
27
|
Kanapeckaitė A, Mažeikienė A, Geris L, Burokienė N, Cottrell GS, Widera D. Computational pharmacology: New avenues for COVID-19 therapeutics search and better preparedness for future pandemic crises. Biophys Chem 2022; 290:106891. [PMID: 36137310 PMCID: PMC9464258 DOI: 10.1016/j.bpc.2022.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug repositioning by employing computational pharmacology, data mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this information could be used to monitor disease progression or devise treatment strategies. Importantly, our work bridged the interactome with the chemical compound space to better understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeutically valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to establish robust practices for treating today's and future infectious diseases by preparing solid analytical frameworks.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- AK Consulting, Laisvės g. 7, LT 12007 Vilnius, Lithuania,Corresponding author
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital 11 (B34), Liège 4000, Belgium,Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C (2419), Leuven 3001, Belgium,Skeletel Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Herestraat 49 (813), Leuven 3000, Belgium
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Graeme S. Cottrell
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| | - Darius Widera
- University of Reading, School of Pharmacy, Hopkins Building, Reading RG6 6UB, United Kingdom
| |
Collapse
|
28
|
Bando K, Tanaka Y, Takahashi T, Sugawara S, Mizoguchi I, Endo Y. Histamine acts via H4-receptor stimulation to cause augmented inflammation when lipopolysaccharide is co-administered with a nitrogen-containing bisphosphonate. Inflamm Res 2022; 71:1603-1617. [DOI: 10.1007/s00011-022-01650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/22/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
|
29
|
Morsy MA, Patel SS, Bakrania A, Kandeel M, Nair AB, Shah JN, Akrawi SH, El-Daly M. Ameliorative Effect of a Neoteric Regimen of Catechin plus Cetirizine on Ovalbumin-Induced Allergic Rhinitis in Rats. Life (Basel) 2022; 12:life12060820. [PMID: 35743851 PMCID: PMC9225010 DOI: 10.3390/life12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022] Open
Abstract
Allergic rhinitis (AR) affects 20–50% of the global population. Available treatments are limited by their adverse effects. We investigated the anti-allergic effects of catechin alone and combined with cetirizine against ovalbumin-induced AR. Rats were sensitized with ovalbumin and received catechin (14 days) and then challenged with aerosolized ovalbumin (1%) to determine AR clinical scores. Histamine, histamine release, and histidine decarboxylase (HDC) activity were determined in blood, peritoneal mast cells, and stomachs, respectively. Vascular permeability and safety were assessed using Evans blue leakage and barbiturate-induced sleeping-time assays, respectively. Catechin and cetirizine binding with HDC was investigated by docking and binding energy analyses. The clinical scores of the combination regimen were superior to either drug alone. All treatments reduced vascular leakage, with no effect on barbiturate-induced sleeping time. Only the catechin-treated rats showed reduced histamine levels and HDC activity. Docking studies revealed that catechin has a 1.34-fold higher extra-precision docking score than L-histidine. The binding energy scores for catechin-HDC, L-histidine-HDC, and histamine-HDC were −50.86, −37.64, and −32.27 kcal/mol, respectively. The binding pattern of catechin was comparable to the standard HDC inhibitor, histidine methyl ester, but with higher binding free energy. Catechin binds the catalytic residue S354, unlike cetirizine. The anti-allergic effects of catechin can be explained by HDC inhibition and possible antihistaminic activity.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: (M.A.M.); (S.S.P.)
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
- Correspondence: (M.A.M.); (S.S.P.)
| | - Anita Bakrania
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
| | - Jigar N. Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt;
| |
Collapse
|
30
|
Gao Y, Wang G, Chen Y, Zhang M, Gao W, Shang Z, Niu Y. Identification of Neoantigens and Construction of Immune Subtypes in Prostate Adenocarcinoma. Front Genet 2022; 13:886983. [PMID: 35547260 PMCID: PMC9081437 DOI: 10.3389/fgene.2022.886983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Messenger ribonucleic acid (mRNA) vaccine has been considered as a potential therapeutic strategy and the next research hotspot, but their efficacy against prostate adenocarcinoma (PRAD) remains undefined. This study aimed to find potential antigens of PRAD for mRNA vaccine development and identify suitable patients for vaccination through immunophenotyping. Methods: Gene expression profiles and clinical information were obtained from TCGA and ICGC. GEPIA2 was used to calculate the prognostic index of the selected antigens. The genetic alterations were compared on cBioPortal and the correlation between potential antigen and immune infiltrating cells was explored by TIMER. ConsensusClusterPlus was used to construct a consistency matrix, and identify the immune subtypes. Graph learning-based dimensional reduction was performed to depict immune landscape. Boruta algorithm and LASSO logistic analysis were used to screen PRAD patients who may benefit from mRNA vaccine. Results: Seven potential tumor antigens selected were significantly positively associated with poor prognosis and the antigen-presenting immune cells (APCs) in PRAD, including ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1. Five immune subtypes of PRAD were identified by differential molecular, cellular, and clinical characteristics in both cohorts. C3 and C5 had immune “hot” and immunosuppressive phenotype, On the contrary, C1&C2 had immune “cold” phenotype. Finally, the immune landscape characterization showed the immune heterogeneity among patients with PRAD. Conclusions: ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1 are potential antigens for mRNA vaccine development against PRAD, and patients in type C1 and C2 are suitable for vaccination.
Collapse
Affiliation(s)
- Yukui Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guixin Wang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanzhuo Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenlong Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Solana-Manrique C, Sanz FJ, Martínez-Carrión G, Paricio N. Antioxidant and Neuroprotective Effects of Carnosine: Therapeutic Implications in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11050848. [PMID: 35624713 PMCID: PMC9137727 DOI: 10.3390/antiox11050848] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Neurodegenerative diseases (NDs) constitute a global challenge to human health and an important social and economic burden worldwide, mainly due to their growing prevalence in an aging population and to their associated disabilities. Despite their differences at the clinical level, NDs share fundamental pathological mechanisms such as abnormal protein deposition, intracellular Ca2+ overload, mitochondrial dysfunction, redox homeostasis imbalance and neuroinflammation. Although important progress is being made in deciphering the mechanisms underlying NDs, the availability of effective therapies is still scarce. Carnosine is a natural endogenous molecule that has been extensively studied during the last years due to its promising beneficial effects for human health. It presents multimodal mechanisms of action, being able to exert antioxidant, anti-inflammatory and anti-aggregate activities, among others. Interestingly, most NDs exhibit oxidative and nitrosative stress, protein aggregation and inflammation as molecular hallmarks. In this review, we discuss the neuroprotective functions of carnosine and its implications as a therapeutic strategy in different NDs. We summarize the existing works that study alterations in carnosine metabolism in Alzheimer’s disease and Parkinson’s disease, the two most common NDs. In addition, we review the beneficial effect that carnosine supplementation presents in models of such diseases as well as in aging-related neurodegeneration.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Guillermo Martínez-Carrión
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
32
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
33
|
Antwi S, Oduro-Mensah D, Obiri DD, Osafo N, Antwi AO, Ansah HO, Ocloo A, Okine LKNA. Hydro-ethanol extract of Holarrhena floribunda stem bark exhibits anti-anaphylactic and anti-oedematogenic effects in murine models of acute inflammation. BMC Complement Med Ther 2022; 22:80. [PMID: 35305615 PMCID: PMC8934059 DOI: 10.1186/s12906-022-03565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Holarrhena floribunda (G.Don) T.Durand & Schinz stem bark has anecdotal use in Ghanaian folk medicine for the management of inflammatory conditions. This study was conducted to investigate the in vivo anti-inflammatory activity of the bark extract using models of acute inflammation in male Sprague Dawley rats, C57BL/6 mice and ICR mice. METHODS A 70% hydro-ethanol extract of the stem bark (HFE) was evaluated at doses of 5-500 mg/kg bw. Local anaphylaxis was modelled by the pinnal cutaneous anaphylactic test. Systemic anaphylaxis or sepsis were modeled by compound 48/80 or lipopolysaccharide, respectively. Clonidine-induced catalepsy was used to investigate the effect on histamine signaling. Anti-oedematogenic effect was assessed by induction with carrageenan. Effects on mediators of biphasic acute inflammation were studied using histamine and serotonin (early phase) or prostaglandin E2 (late phase). RESULTS HFE demonstrated anti-inflammatory and/or anti-oedematogenic activity comparable to standard doses of aspirin and diclofenac (inhibitors of cyclooxygenases-1 and -2), chlorpheniramine (histamine H1-receptor antagonist), dexamethasone (glucocorticoid receptor agonist), granisetron (serotonin receptor antagonist) and sodium cromoglycate (inhibitor of mast cell degranulation). All observed HFE bioactivities increased with dose. CONCLUSIONS The data provide evidence that the extract of H. floribunda stem bark has anti-anaphylactic and anti-oedematogenic effects; by interfering with signalling or metabolism of histamine, serotonin and prostaglandin E2 which mediate the progression of inflammation. The anti-inflammatory and antihistaminic activities of HFE may be relevant in the context of the management of COVID-19.
Collapse
Affiliation(s)
- Stephen Antwi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Pharmacology/Toxicology Department, Centre for Plant Medicine Research (CPMR), Mampong-Akuapem, Ghana
| | - Daniel Oduro-Mensah
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - David Darko Obiri
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aaron Opoku Antwi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Helena Owusu Ansah
- Pharmacology/Toxicology Department, Centre for Plant Medicine Research (CPMR), Mampong-Akuapem, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Laud K N-A Okine
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
34
|
Ko KI, Merlet JJ, DerGarabedian BP, Zhen H, Suzuki-Horiuchi Y, Hedberg ML, Hu E, Nguyen AT, Prouty S, Alawi F, Walsh MC, Choi Y, Millar SE, Cliff A, Romero J, Garvin MR, Seykora JT, Jacobson D, Graves DT. NF-κB perturbation reveals unique immunomodulatory functions in Prx1 + fibroblasts that promote development of atopic dermatitis. Sci Transl Med 2022; 14:eabj0324. [PMID: 35108061 DOI: 10.1126/scitranslmed.abj0324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor κB (NF-κB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-κB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-κB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions.
Collapse
Affiliation(s)
- Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean J Merlet
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Brett P DerGarabedian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huang Zhen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Periodontology, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, China
| | - Yoko Suzuki-Horiuchi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew L Hedberg
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen Hu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anh T Nguyen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Faizan Alawi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Walsh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley Cliff
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Jonathon Romero
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Michael R Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Anti-Allergic Effects of Myrciaria dubia (Camu-Camu) Fruit Extract by Inhibiting Histamine H1 and H4 Receptors and Histidine Decarboxylase in RBL-2H3 Cells. Antioxidants (Basel) 2021; 11:antiox11010104. [PMID: 35052608 PMCID: PMC8773304 DOI: 10.3390/antiox11010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
Although Myrciaria dubia (camu-camu) has been shown to exert anti-oxidant and anti-inflammatory effects in both in vitro and in vivo studies, its use in allergic responses has not been elucidated. In the present study, the anti-allergic effect of 70% ethanol camu-camu fruit extract was tested on calcium ionophore (A23187)-induced allergies in RBL-2H3 cells. The RBL-2H3 cells were induced with 100 nM A23187 for 6 h, followed by a 1 h camu-camu fruit extract treatment. A23187 sanitization exacerbated mast cell degranulation; however, camu-camu fruit extract decreased the release of histamine and β-hexosaminidase, which are considered as key biomarkers in cell degranulation. Camu-camu fruit extract inhibited cell exocytosis by regulating the calcium/nuclear factor of activated T cell (NFAT) signaling. By downregulating the activation of mitogen-activated protein kinase (MAPK) signaling, camu-camu fruit extract hindered the activation of both histamine H1 and H4 receptors and inhibited histidine decarboxylase (HDC) expression by mediating its transcription factors KLF4/SP1 and GATA2/MITF. In A23187-induced ROS overproduction, camu-camu fruit extract activated nuclear factor erythroid-2-related factor 2 (Nrf2) to protect mast cells against A23187-induced oxidative stress. These findings indicate that camu-camu fruit extract can be developed to act as a mast cell stabilizer and an anti-histamine. This work also “opens the door” to new investigations using natural products to achieve breakthroughs in allergic disorder treatment.
Collapse
|
36
|
Tu C, Gao Y, Song D, Niu M, Ma RR, Zhou MX, He X, Xiao XH, Wang JB. Screening for Susceptibility-Related Biomarkers of Diclofenac-Induced Liver Injury in Rats Using Metabolomics. Front Pharmacol 2021; 12:693928. [PMID: 34630079 PMCID: PMC8494976 DOI: 10.3389/fphar.2021.693928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
Early identification of individuals susceptible to idiosyncratic drug-induced liver injury (IDILI) is a challenging unmet demand. Diclofenac, one of the most widely available over-the-counter drugs for pain management worldwide, may induce liver dysfunction, acute liver failure, and death. Herein, we report that diclofenac-related hepatobiliary adverse reactions occurred more frequently in cases with immune activation. Furthermore, experiments with rats demonstrated divergent hepatotoxicity responses in individuals exposed to diclofenac, and modest inflammation potentiated diclofenac-induced liver injury. Susceptible rats had unique plasma metabolomic characteristics, and as such, the metabolomic approach could be used to distinguish susceptible individuals. The 23 identified susceptibility-related metabolites were enriched by several metabolic pathways related to acute-phase reactions of immunocytes and inflammatory responses, including sphingolipid, tyrosine, phenylalanine, tryptophan, and lipid metabolism pathways. This finding implies a mechanistic role of metabolic and immune disturbances affects susceptibility to diclofenac-IDILI. Further nine metabolite biomarkers with potent diagnostic capabilities were identified using receiver operating characteristic curves. These findings elucidated the potential utility of metabolomic biomarkers to identify individuals susceptible to drug hepatotoxicity and the underlying mechanism of metabolic and immune disturbances occurring in IDILI.
Collapse
Affiliation(s)
- Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Di Song
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Run-Ran Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Xi Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xian He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Liu Y, Wang J, Guan X, Yu D, Huangfu M, Dou T, Zhou L, Wang L, Liu G, Li X, Zhai Z, Han M, Liu H, Chen X. Mogroside V reduce OVA-induced pulmonary inflammation based on lung and serum metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153682. [PMID: 34483017 DOI: 10.1016/j.phymed.2021.153682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mogroside V, the main ingredient of Siraitia grosvenorii, has been proved to have therapeutic effects on pulmonary diseases. The specific mechanism still remains to be clarified, which hinders the potence of its medicinal value. PURPOSE Serum and lung metabolomics based on LC-MS analysis were applied to explore the mechanism of mogroside V against lung inflammation. METHOD In this study, balb/c mice were divided into control, model, mogeoside V and SH groups. We evaluated the protective effects of mogroside V on lung inflammation in asthmatic mice. Suhuang Zhike Jiaonang was used as positive drug. Metabolic profiles of serum and lung samples of mice in control, model and mogroside V groups were analyzed by LC-MS. RESULTS Administration of mogroside V effectively relieved the expression of biochemical cytokines and lung inflammatory infiltration of asthmatic mice caused by ovalbumin (OVA). And visceral index of mice treated with mogroside V was close to control group. These results indicated that mogroside V ameliorated OVA-induced lung inflammation. LC-MS based metabolomics analysis demonstrated 6 main pathways in asthmatic mice including Vitamin B6 metabolism, Taurine and hypotaurine metabolism, Ascorbate and aldarate metabolism, Histidine metabolism, Pentose and glucuronate interconversions, Citrate cycle (TCA cycle) were regulated after using mogroside V. CONCLUSION The study firstly elucidates the metabolic pathways regulated by mogroside V on lung inflammation through metabolomics, providing a theoretical basis for more sufficient utilization and compatibility of mogroside V.
Collapse
Affiliation(s)
- Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Juan Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001 PR China; Faculty of Basic Medicine, Guilin Medical University, Huan Cheng North 2nd Road No. 109, Guilin 541004, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China; Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Dan Yu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Mengjie Huangfu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Lin Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China; Science and Technology Department, Guilin Medical University, Guilin 541199, PR China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Zhaokun Zhai
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Haiping Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| |
Collapse
|
38
|
Perales-Chorda C, Obeso D, Twomey L, Rojas-Benedicto A, Puchades-Carrasco L, Roca M, Pineda-Lucena A, Laguna JJ, Barbas C, Esteban V, Martí-Garrido J, Ibañez-Echevarria E, López-Salgueiro R, Barber D, Villaseñor A, Hernández Fernández de Rojas D. Characterization of anaphylaxis reveals different metabolic changes depending on severity and triggers. Clin Exp Allergy 2021; 51:1295-1309. [PMID: 34310748 DOI: 10.1111/cea.13991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite the increasing incidence of anaphylaxis, its underlying molecular mechanisms and biomarkers for appropriate diagnosis remain undetermined. The rapid onset and potentially fatal outcome in the absence of managed treatment prevent its study. Up today, there are still no known biomarkers that allow an unequivocal diagnosis. Therefore, the aim of this study was to explore metabolic changes in patients suffering anaphylactic reactions depending on the trigger (food and/or drug) and severity (moderate and severe) in a real-life set-up. METHODS Eighteen episodes of anaphylaxis, one per patient, were analysed. Sera were collected during the acute phase (T1), the recovery phase (T2) and around 2-3 months after the anaphylactic reaction (T0: basal state). Reactions were classified following an exhaustive allergological evaluation for severity and trigger. Sera samples were analysed using untargeted metabolomics combining liquid chromatography coupled to mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1 H-NMR). RESULTS 'Food T1 vs T2' and 'moderate T1 vs T2' anaphylaxis comparisons showed clear metabolic patterns during the onset of an anaphylactic reaction, which differed from those induced by drugs, food + drug or severe anaphylaxis. Moreover, the model of food anaphylaxis was able to distinguish the well-characterized IgE (antibiotics) from non-IgE-mediated anaphylaxis (nonsteroidal anti-inflammatory drugs), suggesting a differential metabolic pathway associated with the mechanism of action. Metabolic differences between 'moderate vs severe' at the acute phase T1 and at basal state T0 were studied. Among the altered metabolites, glucose, lipids, cortisol, betaine and oleamide were observed altered. CONCLUSIONS The results of this exploratory study provide the first evidence that different anaphylactic triggers or severity induce differential metabolic changes along time or at specific time-point, respectively. Besides, the basal status T0 might identify high-risk patients, thus opening new ways to understand, diagnose and treat anaphylaxis.
Collapse
Affiliation(s)
| | - David Obeso
- IMMA, Instituto de Medicina Molecular Aplicada, Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain.,CEMBIO, Centre for Metabolomics and Bioanalysis, Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain
| | - Laura Twomey
- IMMA, Instituto de Medicina Molecular Aplicada, Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain.,CEMBIO, Centre for Metabolomics and Bioanalysis, Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain
| | | | | | - Marta Roca
- Analytical Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Health Research Institute La Fe, Valencia, Spain.,Molecular Therapeutics Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - José Julio Laguna
- Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central de la Cruz Roja, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - Coral Barbas
- CEMBIO, Centre for Metabolomics and Bioanalysis, Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain
| | - Vanesa Esteban
- Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain.,Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Jaume Martí-Garrido
- Allergy Department of Hospital, Universitari i Politècnic La Fe, Valencia, Spain
| | | | | | - Domingo Barber
- IMMA, Instituto de Medicina Molecular Aplicada, Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain
| | - Alma Villaseñor
- IMMA, Instituto de Medicina Molecular Aplicada, Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe
- Boadilla del Monte, Madrid, 28660, Spain
| | | |
Collapse
|
39
|
Han Q, Li H, Jia M, Wang L, Zhao Y, Zhang M, Zhang Q, Meng Z, Shao J, Yang Y, Zhu L. Age-related changes in metabolites in young donor livers and old recipient sera after liver transplantation from young to old rats. Aging Cell 2021; 20:e13425. [PMID: 34157207 PMCID: PMC8282239 DOI: 10.1111/acel.13425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Liver ageing not only damages liver function but also harms systemic metabolism. To better understand the mechanisms underlying liver ageing, we transplanted the livers of young rats to young and old rats and performed untargeted metabolomics to detect changes in the metabolites in the liver tissues and sera. A total of 153 metabolites in the livers and 83 metabolites in the sera were different between the old and young rats that did not undergo liver transplantation; among these metabolites, 7 different metabolites were observed in both the livers and sera. Five weeks after liver transplantation, the levels of 25 metabolites in the young donor livers were similar to those in the old rats, and this result probably occurred due to the effect of the whole‐body environment of the older recipients on the young livers. The 25 altered metabolites included organic acids and derivatives, lipids and lipid‐like molecules, etc. In the sera, the differences in 78 metabolites, which were significant between the young and old rats, were insignificant in the old recipient rats and made the metabolic profile of the old recipients more similar to that of the young recipients. Finally, combining the above metabolomic data with the transcriptomic data from the GEO, we found that the altered metabolites and genes in the liver were enriched in 9 metabolic pathways, including glycerophospholipid, arachidonic acid, histidine and linoleate. Thus, this study revealed important age‐related metabolites and potential pathways as well as the interaction between the liver and the whole‐body environment.
Collapse
Affiliation(s)
- Qunhua Han
- Department of Geriatrics The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Hui Li
- NHFPC Key Laboratory of Combined Multi‐Organ Transplantation The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Mengyuan Jia
- Department of Geriatrics The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Yulan Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Mangli Zhang
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Qin Zhang
- Department of Geriatrics The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Zhuoxian Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Department of Pathology and Pathophysiology, and Key Laboratory of Disease Proteomics of Zhejiang Province Zhejiang University School of Medicine Hangzhou China
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Department of Pathology and Pathophysiology, and Key Laboratory of Disease Proteomics of Zhejiang Province Zhejiang University School of Medicine Hangzhou China
- Zhejiang University Cancer Center Hangzhou China
| | - Yunmei Yang
- Department of Geriatrics The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Lijun Zhu
- Department of Geriatrics The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
40
|
The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int J Mol Sci 2021; 22:ijms22116116. [PMID: 34204101 PMCID: PMC8200986 DOI: 10.3390/ijms22116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Histamine is a pleiotropic mediator involved in a broad spectrum of (patho)-physiological processes, one of which is the regulation of inflammation. Compounds acting on three out of the four known histamine receptors are approved for clinical use. These approved compounds comprise histamine H1-receptor (H1R) antagonists, which are used to control allergic inflammation, antagonists at H2R, which therapeutically decrease gastric acid release, and an antagonist at H3R, which is indicated to treat narcolepsy. Ligands at H4R are still being tested pre-clinically and in clinical trials of inflammatory diseases, including rheumatoid arthritis, asthma, dermatitis, and psoriasis. These trials, however, documented only moderate beneficial effects of H4R ligands so far. Nevertheless, pre-clinically, H4R still is subject of ongoing research, analyzing various inflammatory, allergic, and autoimmune diseases. During inflammatory reactions in gut tissues, histamine concentrations rise in affected areas, indicating its possible biological effect. Indeed, in histamine-deficient mice experimentally induced inflammation of the gut is reduced in comparison to that in histamine-competent mice. However, antagonists at H1R, H2R, and H3R do not provide an effect on inflammation, supporting the idea that H4R is responsible for the histamine effects. In the present review, we discuss the involvement of histamine and H4R in inflammatory and inflammation-associated diseases of the gut.
Collapse
|
41
|
Sudarikova AV, Fomin MV, Yankelevich IA, Ilatovskaya DV. The implications of histamine metabolism and signaling in renal function. Physiol Rep 2021; 9:e14845. [PMID: 33932106 PMCID: PMC8087988 DOI: 10.14814/phy2.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Inflammation is an essential part of the immune response; it has been found to be central to the disruption of kidney function in acute kidney injury, diabetic nephropathy, hypertension, and other renal conditions. One of the well‐known mediators of the inflammatory response is histamine. Histamine receptors are expressed throughout different tissues, including the kidney, and their inhibition has proven to be a viable strategy for the treatment of many inflammation‐associated diseases. Here, we provide an overview of the current knowledge regarding the role of histamine and its metabolism in the kidney. Establishing the importance of histamine signaling for kidney function will enable new approaches for the treatment of kidney diseases associated with inflammation.
Collapse
Affiliation(s)
| | - Mikhail V Fomin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Irina A Yankelevich
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
42
|
Iwasaki N, Terawaki S, Shimizu K, Oikawa D, Sakamoto H, Sunami K, Tokunaga F. Th2 cell-derived histamine is involved in nasal Th2 infiltration in mice. Inflamm Res 2021; 70:539-541. [PMID: 33811487 DOI: 10.1007/s00011-021-01458-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Histamine derived from mast cells and basophils plays important roles in inducing allergic symptoms. Although T cells also produce histamine, the involvement of the histamine produced from T cells has remained enigmatic. We sought to reveal the roles of T helper 2 (Th2) cell-derived histamine in nasal allergic disorders. METHODS The histamine production from Th2 cells was measured by EIA. The mRNA expression of histidine decarboxylase (HDC) was measured by real-time PCR. To investigate the roles of Th2 cell-derived histamine in vivo, we analyzed an antigen-specific Th2 cell transfer mouse model. RESULTS Th2 cells produced histamine by T cell receptor stimulation, and these properties were specific for Th2 cells, but not Th1 cells and naïve CD4 T cells. The histamine produced from Th2 cells was involved in the infiltrations of Th2 cells in response to antigen exposure. CONCLUSION These results suggest that Th2 cell-derived histamine play important roles in nasal allergic disorders.
Collapse
Affiliation(s)
- Naruhito Iwasaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Seigo Terawaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hirokazu Sakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kishiko Sunami
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
43
|
De novo histidine biosynthesis protects Mycobacterium tuberculosis from host IFN-γ mediated histidine starvation. Commun Biol 2021; 4:410. [PMID: 33767335 PMCID: PMC7994828 DOI: 10.1038/s42003-021-01926-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Intracellular pathogens including Mycobacterium tuberculosis (Mtb) have evolved with strategies to uptake amino acids from host cells to fulfil their metabolic requirements. However, Mtb also possesses de novo biosynthesis pathways for all the amino acids. This raises a pertinent question- how does Mtb meet its histidine requirements within an in vivo infection setting? Here, we present a mechanism in which the host, by up-regulating its histidine catabolizing enzymes through interferon gamma (IFN-γ) mediated signalling, exerts an immune response directed at starving the bacillus of intracellular free histidine. However, the wild-type Mtb evades this host immune response by biosynthesizing histidine de novo, whereas a histidine auxotroph fails to multiply. Notably, in an IFN-γ-/- mouse model, the auxotroph exhibits a similar extent of virulence as that of the wild-type. The results augment the current understanding of host-Mtb interactions and highlight the essentiality of Mtb histidine biosynthesis for its pathogenesis.
Collapse
|
44
|
Moya-García AA, Pino-Ángeles A, Sánchez-Jiménez F, Urdiales JL, Medina MÁ. Histamine, Metabolic Remodelling and Angiogenesis: A Systems Level Approach. Biomolecules 2021; 11:415. [PMID: 33799732 PMCID: PMC8000605 DOI: 10.3390/biom11030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a very complex network that connect many metabolic processes important for homeostasis, including nitrogen and energy metabolism. This review brings together and analyses the current information on the relationships of the "histamine system" with other important metabolic modules in human physiology, aiming to bridge current information gaps. In this regard, the molecular characterization of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes a promising research field for future biomedical advances.
Collapse
Affiliation(s)
- Aurelio A. Moya-García
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
| | - Almudena Pino-Ángeles
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Francisca Sánchez-Jiménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (A.A.M.-G.); (M.Á.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29010 Málaga, Spain;
| |
Collapse
|
45
|
Iwasaki N, Terawaki S, Shimizu K, Oikawa D, Sakamoto H, Sunami K, Tokunaga F. Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling. PLoS One 2021; 16:e0248158. [PMID: 33662037 PMCID: PMC7932145 DOI: 10.1371/journal.pone.0248158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/20/2021] [Indexed: 01/27/2023] Open
Abstract
Histamine, which is mainly produced by mast cells and basophils, participates in various allergic symptoms, and some studies have reported that macrophages also produce histamine. Moreover, recent studies have revealed that macrophages, especially alternatively activated macrophages (M2) induced by T helper 2 (Th2) cytokines, such as interleukin (IL)-4 and IL-13, participate in the pathogenesis of allergic diseases. The major source of Th2 cytokines is antigen-specific Th2 cells. To elucidate the relationship between histamine, macrophages, and Th2 cells in allergic inflammation, we established a macrophage-Th2 cell co-culture model in vitro and an antigen-specific Th2 cell transfer mouse model of rhinitis. In vitro analyses indicated that macrophages produce histamine by interacting with antigen-specific Th2 cells through the antigen. Furthermore, Th2 cells and macrophages cooperatively elicited rhinitis in the mouse model. We determined that histamine induces Th2- and macrophage-elicited sneezing responses through H1 receptor signaling, whereas it induces nasal eosinophil infiltrations through H4 receptor signaling. Collectively, these results indicate a novel histamine production mechanism by macrophages, in which Th2 cells and macrophages cooperatively induce nasal allergic inflammation through histamine signaling.
Collapse
Affiliation(s)
- Naruhito Iwasaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
- * E-mail:
| | - Seigo Terawaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hirokazu Sakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kishiko Sunami
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
46
|
Konishi A, Takegami S, Idosaki Y, Kitade T. Application of Molecularly Imprinted Polymer-modified Potentiometric Sensor for Quantitative Determination of Histamine in Serum. ANAL SCI 2020; 36:1561-1563. [PMID: 32863331 DOI: 10.2116/analsci.20n018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/17/2020] [Indexed: 08/09/2023]
Abstract
A molecularly imprinted polymer-modified potentiometric histamine (HIS) sensor was prepared and used for quantitative determination of HIS in bovine serum. The calibration curve using the potential responses measured in 1 × 10-3 mol L-1 phosphate buffer (pH 7.4) showed good linearity in the HIS concentration range of 3 × 10-4 to 1 × 10-2 mol L-1 (r = 0.92), with a detection limit of 1.6 × 10-4 mol L-1. In bovine serum samples, the HIS sensor showed good recovery values of 91 - 104%. Therefore, this HIS sensor successfully determined the HIS concentration in bovine serum samples.
Collapse
Affiliation(s)
- Atsuko Konishi
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto, 607-8414, Japan.
| | - Shigehiko Takegami
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto, 607-8414, Japan
| | - Yoko Idosaki
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto, 607-8414, Japan
| | - Tatsuya Kitade
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto, 607-8414, Japan
| |
Collapse
|
47
|
Badger-Emeka LI, Emeka PM, Thirugnanasambantham K, Ibrahim HIM. Anti-Allergic Potential of Cinnamaldehyde via the Inhibitory Effect of Histidine Decarboxylase (HDC) Producing Klebsiella pneumonia. Molecules 2020; 25:molecules25235580. [PMID: 33261109 PMCID: PMC7730296 DOI: 10.3390/molecules25235580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Allergy is an immunological disorder that develops in response to exposure to an allergen, and histamines mediate these effects via histidine decarboxylase (HDC) activity at the intracellular level. In the present study, we developed a 3D model of Klebsiella pneumoniae histidine decarboxylase (HDC) and analyzed the HDC inhibitory potential of cinnamaldehyde (CA) and subsequent anti-allergic potential using a bacterial and mammalian mast cell model. A computational and in vitro study using K. pneumonia revealed that CA binds to HDC nearby the pyridoxal-5'-phosphate (PLP) binding site and inhibited histamine synthesis in a bacterial model. Further study using a mammalian mast cell model also showed that CA decreased the levels of histamine in the stimulated RBL-2H3 cell line and attenuated the release of β-hexoseaminidase and cell degranulation. In addition, CA treatment also significantly suppressed the levels of pro-inflammatory cytokines TNF-α and IL-6 and the nitric oxide (NO) level in the stimulated mast cells. A gene expression and Western blotting study revealed that CA significantly downregulated the expressions of MAPKp38/ERK and its downstream pro-allergic mediators that are involved in the signaling pathway in mast cell cytokine synthesis. This study further confirms that CA has the potential to attenuate mast cell activation by inhibiting HDC and modifying the process of allergic disorders.
Collapse
Affiliation(s)
- Lorina I. Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-(0)5-3654-2793
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Hairul Islam M. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
48
|
Brosnan ME, Brosnan JT. Histidine Metabolism and Function. J Nutr 2020; 150:2570S-2575S. [PMID: 33000155 PMCID: PMC7527268 DOI: 10.1093/jn/nxaa079] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Histidine is a dietary essential amino acid because it cannot be synthesized in humans. The WHO/FAO requirement for adults for histidine is 10 mg · kg body weight-1 · d-1. Histidine is required for synthesis of proteins. It plays particularly important roles in the active site of enzymes, such as serine proteases (e.g., trypsin) where it is a member of the catalytic triad. Excess histidine may be converted to trans-urocanate by histidine ammonia lyase (histidase) in liver and skin. UV light in skin converts the trans form to cis-urocanate which plays an important protective role in skin. Liver is capable of complete catabolism of histidine by a pathway which requires folic acid for the last step, in which glutamate formiminotransferase converts the intermediate N-formiminoglutamate to glutamate, 5,10 methenyl-tetrahydrofolate, and ammonia. Inborn errors have been recognized in all of the catabolic enzymes of histidine. Histidine is required as a precursor of carnosine in human muscle and parts of the brain where carnosine appears to play an important role as a buffer and antioxidant. It is synthesized in the tissue by carnosine synthase from histidine and β-alanine, at the expense of ATP hydrolysis. Histidine can be decarboxylated to histamine by histidine decarboxylase. This reaction occurs in the enterochromaffin-like cells of the stomach, in the mast cells of the immune system, and in various regions of the brain where histamine may serve as a neurotransmitter.
Collapse
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
49
|
Petrova B, Kanarek N. Potential Benefits and Pitfalls of Histidine Supplementation for Cancer Therapy Enhancement. J Nutr 2020; 150:2580S-2587S. [PMID: 33000153 DOI: 10.1093/jn/nxaa132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary supplementation of the amino acid histidine has demonstrable benefits in various clinical conditions. Recent work in a pediatric leukemia mouse model exposed a surprising potential application of histidine supplementation for cancer therapy enhancement. These findings demand a deeper reassessment of the physiological effects and potential drawbacks of histidine supplementation. As pertinent to this question, we discuss the safety of high doses of histidine and its relevant metabolic fates in the human body. We refrain from recommendations or final conclusions because comprehensive preclinical evidence for safety and efficacy of histidine supplementation is still lacking. However, we emphasize the incentive to study the safety of histidine supplementation and its potential to improve the clinical outcome of pediatric blood cancers through a simple dietary supplementation. The need for comprehensive preclinical testing of histidine supplementation in healthy and tumor-bearing mice is fundamental, and we hope that this review will facilitate such studies.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
50
|
Camilo SMP, Almeida ÉCDS, Sousa JB, Camilo LP, Etchebehere RM. CHRONIC USE OF PROTON PUMP INHIBITORS AND THE QUANTITY OF G, D, AND ECL CELLS IN THE STOMACH. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2020; 33:e1506. [PMID: 32844883 PMCID: PMC7448853 DOI: 10.1590/0102-672020190001e1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acid inhibition from chronic proton pump inhibitor use and a possible increase in gastrin can lead to changes in the regulation of hydrochloric acid production. However, it has not known whether such chronic use changes the presence of gastrin, delta, and enterochromaffin-like cells in the stomach or the relationship between gastrin and delta cells. AIM To analyze the number of gastrin-producing gastrin cells, somatostatin-producing cells, and histamine-producing cells in patients who were chronic users of proton pump inhibitor, with or without related Helicobacter pylori infection. METHODS Biopsies from 105 patients, including 81 chronic proton pump inhibitor users (experimental group) and 24 controls, were processed immunohistochemically and subjected to counting of gastrin, delta, and enterochromaffin-like cells in high-magnification microscopic fields and in 10 glands. RESULTS Gastrin cell, delta cell, and enterochromaffin-like cells counts were similar across the groups and appeared to be unaffected by Helicobacter pylori infection. The ratio between gastrin cells and delta cells was higher in the chronic users of proton pump inhibitor group than in controls. CONCLUSION Chronic users of proton pump inhibitor does not affect gastrin cell, delta cell, and enterochromaffin-like cell counts significantly, but may alter the ratio between gastrin cells and delta cells.
Collapse
Affiliation(s)
- Silvia Maria Perrone Camilo
- Post-Graduate Program in Health Sciences, Clinical Hospital, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | - Élia Cláudia de Souza Almeida
- Post-Graduate Program in Health Sciences, Clinical Hospital, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | - Jacqueline Batista Sousa
- Post-Graduate Program in Health Sciences, Triângulo Mineiro Federal University, Uberaba, MG, Brazil
| | | | | |
Collapse
|