1
|
Tong Z, Kamran M, Zhang Q, Lin F, Fang D, Chen X, Zhu T, Xu H, Xiao B. Identification of QTLs associated with yield-related traits and superior genotype prediction using recombinant inbred line population in tobacco. Gene 2024; 928:148765. [PMID: 39019098 DOI: 10.1016/j.gene.2024.148765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Tobacco is an economically significant industrial crop and model plant for genetic research, yet little is known about its genetic architecture. Quantitative trait loci (QTL) analysis was performed for six agronomic traits on an F_7 population of 341 genotypes, parents, and F1 plants using 1974 SSR markers across two environments. 31 QTLs contributing single-locus additive effects on 13 linkage groups (LGs) and 6 QTL pairs contributing epistatic effects on 6 LGs, were detected by the QTLNetwork 2.0 which was developed for the mixed-linear-model-based composite interval mapping (MCIM). Notably, 5 QTLs and 1 epistatic QTL pair were found to have pleiotropic effects on some genetically related traits. Moreover, the Broad sense heritability of the detected QTLs ranged from 1.05% to 43.33%, while genotype-by-environment interaction heritability spanned from 27.09% to 56.25%. Based on the results of QTL mapping, the potential superior lines for all or specific environments were designed and evaluated. Five major QTLs were finely dissected based on the tobacco reference genome of K326, and 31 candidate genes were predicted. This study offered new insights into the complicated genetic architecture and QTL resources for efficient breeding design for genetic improvement of agronomic traits in tobacco.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
| | - Muhammad Kamran
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Zhang
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Lin
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
| | - Tianneng Zhu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiming Xu
- Institute of Bioinformatics and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China.
| |
Collapse
|
2
|
Jia H, Han D, Yan X, Zhang L, Liang J, Lu W. Genome-Wide Association and RNA-Seq Analyses Reveal a Potential Candidate Gene Related to Oil Content in Soybean Seeds. Int J Mol Sci 2024; 25:8134. [PMID: 39125702 PMCID: PMC11311756 DOI: 10.3390/ijms25158134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Soybean is a crucial crop globally, serving as a significant source of unsaturated fatty acids and protein in the human diet. However, further enhancements are required for the related genes that regulate soybean oil synthesis. In this study, 155 soybean germplasms were cultivated under three different environmental conditions, followed by phenotypic identification and genome-wide association analysis using simplified sequencing data. Genome-wide association analysis was performed using SLAF-seq data. A total of 36 QTLs were significantly associated with oil content (-log10(p) > 3). Out of the 36 QTLs associated with oil content, 27 exhibited genetic overlap with previously reported QTLs related to oil traits. Further transcriptome sequencing was performed on extreme high-low oil soybean varieties. Combined with transcriptome expression data, 22 candidate genes were identified (|log2FC| ≥ 3). Further haplotype analysis of the potential candidate genes showed that three potential candidate genes had excellent haplotypes, including Glyma.03G186200, Glyma.09G099500, and Glyma.18G248900. The identified loci harboring beneficial alleles and candidate genes likely contribute significantly to the molecular network's underlying marker-assisted selection (MAS) and oil content.
Collapse
Affiliation(s)
| | | | | | | | | | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China; (H.J.); (D.H.); (X.Y.); (L.Z.); (J.L.)
| |
Collapse
|
3
|
Zhang Y, Bhat JA, Zhang Y, Yang S. Understanding the Molecular Regulatory Networks of Seed Size in Soybean. Int J Mol Sci 2024; 25:1441. [PMID: 38338719 PMCID: PMC10855573 DOI: 10.3390/ijms25031441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Soybean being a major cash crop provides half of the vegetable oil and a quarter of the plant proteins to the global population. Seed size traits are the most important agronomic traits determining the soybean yield. These are complex traits governed by polygenes with low heritability as well as are highly influenced by the environment as well as by genotype x environment interactions. Although, extensive efforts have been made to unravel the genetic basis and molecular mechanism of seed size in soybean. But most of these efforts were majorly limited to QTL identification, and only a few genes for seed size were isolated and their molecular mechanism was elucidated. Hence, elucidating the detailed molecular regulatory networks controlling seed size in soybeans has been an important area of research in soybeans from the past decades. This paper describes the current progress of genetic architecture, molecular mechanisms, and regulatory networks for seed sizes of soybeans. Additionally, the main problems and bottlenecks/challenges soybean researchers currently face in seed size research are also discussed. This review summarizes the comprehensive and systematic information to the soybean researchers regarding the molecular understanding of seed size in soybeans and will help future research work on seed size in soybeans.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Jin H, Yang X, Zhao H, Song X, Tsvetkov YD, Wu Y, Gao Q, Zhang R, Zhang J. Genetic analysis of protein content and oil content in soybean by genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1182771. [PMID: 37346139 PMCID: PMC10281628 DOI: 10.3389/fpls.2023.1182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Soybean seed protein content (PC) and oil content (OC) have important economic value. Detecting the loci/gene related to PC and OC is important for the marker-assisted selection (MAS) breeding of soybean. To detect the stable and new loci for PC and OC, a total of 320 soybean accessions collected from the major soybean-growing countries were used to conduct a genome-wide association study (GWAS) by resequencing. The PC ranged from 37.8% to 46.5% with an average of 41.1% and the OC ranged from 16.7% to 22.6% with an average of 21.0%. In total, 23 and 29 loci were identified, explaining 3.4%-15.4% and 5.1%-16.3% of the phenotypic variations for PC and OC, respectively. Of these, eight and five loci for PC and OC, respectively, overlapped previously reported loci and the other 15 and 24 loci were newly identified. In addition, nine candidate genes were identified, which are known to be involved in protein and oil biosynthesis/metabolism, including lipid transport and metabolism, signal transduction, and plant development pathway. These results uncover the genetic basis of soybean protein and oil biosynthesis and could be used to accelerate the progress in enhancing soybean PC and OC.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue Yang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haibin Zhao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xizhang Song
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yordan Dimitrov Tsvetkov
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - YuE Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiang Gao
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jumei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Yang Y, Li Y, Cheng Z, Su Q, Jin X, Song Y, Wang J. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:97. [PMID: 37027047 DOI: 10.1007/s00122-023-04328-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/20/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE AhyHOF1, likely encoding a WRI1 transcription factor, plays critical roles in peanut oil synthesis. Although increasing the oil content of peanut to meet growing demand has long been a primary aim of breeding programs worldwide, the mining of genetic resources to achieve this objective has obviously lagged behind that of other oil crops. In the present study, we developed an advanced recombinant inbred line population containing 192 F9:11 families derived from parents JH5 and KX01-6. We then constructed a high-resolution genetic map covering 3,706.382 cM, with an average length of 185.32 cM per linkage group, using 2840 polymorphic SNPs. Two stable QTLs, qCOA08_1 and qCOA08_2 having the highest contributions to genetic variation (16.1% and 20.7%, respectively), were simultaneously detected in multiple environments and closely mapped within physical intervals of approximately 2.9 Mb and 1.7 Mb, respectively, on chromosome A08. In addition, combined analysis of whole-genome and transcriptome resequencing data uncovered a strong candidate gene encoding a WRI1 transcription factor and differentially expressed between the two parents. This gene, designated as High Oil Favorable gene 1 in Arachis hypogaea (AhyHOF1), was hypothesized to play roles in oil accumulation. Examination of near-inbred lines of #AhyHOF1/#Ahyhof1 provided further evidence that AhyHOF1 increases oil content, mainly by affecting the contents of several fatty acids. Taken together, our results provide valuable information for cloning the favorable allele for oil content in peanut. In addition, the closely linked polymorphic SNP markers within qCOA08_1 and qCOA08_2 loci may be useful for accelerating marker-assisted selection breeding of peanut.
Collapse
Affiliation(s)
- Yongqing Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yurong Li
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Zengshu Cheng
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Qiao Su
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Xinxin Jin
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yahui Song
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China
| | - Jin Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, The Key Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
6
|
Scariolo F, Palumbo F, Farinati S, Barcaccia G. Pipeline to Design Inbred Lines and F1 Hybrids of Leaf Chicory (Radicchio) Using Male Sterility and Genotyping-by-Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:1242. [PMID: 36986929 PMCID: PMC10055022 DOI: 10.3390/plants12061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Chicory, a horticultural crop cultivated worldwide, presents many botanical varieties and local biotypes. Among these, cultivars of the Italian radicchio group of the pure species Cichorium intybus L. and its interspecific hybrids with Cichorium endivia L.-as the "Red of Chioggia" biotype-includes several phenotypes. This study uses a pipeline to address the marker-assisted breeding of F1 hybrids: it presents the genotyping-by-sequencing results of four elite inbred lines using a RADseq approach and an original molecular assay based on CAPS markers for screening mutants with nuclear male sterility in the radicchio of Chioggia. A total of 2953 SNP-carrying RADtags were identified and used to compute the actual estimates of homozygosity and overall genetic similarity and uniformity of the populations, as well as to determine their genetic distinctiveness and differentiation. Molecular data were further used to investigate the genomic distribution of the RADtags among the two Cichorium species, allowing their mapping in 1131 and 1071 coding sequences in chicory and endive, respectively. Paralleling this, an assay to screen the genotype at the male sterility locus Cims-1 was developed to discriminate wild-type and mutant alleles of the causative gene myb80-like. Moreover, a RADtag mapped close to this genomic region proved the potential application of this method for future marker-assisted selection tools. Finally, after combining the genotype information of the core collection, the best 10 individuals from each inbred line were selected to compute the observed genetic similarity as a measure of uniformity as well as the expected homozygosity and heterozygosity estimates scorable by the putative progenies derived from selfing (pollen parent) and full-sibling (seed parent) or pair-wise crossing (F1 hybrids). This predictive approach was conducted as a pilot study to understand the potential application of RADseq in the fine tuning of molecular marker-assisted breeding strategies aimed at the development of inbred lines and F1 hybrids in leaf chicory.
Collapse
|
7
|
Zuo JF, Chen Y, Ge C, Liu JY, Zhang YM. Identification of QTN-by-environment interactions and their candidate genes for soybean seed oil-related traits using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2022; 13:1096457. [PMID: 36578334 PMCID: PMC9792120 DOI: 10.3389/fpls.2022.1096457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Introduction Although seed oil content and its fatty acid compositions in soybean were affected by environment, QTN-by-environment (QEIs) and gene-by-environment interactions (GEIs) were rarely reported in genome-wide association studies. Methods The 3VmrMLM method was used to associate the trait phenotypes, measured in five to seven environments, of 286 soybean accessions with 106,013 SNPs for detecting QTNs and QEIs. Results Seven oil metabolism genes (GmSACPD-A, GmSACPD-B, GmbZIP123, GmSWEET39, GmFATB1A, GmDGAT2D, and GmDGAT1B) around 598 QTNs and one oil metabolism gene GmFATB2B around 54 QEIs were verified in previous studies; 76 candidate genes and 66 candidate GEIs were predicted to be associated with these traits, in which 5 genes around QEIs were verified in other species to participate in oil metabolism, and had differential expression across environments. These genes were found to be related to soybean seed oil content in haplotype analysis. In addition, most candidate GEIs were co-expressed with drought response genes in co-expression network, and three KEGG pathways which respond to drought were enriched under drought stress rather than control condition; six candidate genes were hub genes in the co-expression networks under drought stress. Discussion The above results indicated that GEIs, together with drought response genes in co-expression network, may respond to drought, and play important roles in regulating seed oil-related traits together with oil metabolism genes. These results provide important information for genetic basis, molecular mechanisms, and soybean breeding for seed oil-related traits.
Collapse
Affiliation(s)
- Jian-Fang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Yang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Yang C, Huang Y, Lv P, Antwi-Boasiako A, Begum N, Zhao T, Zhao J. NAC Transcription Factor GmNAC12 Improved Drought Stress Tolerance in Soybean. Int J Mol Sci 2022; 23:ijms231912029. [PMID: 36233329 PMCID: PMC9570484 DOI: 10.3390/ijms231912029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
NAC transcription factors (TFs) could regulate drought stresses in plants; however, the function of NAC TFs in soybeans remains unclear. To unravel NAC TF function, we established that GmNAC12, a NAC TF from soybean (Glycine max), was involved in the manipulation of stress tolerance. The expression of GmNAC12 was significantly upregulated more than 10-fold under drought stress and more than threefold under abscisic acid (ABA) and ethylene (ETH) treatment. In order to determine the function of GmNAC12 under drought stress conditions, we generated GmNAC12 overexpression and knockout lines. The present findings showed that under drought stress, the survival rate of GmNAC12 overexpression lines increased by more than 57% compared with wild-type plants, while the survival rate of GmNAC12 knockout lines decreased by at least 46%. Furthermore, a subcellular localisation analysis showed that the GmNAC12 protein is concentrated in the nucleus of the tobacco cell. In addition, we used a yeast two-hybrid assay to identify 185 proteins that interact with GmNAC12. Gene ontology (GO) and KEGG analysis showed that GmNAC12 interaction proteins are related to chitin, chlorophyll, ubiquitin–protein transferase, and peroxidase activity. Hence, we have inferred that GmNAC12, as a key gene, could positively regulate soybean tolerance to drought stress.
Collapse
Affiliation(s)
- Chengfeng Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhong Huang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- National Forage Breeding Innovation Base (JAAS), Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Augustine Antwi-Boasiako
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Crops Research Institute, Council for Scientific and Industrial Research, Kumasi AK420, Ghana
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.Z.); (J.Z.)
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.Z.); (J.Z.)
| |
Collapse
|
9
|
Feng W, Fu L, Fu M, Sang Z, Wang Y, Wang L, Ren H, Du W, Hao X, Sun L, Zhang J, Wang W, Xing G, He J, Gai J. Transgressive Potential Prediction and Optimal Cross Design of Seed Protein Content in the Northeast China Soybean Population Based on Full Exploration of the QTL-Allele System. FRONTIERS IN PLANT SCIENCE 2022; 13:896549. [PMID: 35903228 PMCID: PMC9317943 DOI: 10.3389/fpls.2022.896549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/09/2022] [Indexed: 06/12/2023]
Abstract
Northeast China is a major soybean production region in China. A representative sample of the Northeast China soybean germplasm population (NECSGP) composed of 361 accessions was evaluated for their seed protein content (SPC) in Tieling, Northeast China. This SPC varied greatly, with a mean SPC of 40.77%, ranging from 36.60 to 46.07%, but it was lower than that of the Chinese soybean landrace population (43.10%, ranging from 37.51 to 50.46%). The SPC increased slightly from 40.32-40.97% in the old maturity groups (MG, MGIII + II + I) to 40.93-41.58% in the new MGs (MG0 + 00 + 000). The restricted two-stage multi-locus genome-wide association study (RTM-GWAS) with 15,501 SNP linkage-disequilibrium block (SNPLDB) markers identified 73 SPC quantitative trait loci (QTLs) with 273 alleles, explaining 71.70% of the phenotypic variation, wherein 28 QTLs were new ones. The evolutionary changes of QTL-allele structures from old MGs to new MGs were analyzed, and 97.79% of the alleles in new MGs were inherited from the old MGs and 2.21% were new. The small amount of new positive allele emergence and possible recombination between alleles might explain the slight SPC increase in the new MGs. The prediction of recombination potentials in the SPC of all the possible crosses indicated that the mean of SPC overall crosses was 43.29% (+2.52%) and the maximum was 50.00% (+9.23%) in the SPC, and the maximum transgressive potential was 3.93%, suggesting that SPC breeding potentials do exist in the NECSGP. A total of 120 candidate genes were annotated and functionally classified into 13 categories, indicating that SPC is a complex trait conferred by a gene network.
Collapse
Affiliation(s)
- Weidan Feng
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lianshun Fu
- Tieling Academy of Agricultural Sciences, Tieling, China
| | - Mengmeng Fu
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
| | - Ziqian Sang
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
| | - Yanping Wang
- Mudanjiang Research and Development Center for Soybean/Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Lei Wang
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Haixiang Ren
- Mudanjiang Research and Development Center for Soybean/Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Weiguang Du
- Mudanjiang Research and Development Center for Soybean/Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Xiaoshuai Hao
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lei Sun
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiaoping Zhang
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wubin Wang
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Guangnan Xing
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jianbo He
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- Soybean Research Institute/MARA National Center for Soybean Improvement/MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Jha UC, Nayyar H, Parida SK, Deshmukh R, von Wettberg EJB, Siddique KHM. Ensuring Global Food Security by Improving Protein Content in Major Grain Legumes Using Breeding and 'Omics' Tools. Int J Mol Sci 2022; 23:7710. [PMID: 35887057 PMCID: PMC9325250 DOI: 10.3390/ijms23147710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Grain legumes are a rich source of dietary protein for millions of people globally and thus a key driver for securing global food security. Legume plant-based 'dietary protein' biofortification is an economic strategy for alleviating the menace of rising malnutrition-related problems and hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an insufficient daily intake of animal protein/dietary protein due to economic limitations, especially in developing countries. Therefore, enhancing grain legume protein content will help eradicate protein-related malnutrition problems in low-income and underprivileged countries. Here, we review the exploitable genetic variability for grain protein content in various major grain legumes for improving the protein content of high-yielding, low-protein genotypes. We highlight classical genetics-based inheritance of protein content in various legumes and discuss advances in molecular marker technology that have enabled us to underpin various quantitative trait loci controlling seed protein content (SPC) in biparental-based mapping populations and genome-wide association studies. We also review the progress of functional genomics in deciphering the underlying candidate gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in shedding light on the accumulation of various novel proteins and metabolites in high-protein legume genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve legume-based dietary protein security and thus reduce the global hunger risk.
Collapse
Affiliation(s)
- Uday C. Jha
- ICAR—Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Punjab 140308, India;
| | | | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
11
|
Hong H, Najafabadi MY, Torkamaneh D, Rajcan I. Identification of quantitative trait loci associated with seed quality traits between Canadian and Ukrainian mega-environments using genome-wide association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2515-2530. [PMID: 35716202 DOI: 10.1007/s00122-022-04134-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE Identifying QTL associated with soybean seed quality traits from a diverse GWAS panel cultivated in Canadian and Ukrainian mega-environments may facilitate future cultivar development for foreign markets. Understanding the complex genetic basis of seed quality traits for soybean in the mega-environments (MEs) is critical for developing a marker-assisted selection program that will lead to breeding superior cultivars adapted to specific regions. This study aimed to analyze the accumulation of 14 soybean seed quality traits in Canadian ME and two seed quality traits in Ukrainian ME and identify associated ME specific quantitative trait loci (QTLSP) and ME universal QTL (QTLU) for protein and oil using a genome-wide association study (GWAS) panel consisting of 184 soybean genotypes. The panel was planted in three locations in Canada and two locations in Ukraine in 2018 and 2019. Genotype plus genotype-by-environment biplot analysis was conducted to assess the accumulation of individual seed compounds across different locations. The protein accumulation was high in the Canadian ME and low in the Ukrainian ME, whereas the oil concentration showed the opposite trends between the two MEs. No QTLU were identified across the MEs for protein and oil concentrations. In contrast, nine Canadian QTLSP for protein were identified on various chromosomes, which were co-located with QTL controlling other traits identified in the Canadian ME. The lack of common QTLU for protein and oil suggests that it may be necessary to use QTLSP associated with these traits separately for the Canadian and Ukrainian ME. Additional Ukrainian data for seed compounds other than oil and protein are required to identify novel QTLSP and QTLU for such traits for the individual or combined Canadian and Ukrainian MEs.
Collapse
Affiliation(s)
- Huilin Hong
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Turquetti-Moraes DK, Moharana KC, Almeida-Silva F, Pedrosa-Silva F, Venancio TM. Integrating omics approaches to discover and prioritize candidate genes involved in oil biosynthesis in soybean. Gene 2022; 808:145976. [PMID: 34592351 DOI: 10.1016/j.gene.2021.145976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Soybean is a major source of edible protein and oil. Oil content is a quantitative trait that is significantly determined by genetic and environmental factors. Over the past 30 years, a large volume of soybean genetic, genomic, and transcriptomic data have been accumulated. Nevertheless, integrative analyses of such data remain scarce, in spite of their importance for crop improvement. We hypothesized that the co-occurrence of genomic regions for oil-related traits in different studies may reveal more stable regions encompassing important genetic determinants of oil content and quality in soybean. We integrated publicly available data, obtained with distinct techniques, to discover and prioritize candidate genes involved in oil biosynthesis and regulation in soybean. We detected key fatty acid biosynthesis genes (e.g., BCCP2 and ACCase, FADs, KAS family proteins) and several transcription factors, which are likely regulators of oil biosynthesis. In addition, we identified new candidates for seed oil accumulation and quality, such as Glyma.03G213300 and Glyma.19G160700, which encode a translocator protein homolog and a histone acetyltransferase, respectively. Further, oil and protein genomic hotspots are strongly associated with breeding and not with domestication, suggesting that soybean domestication prioritized other traits. The genes identified here are promising targets for breeding programs and for the development of soybean lines with increased oil content and quality.
Collapse
Affiliation(s)
- Dayana K Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
13
|
Wang J, Mao L, Zeng Z, Yu X, Lian J, Feng J, Yang W, An J, Wu H, Zhang M, Liu L. Genetic mapping high protein content QTL from soybean 'Nanxiadou 25' and candidate gene analysis. BMC PLANT BIOLOGY 2021; 21:388. [PMID: 34416870 PMCID: PMC8377855 DOI: 10.1186/s12870-021-03176-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein content (SPC) is a valuable quality trait controlled by multiple genes in soybean. RESULTS In this study, we performed quantitative trait loci (QTL) mapping, QTL-seq, and RNA sequencing (RNA-seq) to reveal the genes controlling protein content in the soybean by using the high protein content variety Nanxiadou 25. A total of 50 QTL for SPC distributed on 14 chromosomes except chromosomes 4, 12, 14, 17, 18, and 19 were identified by QTL mapping using 178 recombinant inbred lines (RILs). Among these QTL, the major QTL qSPC_20-1 and qSPC_20-2 on chromosome 20 were repeatedly detected across six tested environments, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. 329 candidate DEGs were obtained within the QTL region of qSPC_20-1 and qSPC_20-2 via gene expression profile analysis. Nine of which were associated with SPC, potentially representing candidate genes. Clone sequencing results showed that different single nucleotide polymorphisms (SNPs) and indels between high and low protein genotypes in Glyma.20G088000 and Glyma.16G066600 may be the cause of changes in this trait. CONCLUSIONS These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding for seed protein content.
Collapse
Affiliation(s)
- Jia Wang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
- Southwest University, Chongqing, 400715, China.
| | - Lin Mao
- Southwest University, Chongqing, 400715, China
| | - Zhaoqiong Zeng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Xiaobo Yu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jianqiu Lian
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jun Feng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Wenying Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jiangang An
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Haiying Wu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Mingrong Zhang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
| | - Liezhao Liu
- Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Elattar MA, Karikari B, Li S, Song S, Cao Y, Aslam M, Hina A, Abou-Elwafa SF, Zhao T. Identification and Validation of Major QTLs, Epistatic Interactions, and Candidate Genes for Soybean Seed Shape and Weight Using Two Related RIL Populations. Front Genet 2021; 12:666440. [PMID: 34122518 PMCID: PMC8195344 DOI: 10.3389/fgene.2021.666440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic mechanism underlying seed size, shape, and weight is essential for enhancing soybean cultivars. High-density genetic maps of two recombinant inbred line (RIL) populations, LM6 and ZM6, were evaluated across multiple environments to identify and validate M-QTLs as well as identify candidate genes behind major and stable quantitative trait loci (QTLs). A total of 239 and 43 M-QTLs were mapped by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM) approaches, from which 180 and 18, respectively, are novel QTLs. Twenty-two QTLs including four novel major QTLs were validated in the two RIL populations across multiple environments. Moreover, 18 QTLs showed significant AE effects, and 40 pairwise of the identified QTLs exhibited digenic epistatic effects. Thirty-four QTLs associated with seed flatness index (FI) were identified and reported here for the first time. Seven QTL clusters comprising several QTLs for seed size, shape, and weight on genomic regions of chromosomes 3, 4, 5, 7, 9, 17, and 19 were identified. Gene annotations, gene ontology (GO) enrichment, and RNA-seq analyses of the genomic regions of those seven QTL clusters identified 47 candidate genes for seed-related traits. These genes are highly expressed in seed-related tissues and nodules, which might be deemed as potential candidate genes regulating the seed size, weight, and shape traits in soybean. This study provides detailed information on the genetic basis of the studied traits and candidate genes that could be efficiently implemented by soybean breeders for fine mapping and gene cloning, and for marker-assisted selection (MAS) targeted at improving these traits individually or concurrently.
Collapse
Affiliation(s)
- Mahmoud A Elattar
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,Agronomy Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Benjamin Karikari
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shuguang Li
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Song
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yongce Cao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Muhammed Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Zhang H, Goettel W, Song Q, Jiang H, Hu Z, Wang ML, An YQC. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet 2020; 16:e1009114. [PMID: 33175845 PMCID: PMC7721174 DOI: 10.1371/journal.pgen.1009114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/07/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Hengyou Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Wolfgang Goettel
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Qijian Song
- US Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD, United States of America
| | - He Jiang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Ming Li Wang
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Resource Conservation Unit, Griffin, GA, United States of America
| | - Yong-qiang Charles An
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| |
Collapse
|
16
|
Wang L, Conteh B, Fang L, Xia Q, Nian H. QTL mapping for soybean (Glycine max L.) leaf chlorophyll-content traits in a genotyped RIL population by using RAD-seq based high-density linkage map. BMC Genomics 2020; 21:739. [PMID: 33096992 PMCID: PMC7585201 DOI: 10.1186/s12864-020-07150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/13/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Different soybean (Glycine max L.) leaf chlorophyll-content traits are considered to be significantly linked to soybean yield. To map the quantitative trait loci (QTLs) of soybean leaf chlorophyll-content traits, an advanced recombinant inbred line (RIL, ZH, Zhonghuang 24 × Huaxia 3) population was adopted to phenotypic data acquisitions for the target traits across six distinct environments (seasons and soybean growth stages). Moreover, the restriction site-associated DNA sequencing (RAD-seq) based high-density genetic linkage map of the RIL population was utilized for QTL mapping by carrying out the composite interval mapping (CIM) approach. RESULTS Correlation analyses showed that most traits were correlated with each other under specific chlorophyll assessing method and were regulated both by hereditary and environmental factors. In this study, 78 QTLs for soybean leaf chlorophyll-content traits were identified. Furthermore, 13 major QTLs and five important QTL hotspots were classified and highlighted from the detected QTLs. Finally, Glyma01g15506, Glyma02g08910, Glyma02g11110, Glyma07g15960, Glyma15g19670 and Glyma15g19810 were predicted from the genetic intervals of the major QTLs and important QTL hotspots. CONCLUSIONS The detected QTLs and candidate genes may facilitate to gain a better understanding of the hereditary basis of soybean leaf chlorophyll-content traits and may be valuable to pave the way for the marker-assisted selection (MAS) breeding of the target traits.
Collapse
Affiliation(s)
- Liang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Brima Conteh
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Linzhi Fang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 Guangdong People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| |
Collapse
|
17
|
Klein A, Houtin H, Rond-Coissieux C, Naudet-Huart M, Touratier M, Marget P, Burstin J. Meta-analysis of QTL reveals the genetic control of yield-related traits and seed protein content in pea. Sci Rep 2020; 10:15925. [PMID: 32985526 PMCID: PMC7522997 DOI: 10.1038/s41598-020-72548-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Pea is one of the most important grain legume crops in temperate regions worldwide. Improving pea yield is a critical breeding target. Nine inter-connected pea recombinant inbred line populations were evaluated in nine environments at INRAE Dijon, France and genotyped using the GenoPea 13.2 K SNP array. Each population has been evaluated in two to four environments. A multi-population Quantitative Trait Loci (QTL) analysis for seed weight per plant (SW), seed number per plant (SN), thousand seed weight (TSW) and seed protein content (SPC) was done. QTL were then projected on the multi-population consensus map and a meta-analysis of QTL was performed. This analysis identified 17 QTL for SW, 16 QTL for SN, 35 QTL for TSW and 21 QTL for SPC, shedding light on trait relationships. These QTL were resolved into 27 metaQTL. Some of them showed small confidence intervals of less than 2 cM encompassing less than one hundred underlying candidate genes. The precision of metaQTL and the potential candidate genes reported in this study enable their use for marker-assisted selection and provide a foundation towards map-based identification of causal polymorphisms.
Collapse
Affiliation(s)
- Anthony Klein
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France.
| | - Hervé Houtin
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Céline Rond-Coissieux
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Myriam Naudet-Huart
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Michael Touratier
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pascal Marget
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
- INRAE, U2E, Unité Expérimentale du Domaine d'Epoisses, Centre de Recherches Bourgogne Franche-Comté, 21110, Breteniere, France
| | - Judith Burstin
- Agroécologie, INRAE, AgroSup Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| |
Collapse
|
18
|
Huang J, Ma Q, Cai Z, Xia Q, Li S, Jia J, Chu L, Lian T, Nian H, Cheng Y. Identification and Mapping of Stable QTLs for Seed Oil and Protein Content in Soybean [ Glycine max (L.) Merr.]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6448-6460. [PMID: 32401505 DOI: 10.1021/acs.jafc.0c01271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This research aimed to identify stable quantitative trait loci (QTL) associated with oil and protein content in soybean. A population of 196 recombinant inbred lines (RILs) derived from Huachun 2 × Wayao was used to evaluate these target traits. A high-density genetic linkage map was constructed by using high-throughput genome-wide sequencing technology, which contained 3413 recombination bin markers and spanned 5400.4 cM with an average distance of 1.58 cM between markers. Eighteen stable QTLs controlling oil and protein content were detected. Among them, qOil-11-1 was identified for the first time as a novel QTL, while qOil-5-1, qPro-10-1, and qPro-14-1 were strong and stable QTLs with high log-likelihood (LOD) values. Sixteen differentially expressed genes (DEGs) within these four QTLs were shown to be highly expressed during seed development based on RNA sequencing (RNA-seq) data analysis. Our results may contribute toward gene mining and marker-assisted selection (MAS) for breeding a high-quality soybean in the future.
Collapse
Affiliation(s)
- Jinghua Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Qiuju Xia
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, People's Republic of China
| | - Shuxian Li
- United States Department of Agriculture, Agricultural Research Service, Crop Genetics Research Unit, 141 Experiment Station Road, P.O. Box 345, Stoneville, Mississippi 38776, United States
| | - Jia Jia
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Li Chu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
19
|
Li MW, Wang Z, Jiang B, Kaga A, Wong FL, Zhang G, Han T, Chung G, Nguyen H, Lam HM. Impacts of genomic research on soybean improvement in East Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1655-1678. [PMID: 31646364 PMCID: PMC7214498 DOI: 10.1007/s00122-019-03462-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 05/10/2023]
Abstract
It has been commonly accepted that soybean domestication originated in East Asia. Although East Asia has the historical merit in soybean production, the USA has become the top soybean producer in the world since 1950s. Following that, Brazil and Argentina have been the major soybean producers since 1970s and 1990s, respectively. China has once been the exporter of soybean to Japan before 1990s, yet she became a net soybean importer as Japan and the Republic of Korea do. Furthermore, the soybean yield per unit area in East Asia has stagnated during the past decade. To improve soybean production and enhance food security in these East Asian countries, much investment has been made, especially in the breeding of better performing soybean germplasms. As a result, China, Japan, and the Republic of Korea have become three important centers for soybean genomic research. With new technologies, the rate and precision of the identification of important genomic loci associated with desired traits from germplasm collections or mutants have increased significantly. Genome editing on soybean is also becoming more established. The year 2019 marked a new era for crop genome editing in the commercialization of the first genome-edited plant product, which is a high-oleic-acid soybean oil. In this review, we have summarized the latest developments in soybean breeding technologies and the remarkable progress in soybean breeding-related research in China, Japan, and the Republic of Korea.
Collapse
Affiliation(s)
- Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Guohong Zhang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Key Laboratory of Northwest Drought Crop Cultivation of Chinese Ministry of Agriculture, Lanzhou, 730070 China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626 Korea
| | - Henry Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| |
Collapse
|