1
|
Xiong Q, Li H, Yan Y, Yan Z, Shi Y, Wang R, Cheng S, Deng Z, Zheng G, Tao M, Cao X, Yu Y, He D, Peng D. A systematic UHPLC-Q-TOF-MS/MS-based strategy for analysis of chemical constituents and related in vivo metabolites of Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118987. [PMID: 39447712 DOI: 10.1016/j.jep.2024.118987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine, is one of the classic prescriptions for the treatment of ischemic stroke in clinical practice. It has the effects of tonifying qi, activating blood circulation, and promoting meridian circulation. However, its chemical analysis has not been clarified, which greatly hinders its further clinical application. Therefore, it is necessary to clarify the chemical constituents and metabolites profile of BYHWD in vivo. AIM OF THE STUDY Characterizing the chemical basis of BYHWD in vitro, and combing studies of related metabolism in vivo to screen out the potential active components of BYHWD with pharmacological effects in vivo. MATERIALS AND METHODS Twelve male rats weighed 200 ± 20 each were selected for the experiments. According to the fragmentation of different structural types of components and diagnostic ions, UHPLC-Q-TOF-MS/MS was used to classify and clarify the unknown components of BYHWD and identify the material basis of BYHWD in vitro. Then, rat plasma, tissues, feces, and urine were collected for analysis. Based on the similarity of MS responses (accurate molecular weight and secondary fragmentation) and chromatographic behavior (retention time), the in vivo prototype and metabolites were analyzed. Through the phase I and phase II metabolism law, a metabolite library was established to analyze the prototype-matched metabolites. RESULTS A total of 121 in vitro compounds and 55 in vivo prototypes of BYHWD were identified, corresponding to 123 matched prototypes. It was mainly composed of flavonoids, triterpene saponins, nucleosides and lactones both in vitro and in vivo. Quercetin, ligustilide, astragaloside IV, calycosin, paeoniflorin and ferulic acid were the main prototypes and metabolites in plasma and urine. CONCLUSION Quercetin, ligustilide, astragaloside IV, calycosin, paeoniflorin and ferulic acid were the main active ingredients of BYHWD.
Collapse
Affiliation(s)
- Qingping Xiong
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National Postdoctoral Rresearch Workstation, Anhui China Resources Jinchan Pharmaceutical Co., LTD, Huaibei, 235000, Anhui, China
| | - Heng Li
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Yajuan Yan
- Clinical Pharmacy Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Zhimin Yan
- Department of Pharmacy, Huai 'an Hospital of Traditional Chinese Medicine (Affiliated Hospital of Nanjing University of Traditional Chinese Medicine), Huai'an 223002, Jiangsu, China
| | - Yingying Shi
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Rong Wang
- National Postdoctoral Rresearch Workstation, Anhui China Resources Jinchan Pharmaceutical Co., LTD, Huaibei, 235000, Anhui, China
| | - Siting Cheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Zhipeng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Mingtao Tao
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Xiangyang Cao
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, China.
| | - Yadong Yu
- Department of Neurology, Lianshui County People's Hospital, Huai'an 223400, Jiangsu, China.
| | - Dongbing He
- National Postdoctoral Rresearch Workstation, Anhui China Resources Jinchan Pharmaceutical Co., LTD, Huaibei, 235000, Anhui, China.
| | - Daiyin Peng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Ye T, Tang D, Tao C, Chen X, Wang X, Xie Y. Absorption enhancement of peach kernel oil on hydroxysafflor yellow A in safflower extracts and its mechanisms. Food Chem 2024; 458:140218. [PMID: 38964104 DOI: 10.1016/j.foodchem.2024.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Carthamus tinctorius L. (Safflower) is extensively used as a functional food and herbal medicine, with its application closely associated with hydroxysafflor yellow A (HSYA). However, the low oral bioavailability of HSYA in safflower extract (SFE) limits its health benefits and application. Our study found that co-administration of 250, 330, and 400 mg/kg peach kernel oil (PKO) increased the oral bioavailability of HSYA in SFE by 1.99-, 2.11-, and 2.49-fold, respectively. The enhanced bioavailability is attributed to improved lipid solubility and intestinal permeability of HSYA in SFE due to PKO. PKO is believed to modify membrane fluidity and tight junctions, increase paracellular penetration, and inhibit the expression and function of P-glycoprotein, enhancing the transcellular transport of substrates. These mechanisms suggest that PKO is an effective absorption enhancer. Our findings provide valuable insights for developing functional foods with improved bioavailability.
Collapse
Affiliation(s)
- Taiwei Ye
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongyun Tang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Chunxiao Tao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuping Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Liu YQ, Wu HL, Zhang ZQ, Wang WL, Han GQ, Zhang CH, Lyu XL, Ma CJ, Li MH. Traditional Use, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Persicae Semen: A Review. Chin J Integr Med 2024:10.1007/s11655-024-3815-4. [PMID: 39073515 DOI: 10.1007/s11655-024-3815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/30/2024]
Abstract
Persicae Semen (Taoren), the seed of mature peaches consumed as both food and medicine, is native to the temperate regions of China, distributed in the provinces of North and East China, and currently cultivated worldwide. The primary components of Persicae Semen include volatile oil, protein, amino acids, amygdalin, and prunasin, all of which have pharmacological properties, such as anti-inflammatory, antioxidant, and immune regulatory effects, and are clinically used in the treatment of gynecological, cardiovascular, cerebrovascular, orthopedic, and digestive system diseases. This review provides a comprehensive perspective on the resource status, ethnopharmacology, phytochemistry, pharmacology, and toxicology, as well as the trend of Persicae Semen patent, global distribution, and clinical applications. This review will help facilitate the development and utilization of Persicae Semen in clinical settings.
Collapse
Affiliation(s)
- Yu-Quan Liu
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010000, China
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Hui-Li Wu
- School of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Zhi-Qiang Zhang
- Infectious Disease Department, Hohhot Mongolian Medicine of Traditional Chinese Medicine Hospital, Hohhot, 010000, China
| | - Wen-le Wang
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Guo-Qing Han
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Chun-Hong Zhang
- School of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xin-Liang Lyu
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Chun-Jie Ma
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010000, China.
| | - Min-Hui Li
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, 010020, China.
- School of Pharmacy, Baotou Medical College, Baotou, 014040, China.
| |
Collapse
|
4
|
Peng C, Li J, Chen Y, Zhang HR, Li TX, Jiang YH, Yang XY, Zhao Y. PCSK9 aggravated carotid artery stenosis in ApoE -/- mice by promoting the expression of tissue factors in endothelial cells via the TLR4/NF-κB pathway. Biochem Pharmacol 2024; 225:116314. [PMID: 38797271 DOI: 10.1016/j.bcp.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.
Collapse
Affiliation(s)
- Chao Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Heng-Rui Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Tian-Xing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Hang Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
5
|
Landolsi C, Salem-Berrabah OB, Feki M, Harrabi S, Hosseinian F. Unsaponifiable Compounds and Phenols Content, Antioxidant and Antitrypsin Activities of Prunus persica Kernel Oil. J Oleo Sci 2024; 73:865-874. [PMID: 38825540 DOI: 10.5650/jos.ess24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Although peach kernels are rich in oil, there is a lack of information about its chemical and biological properties. Therefore, the purpose of this study was to determine the lipid profile, antioxidant capacity, and trypsin inhibitory propriety of peach oil extracted from two varieties (sweet cap and O'Henry) cultivated in Tunisia. The investigated peach kernel oil contains significant amount of unsaponifiable (2.1±0.5-2.8±0.2% of oil) and phenolic compounds (45.8±0.92-74.6±1.3 mg GAE/g of oil). Its n-alkane profile was characterized by the predominance of tetracosane n-C24 (47.24%) followed by tricosane n-C23 (34.43%). An important total tocopherol content (1192.83±3.1 mg/kg oil) has been found in sweet cap cultivar. Although rich in polyphenols and tocopherols, the tested oil did not display an inhibitory effect on trypsin. However, all peach oil samples showed effective antioxidant capacity and the highest values (86.34±1.3% and 603.50±2.6 μmol TE/g oil for DPPH test and ORAC assay, respectively) were observed for sweet cap oil. Peach oil has an excellent potential for application in the food and pharmaceutical industries as source of naturally-occurring bioactive substances.
Collapse
Affiliation(s)
- Cyrine Landolsi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis
| | - Olfa Ben Salem-Berrabah
- Laboratory of Environmental Science and Technologies, Higher Institute of Sciences and Technology of Environment, University of Carthage
| | - Moncef Feki
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis
| | - Saoussem Harrabi
- Laboratory of Clinical Biochemistry, LR99ES11, Faculty of Medicine Tunis
| | - Farah Hosseinian
- Food Science Program, Carleton University
- Institute of Biochemistry, Carleton University
| |
Collapse
|
6
|
From Biorefinery to Food Product Design: Peach (Prunus persica) By-Products Deserve Attention. FOOD BIOPROCESS TECH 2022; 16:1197-1215. [PMID: 36465719 PMCID: PMC9702882 DOI: 10.1007/s11947-022-02951-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is an increasing demand for functional foods to attend the consumers preference for products with health benefits. Peach (Prunus persica), from Rosaceae family, is a worldwide well-known fruit, and its processing generates large amounts of by-products, consisting of peel, stone (seed shell + seed), and pomace, which represent about 10% of the annual global production, an equivalent of 2.4 million tons. Some studies have already evaluated the bioactive compounds from peach by-products, although, the few available reviews do not consider peach by-products as valuable materials for product design methodology. Thereby, a novelty of this review is related to the use of these mostly unexplored by-products as alternative sources of valuable components, encouraging the circular bioeconomy approach by designing new food products. Besides, this review presents recent peach production data, compiles briefly the extraction methods for the recovery of lipids, proteins, phenolics, and fiber from peach by-products, and also shows in vivo study reports on anti-inflammatory, anti-obesity, and anti-cerebral ischemia activities associated with peach components and by-product. Therefore, different proposals to recover bioactive fractions from peach by-products are provided, for further studies on food-product design.
Collapse
|
7
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Wang X, Wang T, Wang Y, Li X, Chen Q, Wang Y, Zhang X, Wang H, Zhao H, Mou Y, Xia L, Zhang Y. Research progress on classical traditional Chinese medicine Taohong Siwu decoction in the treatment of coronary heart disease. Biomed Pharmacother 2022; 152:113249. [PMID: 35700678 DOI: 10.1016/j.biopha.2022.113249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
The pathogenesis of coronary heart disease is closely related to blood stasis. Taohong Siwu decoction (THSW for short) is one of the most widely used prescriptions for activating blood and removing stasis. Clinical research has confirmed its curative effect on coronary heart disease. However, its underlying mechanism remains unclear. Therefore, this paper reviewed the clinical efficacy of THSW and determine its effective components based on a comprehensive literature review. Furthermore, the core components and targets of THSW in treating coronary heart disease using molecular docking were verified, and the interaction sites were predicted to construct a theoretical basis for the clinical application of THSW.
Collapse
Affiliation(s)
- XueZhen Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - YingZheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Xiaoyu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Lei Xia
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.
| |
Collapse
|
9
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Wang M, Dai L. A Review of Traditional Chinese Medicine, Buyang Huanwu Decoction for the Treatment of Cerebral Small Vessel Disease. Front Neurosci 2022; 16:942188. [PMID: 35844225 PMCID: PMC9278698 DOI: 10.3389/fnins.2022.942188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is often referred to as “collaterals disease” in traditional Chinese medicine (TCM), and commonly includes ischemic and hemorrhagic CSVD. TCM has a long history of treating CSVD and has demonstrated unique efficacy. Buyang Huanwu Decoction (BHD) is a classical TCM formula that has been used for the prevention and treatment of stroke for hundreds of years. BHD exerts its therapeutic effects on CSVD through a variety of mechanisms. In this review, the clinical and animal studies on BHD and CSVD were systematically introduced. In addition, the pharmacological mechanisms, active components, and clinical applications of BHD in the treatment of CSVD were reviewed. We believe that an in-depth understanding of BHD, its pharmacological mechanism, disease-drug interaction, and other aspects will help in laying the foundation for its development as a new therapeutic strategy for the treatment of CSVD.
Collapse
|
10
|
Shao CL, Cui GH, Guo HD. Effects and Mechanisms of Taohong Siwu Decoction on the Prevention and Treatment of Myocardial Injury. Front Pharmacol 2022; 13:816347. [PMID: 35153789 PMCID: PMC8826566 DOI: 10.3389/fphar.2022.816347] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Taohong Siwu decoction (THSWD) is one of the classic prescriptions for promoting blood circulation and removing blood stasis. With the continuous in-depth excavation in basic and clinical research, it has been found that THSWD has made greater progress in the prevention and treatment of cardiovascular diseases. Mechanisms of the current studies have shown that it could prevent and treat the myocardial injury by inhibiting inflammatory reaction, antioxidant stress, inhibiting platelet aggregation, prolonging clotting time, anti-fibrosis, reducing blood lipids, anti-atherosclerosis, improving hemorheology and vascular pathological changes, regulating related signal pathways and other mechanisms to prevent and treat the myocardial injury, so as to protect cardiomyocytes and improve cardiac function. Many clinical studies have shown that THSWD is effective in the prevention and treatment of cardiovascular diseases related to myocardial injuries, such as coronary heart disease angina pectoris (CHD-AP), and myocardial infarction. In clinical practice, it is often used by adding and subtracting prescriptions, the combination of compound prescriptions and combinations of chemicals and so on. However, there are some limitations and uncertainties in both basic and clinical research of prescriptions. According to the current research, although the molecular biological mechanism of various active ingredients needs to be further clarified, and the composition and dose of the drug have not been standardized and quantified, this study still has exploration for scientific research and clinical practice. Therefore, this review mainly discusses the basic mechanisms and clinical applications of THSWD in the prevention and treatment of the myocardial injury caused by CHD-AP and myocardial infarction. The authors hope to provide valuable ideas and references for researchers and clinicians.
Collapse
Affiliation(s)
- Chang-Le Shao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
WANG L, LI A, ZHONG Z, TANG Y, LI D, XIAO J. Isolation, purification and bioactivity of ACE inhibitory peptides from peach kernel protein enzymatic hydrolysate. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Le WANG
- Central South University of Forestry and Technology, China
| | - Anping LI
- Central South University of Forestry and Technology, China
| | | | - Yumei TANG
- Central South University of Forestry and Technology, China
| | - Dongyang LI
- Central South University of Forestry and Technology, China
| | - Jianping XIAO
- Central South University of Forestry and Technology, China
| |
Collapse
|
12
|
Sunagawa M, Takayama Y, Kato M, Tanaka M, Fukuoka S, Okumo T, Tsukada M, Yamaguchi K. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼. Front Mol Neurosci 2021; 14:705023. [PMID: 34970116 PMCID: PMC8712661 DOI: 10.3389/fnmol.2021.705023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Tanaka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Seiya Fukuoka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kojiro Yamaguchi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
13
|
Mechanism of Yifei Decoction Combined with MitoQ on Inhibition of TGF β1/NOX4 and PDGF/ROCK Signal Pathway in Idiopathic Pulmonary Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6615615. [PMID: 34135982 PMCID: PMC8177988 DOI: 10.1155/2021/6615615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/29/2021] [Indexed: 11/23/2022]
Abstract
Background Rho-related coiled helix forming protein kinase (Rho-ROCK) and another important fibrogenic factor-PDGF play a critical role in collagen deposition in rat lung tissue. Yifei decoction (YFT), a Chinese herbal decoction, has been used to treat idiopathic pulmonary fibrosis (IPF) in clinical practice and has produced positive outcomes; however, convincing evidence is currently lacking. The present study aimed to investigate the effects of YFT combined with MitoQ in rats with IPF and to explore the underlying mechanism. Methods Rat IPF model was established by endotracheal injection of 5 mg/kg BleomycinA5 into the specific pathogen-free SD rats. MitoQ (6.5 μmol/kg once daily), YFT (10 ml/kg once daily), and MitoQ + YFT (6.5 μmol/kg + 10 ml/kg once daily) were used to treat the rat model for 4 weeks, respectively. The normal rats without IPF were used as the controls. After 4 weeks of drug treatment, lung histopathology was assessed. Immunohistochemistry was used to detect the expression of fibronectin and collagen IV in lung tissue. The expression of IL-6, IL-1β, TNF-α, GSH-Px, SOD, MDA, and hydroxyproline was determined by enzyme-linked immunosorbent assay. The expressions of TGFβ1, NOX4, PDGFR-β, and ROCK1 were determined using real-time quantitative PCR and Western blot. Results After 4 weeks of drug treatment, comparison of the MitoQ + YFT group with the IPF group showed that lung injury scores, W/D, lung tissue hydroxyproline, fibronectin, collagen IV content, and IL-6, IL-1β, TNF-α, and MDA levels were significantly lower (P < 0.05), as well as the expression of TGFβ1, NOX4, PDGFR-β, and ROCK1, but the activity of GSH-Px and SOD was higher (P < 0.05). Conclusion MitoQ combined with YFT can improve lung injury in rats with pulmonary fibrosis by reducing the secretion of proinflammatory cytokines and inhibiting TGFβ1/NOX4 and PDGF/ROCK signaling pathways. It may provide a new method for the treatment of pulmonary fibrosis.
Collapse
|
14
|
Wijeratne T, Gillard Crewther S, Sales C, Karimi L. COVID-19 Pathophysiology Predicts That Ischemic Stroke Occurrence Is an Expectation, Not an Exception-A Systematic Review. Front Neurol 2021; 11:607221. [PMID: 33584506 PMCID: PMC7876298 DOI: 10.3389/fneur.2020.607221] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Clinical reports of neurological manifestations associated with severe coronavirus disease 2019 (COVID-19), such as acute ischemic stroke (AIS), encephalopathy, seizures, headaches, acute necrotizing encephalitis, cerebral microbleeds, posterior reversible leukoencephalopathy syndrome, hemophagocytic lymphohistiocytosis, peripheral neuropathy, cranial nerve palsies, transverse myelitis, and demyelinating disorders, are increasing rapidly. However, there are comparatively few studies investigating the potential impact of immunological responses secondary to hypoxia, oxidative stress, and excessive platelet-induced aggregation on the brain. This scoping review has focused on the pathophysiological mechanisms associated with peripheral and consequential neural (central) inflammation leading to COVID-19-related ischemic strokes. It also highlights the common biological processes shared between AIS and COVID-19 infection and the importance of the recognition that severe respiratory dysfunction and neurological impairments associated with COVID and chronic inflammation [post-COVID-19 neurological syndrome (PCNS)] may significantly impact recovery and ability to benefit from neurorehabilitation. This study provides a comprehensive review of the pathobiology of COVID-19 and ischemic stroke. It also affirms that the immunological contribution to the pathophysiology of COVID-19 is predictive of the neurological sequelae particularly ischemic stroke, which makes it the expectation rather than the exception. This work is of fundamental significance to the neurorehabilitation community given the increasing number of COVID-related ischemic strokes, the current limited knowledge regarding the risk of reinfection, and recent reports of a PCNS. It further highlights the need for global collaboration and research into new pathobiology-based neurorehabilitation treatment strategies and more integrated evidence-based care.
Collapse
Affiliation(s)
- Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, University of Rajarata, Anuradhapura, Sri Lanka
| | - Sheila Gillard Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
| | - Carmela Sales
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
- Department of Medicine, Faculty of Medicine, University of Rajarata, Anuradhapura, Sri Lanka
| | - Leila Karimi
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Neurology, Western Health and University Melbourne, Australian Institute of Muscular Skeletal Sciences (AIMSS), Level Three, Western Health Centre for Research and Education (WHCRE), Sunshine Hospital, Melbourne, VIC, Australia
- Faculty of Social and Political Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|