1
|
Shekhar S, Paria K, Agrawal S, Mukherjee S. Modulating the Optical Properties of Cationic Surfactant Cetylpyridinium Chloride and Hydrazine Mediated Copper Nanoclusters. Chemphyschem 2025; 26:e202401021. [PMID: 39757441 DOI: 10.1002/cphc.202401021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
This study investigates the modulations in the optical properties of cationic surfactant cetylpyridinium chloride (CPC) and hydrazine-mediated copper nanoclusters (CuNCs). By employing a bottom-up approach, we demonstrate the formation of blue-emitting CuNCs facilitated by CPC and hydrazine, where hydrazine acts both as a reducing and stabilizing agent. The optical properties of the CuNCs were systematically tuned by varying the chain length of the diamine, resulting in emissions ranging from blue to yellow. Comprehensive characterization using spectroscopic and microscopic techniques confirmed the successful formation of CuNCs and elucidated the roles of CPC and hydrazine in their preparation. Control experiments highlighted the critical role of the pyridinium moiety and hydrophobic chain of CPC in enhancing the photoluminescence properties of the CuNCs. This work provides new insights into the design of stable, highly luminescent CuNCs for potential applications in optoelectronics and bioimaging.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
- Department of Chemistry, R. K. (P. G.) College, Shamli, 247 776, Uttar Pradesh, India
| | - Khokan Paria
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Sameeksha Agrawal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
2
|
Kamiyama M, Shingyouchi Y, Sarma R, Ghosh M, Kawawaki T, Biswas S, Negishi Y. Exploring the structural evolution of Cu-thiolate nanoclusters and their property correlations. Chem Commun (Camb) 2025; 61:1048-1062. [PMID: 39660545 DOI: 10.1039/d4cc06139j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Research on copper nanoclusters (Cu NCs) is expanding rapidly due to their remarkable structural versatility and related tunable properties they exhibit. This fast-paced development creates a need for a comprehensive overview of the structural evolution of Cu NCs, especially regarding how different geometric configurations emerge from variations in the ligand choice. In light of this, this feature article focuses on the role of thiolate ligands in shaping the structural and electronic properties of Cu NCs, with a particular emphasis on how modifications of ligands influence the geometry of NCs. While thiolates play a central role in stabilizing Cu NCs, this feature article also underscores the significance of co-ligands-such as hydrides, phosphines, and halides-because relying solely on thiolates is often insufficient to fully protect the surface of Cu NCs, unlike in the case of gold or silver NCs. A detailed analysis of how various thiolates and co-ligands affect core geometry reveals a direct correlation with the electronic properties of Cu NCs, which in turn influences their optical behavior. By examining these ligand-driven structural and electronic changes, this feature article aims to provide a deeper understanding of the relationship between ligand design and the resulting NC properties. The ultimate goal is to offer a strategy for the rational design of Cu NCs with tailored functionalities, thereby advancing NC chemistry and opening up new possibilities for applications in optoelectronics, catalysis, and sensing.
Collapse
Affiliation(s)
- Maho Kamiyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yamato Shingyouchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Rupa Sarma
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Mandira Ghosh
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | - Sourav Biswas
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
3
|
Zhang Q, Duan J, Chen J, Du J, Tong H, Liao S. A Novel Enhanced-Fluorescent Probe Based on DHLA-Stabilized Red-Emitting Copper Nanoclusters for Methimazole Detection Via Aggregation-Induced Emission Effect. J Fluoresc 2024:10.1007/s10895-024-03701-0. [PMID: 38652358 DOI: 10.1007/s10895-024-03701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Herein, an aqueous phase synthesis approach was presented for the fabrication of copper nanoclusters (Cu NCs) with aggregation-induced emission (AIE) property, utilizing lipoic acid and NaBH4 as ligands and reducing agent, respectively. The as-synthesized Cu NCs exhibit an average size of 3.0 ± 0.2 nm and demonstrate strong solid-state fluorescence upon excitation with UV light. However, when dissolved in water, no observable fluorescent emission is detected in the aqueous solution of Cu NCs. Remarkably, the addition of Methimazole induced a significant red fluorescence from the aqueous solution of Cu NCs. This unexpected phenomenon can be ascribed to the aggregation of negatively charged Cu NCs caused by electrostatic interaction with positively charged imidazole groups in Methimazole, resulting in enhanced fluorescence through AIE mechanism. Therefore, there exists an excellent linear correlation between the fluorescent intensities of Cu NCs aqueous solution and the concentration of Methimazole within a range of 0.1-1.5 mM with a low limit of detection of 82.2 µM. Importantly, the designed enhanced-fluorescent nanoprobe based on Cu NCs exhibits satisfactory performance in assaying commercially available Methimazole tablets, demonstrating its exceptional sensitivity, reliability, and accuracy.
Collapse
Affiliation(s)
- Qikun Zhang
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Jingyi Duan
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Jinwen Chen
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Juan Du
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Huixiao Tong
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Shenghua Liao
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
4
|
Zhou C, Sun DW, Ma J, Qin A, Tang BZ, Lin XR, Cao SL. Assembly-Induced Emission of Copper Nanoclusters: Revealing the Sensing Mechanism for Detection of Volatile Basic Nitrogen in Seafood Freshness On-Site Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6533-6547. [PMID: 38261539 PMCID: PMC10859926 DOI: 10.1021/acsami.3c13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Total volatile basic nitrogen (TVB-N) is a vital indicator for assessing seafood freshness and edibility. Rapid on-site detection of volatile basic nitrogen (VBN) is of significant importance for food safety monitoring. In this study, highly luminescent self-assembled copper nanoclusters (Cu NCs@p-MBA), synthesized using p-mercaptobenzoic acid (p-MBA) as the ligand, were utilized for the sensitive detection of VBNs. Under acidic conditions, Cu NCs@p-MBA formed compact and well-organized nanosheets through noncovalent interactions, accompanied by intense orange fluorescence emission (651 nm). The benzene carboxylic acid part of Cu NCs@p-MBA provided the driving force for supramolecular assembly and exhibited a strong affinity for amines, particularly low-molecular-weight amines such as ammonia (NH3) and trimethylamine (TMA). The quantitative determination of NH3 and TMA showed the detection limits as low as 0.33 and 0.81 ppm, respectively. Cu NCs@p-MBA also demonstrated good responsiveness to putrescine and histamine. Through density functional theory (DFT) calculations and molecular dynamics (MD) simulations, the precise atomic structure, assembly structure, luminescent properties, and reaction processes of Cu NCs@p-MBA were studied, revealing the sensing mechanism of Cu NCs@p-MBA for highly sensitive detection of VBNs. Based on the self-assembled Cu NCs@p-MBA nanosheets, portable fluorescent labels were developed for semiquantitative, visual, and real-time monitoring of seafood freshness. Therefore, this study exemplified the high sensitivity of self-assembly induced emission (SAIE)-type Cu NCs@p-MBA for VBNs sensing, offering an efficient solution for on-site monitoring of seafood freshness.
Collapse
Affiliation(s)
- Chenyue Zhou
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Centre, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Ji Ma
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Centre, Guangzhou 510006, China
- State
Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced
Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced
Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State
Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced
Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Xiao-Ru Lin
- Guangdong
Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528000, China
| | - Shi-Lin Cao
- Guangdong
Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528000, China
| |
Collapse
|
5
|
Wang T, Jiang K, Wang Y, Xu L, Liu Y, Zhang S, Xiong W, Wang Y, Zheng F, Zhu JJ. Prolonged near-infrared fluorescence imaging of microRNAs and proteases in vivo by aggregation-enhanced emission from DNA-AuNC nanomachines. Chem Sci 2024; 15:1829-1839. [PMID: 38303939 PMCID: PMC10829036 DOI: 10.1039/d3sc05887e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
Developing a comprehensive strategy for imaging various biomarkers (i.e., microRNAs and proteases) in vivo is an exceptionally formidable task. Herein, we have designed a deoxyribonucleic acid-gold nanocluster (DNA-AuNC) nanomachine for detecting tumor-related TK1 mRNA and cathepsin B in living cells and in vivo. The DNA-AuNC nanomachine is constructed using AuNCs and DNA modules that incorporate a three component DNA hybrid (TD) and a single-stranded fuel DNA (FD). Upon being internalized into tumor cells, the TK1 mRNA initiates the DNA-AuNC nanomachine through DNA strand displacement cascades, leading to the amplified self-assembly and the aggregation-enhanced emission of AuNCs for in situ imaging. Furthermore, with the aid of a protease nanomediator consisting of a mediator DNA/peptide complex and AuNCs (DpAuNCs), the DNA-AuNC nanomachine can be triggered by the protease-activated disassembly of the DNA/peptide complex on the nanomediator, resulting in the aggregation of AuNCs for in vivo protease amplified detection. It is worth noting that our study demonstrates the impressive tumor permeability and accumulation capabilities of the DNA-AuNC nanomachines via in situ amplified self-assembly, thereby facilitating prolonged imaging of TK1 mRNA and cathepsin B both in vitro and in vivo. This strategy presents a versatile and biomarker-specific paradigm for disease diagnosis.
Collapse
Affiliation(s)
- Ting Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Kai Jiang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Yifan Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Limei Xu
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Yingqi Liu
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Shiling Zhang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Weiwei Xiong
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Yemei Wang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Fenfen Zheng
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology Changhui Rd. 666 Zhenjiang Jiangsu 212003 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Xianlin Ave 163 Nanjing Jiangsu 210023 China
| |
Collapse
|
6
|
Zheng G, Hu S, Qin D, Nong C, Yang L, Deng B. Aggregation-induced electrochemiluminescence enhancement of Ag-MOG for amyloid β 42 sensing. Anal Chim Acta 2023; 1281:341898. [PMID: 38783738 DOI: 10.1016/j.aca.2023.341898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
This study aimed to introduce an immunosensor for measuring amyloid β 42 (Aβ42) levels by aggregation-induced enhanced electrochemiluminescence (ECL). Metal-organic gels (MOGs) are novel soft materials with advantages such as high gel stability, good light-emitting properties, and easy preparation. This study used silver nanoparticle metal-organic gel (Ag-MOG) as a substrate to connect Aβ42-Ab2 and the cathodoluminescent probe. Potassium persulfate was used as a co-reactant that could emit a high ECL signal. CuS@Au had the benefits of a relatively large surface area with excellent carrier function; therefore, it was used as a substrate to load a large amount of Aβ42-Ab1, significantly improving the immunosensor sensitivity. The ECL intensity of Aβ42 was linear in the range of 0.01 pg/mL to 250 ng/mL with a detection limit of 2.2 fg/mL (S/N = 3) under optimized detection conditions. This ECL immunosensor has been successfully applied to detect Aβ42 in human serum with the advantages of excellent stability and high selectivity. This method not only expands the potential applications of ECL immunosensors based on biological testing and clinical diagnosis but also provides a viable approach to basic clinical testing.
Collapse
Affiliation(s)
- Guiyue Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Chunlian Nong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lijuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
Bazzi F, Hosseini M, Ebrahimi-Hoseinzadeh B, Al Lawati HAJ, Ganjali MR. A dual-targeting nanobiosensor for Gender Determination applying Signal Amplification Methods and integrating Fluorometric Gold and Silver Nanoclusters. Mikrochim Acta 2023; 190:368. [PMID: 37620673 DOI: 10.1007/s00604-023-05947-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
A dual-targeting nanobiosensor has been developed for the simultaneous detection of AMELX and AMELY genes based on the different fluorescence signals emitted from gold and silver nanoclusters, AuNCs and AgNCs respectively. In our design, both catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) have been used as isothermal, enzyme-free and simple methods for signal's amplification. The working principle is based on the initiation of a cascade of CHA-HCR reactions when AMELX is present, in which AuNCs, synthesized on the third hairpin, are aggregated on the surface of the dsDNA product, performing the phenomenon of aggregation induced emission (AIE) and enhancing their fluorescence signal. On the other hand, the presence of the second target, AMELY, is responsible for the enhancement of the fluorescence signal corresponding to AgNCs by the same phenomenon, via hybridizing to the free end of the dsDNA formed and at the same time to the probe of silver nanoclusters fixing it closer to the surface of the dsDNA product. Such a unique design has the merits of being simple, inexpensive, specific and stable and presents rapid results. The detection limits of this assay for AMELX and AMELY are as low as 3.16 fM and 23.6 fM respectively. Moreover, this platform showed great performance in real samples. The design has great promise for the application of dual-targeting nanobiosensors to other biomarkers.
Collapse
Affiliation(s)
- Fatima Bazzi
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14399-56191, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14399-56191, Tehran, Iran.
| | - Bahman Ebrahimi-Hoseinzadeh
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14399-56191, Tehran, Iran.
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Sultan Qaboos, Oman
| | - Mohammad Reza Ganjali
- School of Chemistry, Faculty of Science, University of Tehran, P.O. Box 14176-14411, Tehran, Iran
| |
Collapse
|
8
|
Chua MH, Chin KLO, Loh XJ, Zhu Q, Xu J. Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS NANO 2023; 17:1845-1878. [PMID: 36655929 DOI: 10.1021/acsnano.2c10826] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Block S8 Level 3, Singapore 117543
| |
Collapse
|
9
|
Shen J, Fan Z. Ce 3+-induced Fluorescence Amplification of Copper Nanoclusters Based on Aggregation-induced Emission for Specific Sensing 2,6-pyridine Dicarboxylic Acid. J Fluoresc 2023; 33:135-144. [PMID: 36301441 DOI: 10.1007/s10895-022-03044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023]
Abstract
A straightforward, cost-effective and biocompatible reduction approach was applied to fabricate soluble but non-luminous glutathione-stabilized copper nanocluster (GSH-CuNCs). Surprisingly, as high as 1 × 103 times fluorescence enhancement was acquired when Ce3+ was injected at an extremely low concentration of only 18 µM. Ce3+ outperformed other rare-earth metal ions in terms of inducing fluorescence amplification of the non-luminous GSH-CuNCs. Furthermore, Ce3+ was employed as inducer for aggregation-induce emission (AIE) effect as well as reactant to coordinate with target of 2,6-pyridine dicarboxylic acid (DPA) due to the stronger coordination ability between Ce3+ and DPA than that of Ce3+ and GSH. As a result, the Ce3+/GSH-CuNCs ensemble was developed as a novel sensor to detect DPA in the "on-off" mode. When DPA was introduced into the sensor, Ce3+ failed to interact with GSH and detached from the surface of GSH-CuNCs, leading to fluorescence quenching. In addition, static quenching process and internal filtration effect (IFE) between Ce3+/GSH-CuNCs and DPA were also responsible for fluorescence quenching effect. A good linear relationship was obtained from 0.3 µM to 18 µM, with a limit of detection (LOD) of 0.19 µM. The as-proposed probe displayed high specificity to DPA and provided a simple, fast rapid and cheap method for construction this type of ensemble sensors to detect other targets.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, People's Republic of China
- Department of Chemistry, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
10
|
Reversible demulsification and emulsification of surfactant emulsions regulated by light-responsive azo functionalized copper nanoclusters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Metal Cluster Triggered-Assembling Heterogeneous Au-Ag Nanoclusters with Highly Loading Performance and Biocompatible Capability. Int J Mol Sci 2022; 23:ijms231911197. [PMID: 36232494 PMCID: PMC9569858 DOI: 10.3390/ijms231911197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we firstly report the preparation of heterogeneously assembled structures Au-Ag nanoclusters (NCs) as good drug carriers with high loading performance and biocompatible capability. As glutathione-protected Au and Ag clusters self-assembled into porous Au-Ag NCs, the size value is about 1.358 (±0.05) nm. The morphology characterization revealed that the diameter of Au-Ag NCs is approximately 120 nm, as well as the corresponding potential ability in loading performance of the metal cluster triggered-assembling process. Compared with individual components, the stability and loading performance of heterogeneous Au-Ag NCs were improved and exhibit that the relative biocompatibility was enhanced. The exact information about this is that cell viability was approximately to 98% when cells were incubated with 100 µg mL−1 particle solution for 3 days. The drug release of Adriamycin from Au-Ag NCs was carried out in PBS at pH = 7.4 and 5.8, respectively. By simulating in vivo and tumor microenvironment, the release efficiency could reach over 65% at pH = 5.8 but less than 30% at pH = 7.2. Using an ultrasound field as external environment can accelerate the assembling process while metal clusters triggered assembling Au-Ag NCs. The size and morphology of the assembled Au-Ag NCs can be controlled by using different power parameters (8 W, 13 W, 18 W) under ambient atmosphere. Overall, a novel approach is exhibited, which conveys assembling work for metal clusters triggers into heterogeneous structures with porous characteristic. Its existing properties such as water-solubility, stability, low toxicity and capsulation can be considered as dependable agents in various biomedical applications and drug carriers in immunotherapies.
Collapse
|
12
|
Sensing Leakage of Electrolytes from Magnesium Batteries Enabled by Natural AIEgens. Int J Mol Sci 2022; 23:ijms231810440. [PMID: 36142351 PMCID: PMC9499604 DOI: 10.3390/ijms231810440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The potential for leakage of liquid electrolytes from magnesium (Mg) batteries represents a large hurdle to future application. Despite this, there are no efficient sensing technologies to detect the leakage of liquid electrolytes. Here, we developed a sensor using laccaic acid (L-AIEgen), a naturally occurring aggregation-induced emission luminogen (AIEgens) isolated from the beetle Laccifer lacca. L-AIEgen showed good selectivity and sensitivity for Mg2+, a universal component of electrolytes in Mg batteries. Using L-AIEgen, we then produced a smart film (L-AIE-F) that was able to sense leakage of electrolytes from Mg batteries. L-AIE-F showed a strong "turn-on" AIE-active fluorescence at the leakage point of electrolyte from model Mg batteries. To the best of our knowledge, this is the first time that AIE technology has been used to sense the leakage of electrolytes.
Collapse
|
13
|
Dissanayake M, Wu D, Wu HF. Synthesis of Fluorescent Titanium Nanoclusters at ambient temperature for highly sensitive and selective detection of Creatine Kinase MM in myocardial infarction. Colloids Surf B Biointerfaces 2022; 217:112594. [PMID: 35671572 DOI: 10.1016/j.colsurfb.2022.112594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
Abstract
Fluorescent-based biosensing in Photoluminescence nanomaterials has emerged as a new sensing platform commonly used for disease diagnosis. However, the synthesis of Titanium nanoclusters is highly challenging since Titanium is easily oxidized into TiO2 at ambient temperature. To overcome this problem, we used an acidic medium and simple and robust protocol to synthesize the Titanium nanoclusters of 3-4 nm diameter, which could report the first fluorescent Titanium nanoclusters. New approaches for the novel synthesis of TiNCs can be used for rapid sensing of myocardial infarction (cardiac arrest). In converting creatine to phosphocreatine, CK-MM activates the reaction to convert ATP to ADP, thereby releasing the phosphate groups. Titanium nanoclusters bind strongly to the phosphate group and then quench the Fluorescence. Thus, this phenomenon can be further applied for quantification approaches. The quenching of fluorescence intensity with CK-MM concentration is linear with R² = 0.9829. The current approach can be applied for CK-MM sensing for a wide concentration range (0.625 U/L - 10 U/L). The detection limit was 0.2513 ng/ml in aqueous medium and 0.3465 ng/ml in human serum with high sensitivity when compared with the previous reported methods. Also, this is the first fluorescent-based sensing method to detect CK- MM. The fluorescent TiNCs is a novel platform to be widely applied for the phosphopeptide and phosphoprotein analysis due to the strong and covalent bondings between Ti with P atoms in the near future in medicine, biomedicine, and biological fields.
Collapse
Affiliation(s)
- Manusha Dissanayake
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan, Republic of China
| | - Di Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan, Republic of China
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan, Republic of China; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, Republic of China; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, Republic of China; International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, Republic of China.
| |
Collapse
|
14
|
Xie M, Wang Y, Liu L, Wang X, Jiang H. Luminescent gold-peptide spheric aggregates: selective and effective cellular targeting. J Colloid Interface Sci 2022; 614:502-510. [PMID: 35121508 DOI: 10.1016/j.jcis.2022.01.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/17/2023]
Abstract
Although the restriction of intramolecular motion has been well recognized as the fundamental of aggregation induced emission enhancement (AIEE), the regulation mechanism of gold nanoclusters (AuNCs) based AIEE system are still unclear. In this paper, we have investigated the Zn2+-induced AIEE process of thiolate ligands (i.e., cysteine, glutathione and an 8-mer peptide) protected AuNCs, which shows a pH-dependent evolution from single AuNCs to spheric aggregates to irregular network. Using photoluminescent enhancement ratio as an index, the concept of "mid-pH" is proposed to indicate the optimal pH for the formation of spheric AuNCs aggregates. Importantly, the surface ligands allow the formation of spheric AuNCs aggregates at tunable mid-pH between 5.7 and 7.5. Owing to the appropriate size and surface peptide targetability, the spheric AuNCs aggregates can be successfully screened for targeted tumor cell uptake and imaging at physiological pH. The cell uptake mechanism study showed that AuNCs aggregates was specifically recognized by arginine-glycine-aspartic acid (RGD) sequence on the ligand and integrin αvβ3 on the cell surface, thus mainly through clathrin-mediated endocytosis. This work provides new sight to artificially regulate the construction of efficient cellular imaging probes.
Collapse
Affiliation(s)
- Mengyang Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
15
|
Kolay S, Bain D, Maity S, Devi A, Patra A, Antoine R. Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:544. [PMID: 35159891 PMCID: PMC8838213 DOI: 10.3390/nano12030544] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Studies on self-assembly of metal nanoclusters (MNCs) are an emerging field of research owing to their significant optical properties and potential applications in many areas. Fabricating the desired self-assembly structure for specific implementation has always been challenging in nanotechnology. The building blocks organize themselves into a hierarchical structure with a high order of directional control in the self-assembly process. An overview of the recent achievements in the self-assembly chemistry of MNCs is summarized in this review article. Here, we investigate the underlying mechanism for the self-assembly structures, and analysis reveals that van der Waals forces, electrostatic interaction, metallophilic interaction, and amphiphilicity are the crucial parameters. In addition, we discuss the principles of template-mediated interaction and the effect of external stimuli on assembly formation in detail. We also focus on the structural correlation of the assemblies with their photophysical properties. A deep perception of the self-assembly mechanism and the degree of interactions on the excited state dynamics is provided for the future synthesis of customizable MNCs with promising applications.
Collapse
Affiliation(s)
- Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Dipankar Bain
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Aarti Devi
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|
16
|
Basu S, Paul A, Antoine R. Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:62. [PMID: 35010012 PMCID: PMC8746821 DOI: 10.3390/nano12010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal nanoclusters have gained prominence in nanomaterials sciences, owing to their atomic precision, structural regularity, and unique chemical composition. Additionally, the ligands stabilizing the clusters provide great opportunities for linking the clusters in higher order dimensions, eventually leading to the formation of a repertoire of nanoarchitectures. This makes the chemistry of atomic clusters worth exploring. In this mini review, we aim to focus on the chemistry of nanoclusters. Firstly, we summarize the important strategies developed so far for the synthesis of atomic clusters. For each synthetic strategy, we highlight the chemistry governing the formation of nanoclusters. Next, we discuss the key techniques in the purification and separation of nanoclusters, as the chemical purity of clusters is deemed important for their further chemical processing. Thereafter which we provide an account of the chemical reactions of nanoclusters. Then, we summarize the chemical routes to the spatial organization of atomic clusters, highlighting the importance of assembly formation from an application point of view. Finally, we raise some fundamentally important questions with regard to the chemistry of atomic clusters, which, if addressed, may broaden the scope of research pertaining to atomic clusters.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anumita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| |
Collapse
|
17
|
Zhou S, Sheng K, Zhang N, Zhang H, Li H, Sun P, Xin X. Light-triggered reversible supramolecular self-assembly of azo groups-functionalized copper nanoclusters. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Shen H, Xu C, Sun F, Zhao M, Wu Q, Zhang J, Li S, Zhang J, Lam JWY, Tang BZ. Metal-Based Aggregation-Induced Emission Theranostic Systems. ChemMedChem 2021; 17:e202100578. [PMID: 34837664 DOI: 10.1002/cmdc.202100578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Efficient theranostic systems can realize better outcomes in disease treatment because of precise diagnosis and the concomitant effective therapy. Aggregation-induced emission luminogens (AIEgens) are a unique type of organic emitters with intriguing photophysical properties in the aggregate state. Among the AIEgens studied for biomedical applications, so far, metal-based AIE systems have shown great potential in theranostics due to the enhanced multimodal bioimaging ability and therapeutic effect. This research field has been growing rapidly, and many rationally designed systems with promising activities to cancer and other diseases have been reported recently. In this review, we summarized the recent progress of metal-based AIE materials in bioimaging and biological theranostics, and deciphered the pertinent design strategies. We hope that this review can offer new insights into the development of this growing field.
Collapse
Affiliation(s)
- Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mengying Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qian Wu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sijie Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
- Center for Aggregation-induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
19
|
Casteleiro B, Martinho JMG, Farinha JPS. Encapsulation of gold nanoclusters: stabilization and more. NANOSCALE 2021; 13:17199-17217. [PMID: 34622909 DOI: 10.1039/d1nr04939a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles with only a few atoms, known as gold nanoclusters (AuNCs), have dimensions below 2 nm and feature singular properties such as size dependent luminescence. AuNCs are also highly photostable and have catalytic activity, low toxicity and good biocompatibility. With these properties, they are extremely promising candidates for application in bioimaging, sensing and catalysis. However, when stabilized only with small capping ligands, their use is hindered by lack of colloidal stability. Encapsulation of the AuNCs can contribute to provide a more robust protection and even to improve their properties. Here, we review the encapsulation of AuNCs in polymers, silica and metal organic frameworks (MOFs) for applications in bioimaging, sensing and catalysis.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Manuel Gaspar Martinho
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Paulo Sequeira Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
20
|
Zhou Z, Shu T, Sun Y, Si H, Peng P, Su L, Zhang X. Luminescent wearable biosensors based on gold nanocluster networks for "turn-on" detection of Uric acid, glucose and alcohol in sweat. Biosens Bioelectron 2021; 192:113530. [PMID: 34325319 DOI: 10.1016/j.bios.2021.113530] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022]
Abstract
From the difficulty of awareness of abnormal concentrations of biochemical indexes in people's daily life come wearable sensing technologies. Recently, luminescent wearable biosensors are emerging with simple fabrication, easy use, cost-effectivity and reliability. But several challenges should be taken up, such as availability of varied analytes, high sensitivity, stability of enzymes, photostability, low signal noises and recyclability of sensors. Here, the Luminescent Wearable Sweat Tape (LWST) biosensor is developed via embedding multi-component nanoprobes onto microwell-patterned paper substrates of hollowed-out double-side tapes. The nanoprobes consist of responsive luminophores, enzyme-loaded gold nanocluster (AuNCs) nano-networks, which are wrapped by the switch, MnO2 nanosheets. The responsive luminophores are constructed by 3 substitutable components: enzymes (uricase, GOx and alcohol dehydrogenase) for molecular target recognition, glutathione-protected AuNCs (yellow, red and green) for luminescent signal output and polycations PAH for integration. MnO2 NSs as the switch can quench the emission of the AuNCs but degraded by the reductive product of incorporated enzymes. Thus, targeting analysts (uric acid, glucose and alcohol) can be dose-dependently detected through "turn-on" luminescence approach. After incorporating the nanoprobes into hollow-out tapes, the formed LWST biosensors can detect uric acid, glucose and alcohol in sweat with the help of a smartphone. Subsequently, we primarily apply them into human daily life scenario, sampling from dine parties, and the positive relationships of analyte intakes and the increase of analytes in sweat are significant with individual difference.
Collapse
Affiliation(s)
- Ziping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China
| | - Tong Shu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Yafang Sun
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China
| | - Hongxin Si
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Peiwen Peng
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China
| | - Lei Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China.
| |
Collapse
|
21
|
Ran X, Wang Z, Pu F, Ju E, Ren J, Qu X. Nucleic acid-driven aggregation-induced emission of Au nanoclusters for visualizing telomerase activity in living cells and in vivo. MATERIALS HORIZONS 2021; 8:1769-1775. [PMID: 34846506 DOI: 10.1039/d0mh01875a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Visual monitoring of telomerase activity in living cancer cells and in vivo is essential for clinical diagnosis and treatment. However, most detection methods were performed in vitro due to the difficulty of probes entering cells and the interferences from complex biological environments. Herein, we developed a novel probe based on Au nanoclusters (AuNCs) with a nucleic acid-driven aggregation-induced emission (AIE) property for the first time. The probe was applied for detection of telomerase with high sensitivity. Importantly, the probe could achieve telomerase imaging in living cells and in solid tumor tissue in vivo. The study provided a specific connection fashion of metal nanoclusters for AIE generation. It holds great potential for the development of AIE-active metal nanoclusters as a diagnostic tool for disease detection in vitro as well as in vivo.
Collapse
Affiliation(s)
- Xiang Ran
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | | | |
Collapse
|
22
|
Basu S, Fakhouri H, Moulin C, Dolai S, Russier-Antoine I, Brevet PF, Antoine R, Paul A. Four orders-of-magnitude enhancement in the two-photon excited photoluminescence of homoleptic gold thiolate nanoclusters following zinc ion-induced aggregation. NANOSCALE 2021; 13:4439-4443. [PMID: 33620366 DOI: 10.1039/d0nr08764e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein we report unprecedented determination of the molar mass of zinc mediated assemblies of homoleptic gold nanoclusters, based on charge detection mass spectrometry measurements. The accurate determination of the molar mass of zinc coordinated assemblies of gold clusters has further allowed unambiguous determination of the two-photon excited photoluminescence cross section of the same. Furthermore, in line with one-photon excited photoluminescence measurements, four orders-of-magnitude enhancement in two-photon excited photoluminescence of gold nanoclusters has been observed following complexation with zinc ions. The study reported herein is envisioned to not only deepen the fundamental understanding of the multiphoton excitation properties of atomic clusters but also widen their application potential as luminescence markers.
Collapse
Affiliation(s)
- Srestha Basu
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Hussein Fakhouri
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Christophe Moulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Santanu Dolai
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Isabelle Russier-Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Pierre-François Brevet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Lyon, France.
| | - Anumita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
23
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
24
|
Singh N, Raul KP, Poulose A, Mugesh G, Venkatesh V. Highly Stable Pyrimidine Based Luminescent Copper Nanoclusters with Superoxide Dismutase Mimetic and Nitric Oxide Releasing Activity. ACS APPLIED BIO MATERIALS 2020; 3:7454-7461. [PMID: 35019487 DOI: 10.1021/acsabm.0c00675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Copper nanoclusters (CuNCs) are emerging as an interesting class of materials for various biomedical applications. In this work, we have designed highly stable nucleobase-capped luminescent CuNCs and studied the effect of substituents on the cluster composition and photophysical properties. The NCs exhibit exceptional stability in ambient atmosphere and show significant variation in the emission properties with a change in position of substituents on the ligand, thiouracil. This study represents the first example of a nanocluster that functionally mimics the activity of a major antioxidant enzyme, superoxide dismutase (SOD). In addition to their enzyme-mimetic activity, the CuNCs evince controlled release of nitric oxide (NO), a key gaseous molecule of endothelial system from S-nitrosothiol, S-nitrosoglutathione (GSNO). Further, to a greater significance, these luminescent CuNCs are readily taken up by the mammalian cells and exhibit low toxicity. The superoxide dismutase and NO releasing activity of the fluorescent, biocompatible copper nanoclusters suggest their potential application in both therapeutics and bioimaging.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Kusaji Pundlik Raul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Aiswarya Poulose
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - V Venkatesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.,Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand-247667, India
| |
Collapse
|
25
|
Han S, Zhao Y, Zhang Z, Xu G. Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters. Molecules 2020; 25:molecules25215208. [PMID: 33182342 PMCID: PMC7664927 DOI: 10.3390/molecules25215208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Metal nanoclusters (NCs), including Au, Ag, Cu, Pt, Ni and alloy NCs, have become more and more popular sensor probes with good solubility, biocompatibility, size-dependent luminescence and catalysis. The development of electrochemiluminescent (ECL) and chemiluminescent (CL) analytical methods based on various metal NCs have become research hotspots. To improve ECL and CL performances, many strategies are proposed, from metal core to ligand, from intermolecular electron transfer to intramolecular electron transfer. Combined with a variety of amplification technology, i.e., nanostructure-based enhancement and biological signal amplification, highly sensitive ECL and CL analytical methods are developed. We have summarized the research progresses since 2016. Also, we discuss the current challenges and perspectives on the development of this area.
Collapse
Affiliation(s)
- Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
- Correspondence: (Z.Z.); (G.X.)
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Correspondence: (Z.Z.); (G.X.)
| |
Collapse
|
26
|
Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121821. [PMID: 31879116 DOI: 10.1016/j.jhazmat.2019.121821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We have prepared copper nanoclusters (Cu NCs) in the presence of bovine serum albumin (BSA) and 1,3-propanedithiol (PDT). The PDT/BSA-Cu NCs possess great activities against different types of bacteria, including non-multidrug-resistant bacteria (Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Staphylococcus aureus) and multidrug-resistant bacteria (methicillin-resistant S. aureus). Their minimal inhibitory concentration (MIC) values are at least 242-fold and 10-fold lower than that of the free PDT and BSA-Cu NCs, respectively. The PDT/BSA-Cu NCs are strongly bound to the bacterial membrane, in which they induce the generation of ascorbyl (Asc) and perhydroxyl (HOO) radicals that result in disruption of their membrane integrity. At a concentration of 100-fold higher than their MIC for Escherichia coli, the PDT/BSA-Cu NCs exhibit negligible cytotoxicity towards the tested mammalian cells and show insignificant hemolysis. We have further demonstrated that low-cost PDT/BSA-Cu NCs-coated carbon fiber fabrics (CFFs) are effective against antibacterial growth, showing their great potential for antifouling applications.
Collapse
Affiliation(s)
- Amit Nain
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan; Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Research Center for Applied Sciences Academia Sinica, Taipei, 11529, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan.
| |
Collapse
|
27
|
Li Y, Zhong H, Huang Y, Zhao R. Recent Advances in AIEgens for Metal Ion Biosensing and Bioimaging. Molecules 2019; 24:E4593. [PMID: 31888126 PMCID: PMC6943572 DOI: 10.3390/molecules24244593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Metal ions play important roles in biological system. Approaches capable of selective and sensitive detection of metal ions in living biosystems provide in situ information and have attracted remarkable research attentions. Among these, fluorescence probes with aggregation-induced emission (AIE) behavior offer unique properties. A variety of AIE fluorogens (AIEgens) have been developed in the past decades for tracing metal ions. This review highlights recent advances (since 2015) in AIE-based sensors for detecting metal ions in biological systems. Major concerns will be devoted to the design principles, sensing performance, and bioimaging applications.
Collapse
Affiliation(s)
- Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (H.Z.); (R.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (H.Z.); (R.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (H.Z.); (R.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.L.); (H.Z.); (R.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Sahu DK, Sarkar P, Singha D, Sahu K. Protein-activated transformation of silver nanoparticles into blue and red-emitting nanoclusters. RSC Adv 2019; 9:39405-39409. [PMID: 35540637 PMCID: PMC9076107 DOI: 10.1039/c9ra06774d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Protein capping can trigger nanoparticle to nanocluster transformation at elevated pH.
Collapse
Affiliation(s)
- Dillip Kumar Sahu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Priyanka Sarkar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Debabrata Singha
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Kalyanasis Sahu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| |
Collapse
|
29
|
Ran X, Wang Z, Pu F, Liu Z, Ren J, Qu X. Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. Chem Commun (Camb) 2019; 55:15097-15100. [DOI: 10.1039/c9cc08170d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A nanoprobe based on aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species is constructed.
Collapse
Affiliation(s)
- Xiang Ran
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- Jilin 130022
| | - Zhenzhen Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- Jilin 130022
| | - Fang Pu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- Jilin 130022
| | - Zhen Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- Jilin 130022
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- Jilin 130022
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- Jilin 130022
| |
Collapse
|