1
|
Qi Z, Liu C, Wang N, Cui J, Hu J, Gu R, Meng L, Wang P, Zhai J, Shui G, Cui S. The dehydration-responsive protein PpFAS1.3 in moss Physcomitrium patens plays a regulatory role in lipid metabolism. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154253. [PMID: 38703549 DOI: 10.1016/j.jplph.2024.154253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Moss plants appear in the early stages of land colonization and possess varying degrees of dehydration tolerance. In this study, a protein called PpFAS1.3 was identified, which contains a fasciclin 1-like domain and is essential for the moss Physcomitrium patens' response to short-term rapid dehydration. When the FAS1.3 protein was knocked out, leafyshoots showed a significant decrease in tolerance to rapid dehydration, resulting in accelerated water loss and increased membrane leakage. Phylogenetic analysis suggests that PpFAS1.3 and its homologous proteins may have originated from bacteria and are specifically found in non-vascular plants like mosses and liverworts. As a dehydration-related protein, FAS1.3 plays a significant role in regulating lipid metabolism, particularly in the synthesis of free fatty acids (FFA) and the metabolism of two phospholipids, PC and PA. This discovery highlights the close connection between PpFAS1.3 and lipid metabolism, providing new insights into the molecular mechanisms underlying plant adaptation to stresses.
Collapse
Affiliation(s)
- Zhenyu Qi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Chen Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ning Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jipeng Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jia Hu
- Central Laboratory, Capital Medical University, Beijing, 100029, China
| | - Ruoqing Gu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Le Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Pan Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jianan Zhai
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| |
Collapse
|
2
|
Hu J, Wang J, Muhammad T, Tuerdiyusufu D, Yang T, Li N, Yang H, Wang B, Yu Q. Functional analysis of fasciclin-like arabinogalactan in carotenoid synthesis during tomato fruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108589. [PMID: 38593485 DOI: 10.1016/j.plaphy.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Carotenoids are important pigmented nutrients synthesized by tomato fruits during ripening. To reveal the molecular mechanism underlying carotenoid synthesis during tomato fruit ripening, we analyzed carotenoid metabolites and transcriptomes in six development stages of tomato fruits. A total of thirty different carotenoids were detected and quantified in tomato fruits from 10 to 60 DPA. Based on differential gene expression profiles and WGCNA, we explored several genes that were highly significant and negatively correlated with lycopene, all of which encode fasciclin-like arabinogalactan proteins (FLAs). The FLAs are involved in plant signal transduction, however the functional role of these proteins has not been studied in tomato. Genome-wide analysis revealed that cultivated and wild tomato species contained 18 to 22 FLA family members, clustered into four groups, and mainly evolved by means of segmental duplication. The functional characterization of FLAs showed that silencing of SlFLA1, 5, and 13 were found to contribute to the early coloration of tomato fruits, and the expression of carotenoid synthesis-related genes was up-regulated in fruits that changed phenotypically, especially in SlFLA13-silenced plants. Furthermore, the content of multiple carotenoids (including (E/Z)-phytoene, lycopene, γ-carotene, and α-carotene) was significantly increased in SlFLA13-silenced fruits, suggesting that SlFLA13 has a potential inhibitory function in regulating carotenoid synthesis in tomato fruits. The results of the present study broaden the idea of analyzing the biological functions of tomato FLAs and preliminary evidence for the inhibitory role of SlFLA13 in carotenoid synthesis in fruit, providing the theoretical basis and a candidate for improving tomato fruit quality.
Collapse
Affiliation(s)
- Jiahui Hu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China; College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Tayeb Muhammad
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Diliaremu Tuerdiyusufu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China; College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Haitao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China; College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Mueller KK, Pfeifer L, Schuldt L, Szövényi P, de Vries S, de Vries J, Johnson KL, Classen B. Fern cell walls and the evolution of arabinogalactan proteins in streptophytes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:875-894. [PMID: 36891885 DOI: 10.1111/tpj.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023]
Abstract
Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.
Collapse
Affiliation(s)
- Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Lina Schuldt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstr. 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtsr. 1, 37077, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstr. 1, 37077, Goettingen, Germany
| | - Kim L Johnson
- Department of Animal, Plant and Soil Science, La Trobe Institute for Agriculture & Food, La Trobe University, AgriBio Building, Bundoora, Victoria, 3086, Australia
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| |
Collapse
|
5
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
6
|
Cas9/gRNA-Mediated Mutations in PtrFLA40 and PtrFLA45 Reveal Redundant Roles in Modulating Wood Cell Size and SCW Synthesis in Poplar. Int J Mol Sci 2022; 24:ijms24010427. [PMID: 36613871 PMCID: PMC9820481 DOI: 10.3390/ijms24010427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) play an important role in plant development and adaptation to the environment. However, the roles of FLAs in wood formation remain poorly understood. Here, we identified a total of 50 PtrFLA genes in poplar. They were classified into four groups: A to D, among which group A was the largest group with 28 members clustered into four branches. Most PtrFLAs of group A were dominantly expressed in developing xylem based on microarray and RT-qPCR data. The roles of PtrFLA40 and PtrFLA45 in group A were investigated via the Cas9/gRNA-induced mutation lines. Loss of PtrFLA40 and PtrFLA45 increased stem length and diameter in ptrfla40ptrfla45 double mutants, but not in ptrfla40 or ptrfla45 single mutants. Further, our findings indicated that the ptrfla40ptrfla45 mutants enlarged the cell size of xylem fibers and vessels, suggesting a negative modulation in stem xylem cell size. In addition, wood lignin content in the ptrfla40fla45 mutants was increased by nearly 9%, and the lignin biosynthesis-related genes were significantly up-regulated in the ptrfla40fla45 mutants, in agreement with the increase in wood lignin content. Overall, Cas9/gRNA-mediated mutations in PtrFLA40 and PtrFLA45 reveal redundant roles in modulating wood cell size and secondary cell wall (SCW) synthesis in poplar.
Collapse
|
7
|
Ma W, Zhang C, Zhang W, Sheng P, Xu M, Ni Y, Chen M, Cheng B, Zhang X. TMT-Based Comparative Peptidomics Analysis of Rice Seedlings under Salt Stress: An Accessible Method to Explore Plant Stress-Tolerance Processing. J Proteome Res 2022; 21:2905-2919. [PMID: 36351196 DOI: 10.1021/acs.jproteome.2c00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rice (Oryza sativa L.) is an important staple crop, particularly in Asia, and abiotic stress conditions easily reduce its yields. Salt stress is one of the critical factors affecting rice growth and yield. In this study, a tandem mass tag (TMT)-based comparative peptidomics analysis of rice seedlings under salt stress was conducted. Rice seedlings were exposed to 50 and 150 mM NaCl for 24 and 72 h, respectively, and the root and shoot tissues of different treatment groups were collected separately for peptidomics analysis. A total of 911 and 1263 nonredundant peptides were identified in two pooled shoot tissue samples, while there were 770 and 672 nonredundant peptides in two pooled root tissue samples, respectively. Compared with the control groups, dozens to hundreds of differentially expressed peptides (DEPs) were characterized in all treatment groups. To explore the potential functions of these DEPs, we analyzed the basic characteristics of DEPs and further analyzed the annotated Gene Ontology terms according to their precursor proteins. Several DEP precursor proteins were closely related to the response to salt stress, and some were derived from the functional domains of their corresponding precursors. The germination rate and cotyledon greening rate of transgenic Arabidopsis expressing two DEPs, OsSTPE2 and OsSTPE3, were significantly enhanced under salt stress. The described workflow enables the discovery of a functional pipeline for the characterization of the plant peptidome and reveals two new plant peptides that confer salinity tolerance to plants. Data are available via ProteomeXchange with identifier PXD037574.
Collapse
Affiliation(s)
- Wanlu Ma
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenchen Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wei Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Pijie Sheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Minyan Xu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ying Ni
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Meng Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Beijiu Cheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xin Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
8
|
Ergon Å, Milvang ØW, Skøt L, Ruttink T. Identification of loci controlling timing of stem elongation in red clover using genotyping by sequencing of pooled phenotypic extremes. Mol Genet Genomics 2022; 297:1587-1600. [PMID: 36001174 DOI: 10.1007/s00438-022-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
MAIN CONCLUSION Through selective genotyping of pooled phenotypic extremes, we identified a number of loci and candidate genes putatively controlling timing of stem elongation in red clover. We have identified candidate genes controlling the timing of stem elongation prior to flowering in red clover (Trifolium pratense L.). This trait is of ecological and agronomic significance, as it affects fitness, competitivity, climate adaptation, forage and seed yield, and forage quality. We genotyped replicate pools of phenotypically extreme individuals (early and late-elongating) within cultivar Lea using genotyping-by-sequencing in pools (pool-GBS). After calling and filtering SNPs and GBS locus haplotype polymorphisms, we estimated allele frequencies and searched for markers with significantly different allele frequencies in the two phenotypic groups using BayeScan, an FST-based test utilizing replicate pools, and a test based on error variance of replicate pools. Of the three methods, BayeScan was the least stringent, and the error variance-based test the most stringent. Fifteen significant markers were identified in common by all three tests. The candidate genes flanking the markers include genes with potential roles in the vernalization, autonomous, and photoperiod regulation of floral transition, hormonal regulation of stem elongation, and cell growth. These results provide a first insight into the potential genes and mechanisms controlling transition to stem elongation in a perennial legume, which lays a foundation for further functional studies of the genetic determinants regulating this important trait.
Collapse
Affiliation(s)
- Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | - Øystein W Milvang
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Leif Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, B-9090 Melle, Belgium
| |
Collapse
|
9
|
Pfeifer L, Mueller KK, Classen B. The cell wall of hornworts and liverworts: innovations in early land plant evolution? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4454-4472. [PMID: 35470398 DOI: 10.1093/jxb/erac157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
An important step for plant diversification was the transition from freshwater to terrestrial habitats. The bryophytes and all vascular plants share a common ancestor that was probably the first to adapt to life on land. A polysaccharide-rich cell wall was necessary to cope with newly faced environmental conditions. Therefore, some pre-requisites for terrestrial life have to be shared in the lineages of modern bryophytes and vascular plants. This review focuses on hornwort and liverwort cell walls and aims to provide an overview on shared and divergent polysaccharide features between these two groups of bryophytes and vascular plants. Analytical, immunocytochemical, and bioinformatic data were analysed. The major classes of polysaccharides-cellulose, hemicelluloses, and pectins-seem to be present but have diversified structurally during evolution. Some polysaccharide groups show structural characteristics which separate hornworts from the other bryophytes or are too poorly studied in detail to be able to draw absolute conclusions. Hydroxyproline-rich glycoprotein backbones are found in hornworts and liverworts, and show differences in, for example, the occurrence of glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-proteins, while glycosylation is practically unstudied. Overall, the data are an appeal to researchers in the field to gain more knowledge on cell wall structures in order to understand the changes with regard to bryophyte evolution.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany
| |
Collapse
|
10
|
Differential Expression of Arabinogalactan in Response to Inclination in Stem of Pinus radiata Seedlings. PLANTS 2022; 11:plants11091190. [PMID: 35567191 PMCID: PMC9104628 DOI: 10.3390/plants11091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Arabinogalactan proteins (AGPs) are members of a family of proteins that play important roles in cell wall dynamics. AGPs from inclined pines were determined using JIM7, LM2, and LM6 antibodies, showing a higher concentration in one side of the stem. The accumulation of AGPs in xylem and cell wall tissues is enhanced in response to loss of tree stem verticality. The differential gene expression of AGPs indicates that these proteins could be involved in the early response to inclination and also trigger signals such as lignin accumulation, as well as thicken cell wall and lamella media to restore stem vertical growth. A subfamily member of AGPs, which is Fasciclin-like has been described in angiosperm species as inducing tension wood and in some gymnosperms. A search for gene sequences of this subfamily was performed on an RNA-seq library, where 12 sequences were identified containing one or two fasciclin I domains (FAS), named PrFLA1 to PrFLA12. Four of these sequences were phylogenetically classified in group A, where PrFLA1 and PrFLA4 are differentially expressed in tilted pine trees.
Collapse
|
11
|
Deng Y, Wan Y, Liu W, Zhang L, Zhou K, Feng P, He G, Wang N. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1247-1262. [PMID: 34985538 DOI: 10.1007/s00122-021-04028-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
OsFLA1 positively regulates pollen exine development, and locates in the cellular membrane. Arabinogalactan proteins are a type of hydroxyproline-rich glycoprotein that are present in all plant tissues and cells and play important roles in plant growth and development. Little information is available on the participation of fasciclin-like arabinogalactan proteins in sexual reproduction in rice. In this study, a rice male-sterile mutant, osfla1, was isolated from an ethylmethanesulfonate-induced mutant library. The osfla1 mutant produced withered, shrunken, and abortive pollen. The gene OsFLA1 encoded a FLA protein and was expressed strongly in the anthers in rice. Subcellular localization showed that OsFLA1 was located in the cellular membrane. In the osfla1 mutant, abnormal Ubisch bodies and a discontinuous nexine layer of the microspore wall were observed, which resulted in pollen abortion and ultimately in male sterility. The results show the important role that OsFLA1 plays in male reproductive development in rice.
Collapse
Affiliation(s)
- Yao Deng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yingchun Wan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Weichi Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Genome-Wide Identification and Characterization of DnaJ Gene Family in Grape (Vitis vinifera L.). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Grape production in southern China suffers great loss due to various environmental stresses. To understand the mechanism of how the grape plants respond to these stresses is an active area of research in developing cultivation techniques. Plant stress resistance is known to rely on special proteins. Amongst them, DnaJ protein (HSP40) serves as co-chaperones of HSP70, playing crucial roles in various stress response. However, the DnaJ proteins encoded by the DnaJ gene family in Vitis vinifera L. have not been fully described yet. In this study, we identified 78 VvDnaJs in the grape genome that can be classified into three groups—namely, DJA, DJB, and DJC. To reveal the evolutionary and stress response mechanisms for the VvDnaJ gene family, their evolutionary and expression patterns were analyzed using the bioinformatic approach and qRT-PCR. We found that the members in the same group exhibited a similar gene structure and protein domain organization. Gene duplication analysis demonstrated that segmental and tandem duplication may not be the dominant pathway of gene expansion in the VvDnaJ gene family. Codon usage pattern analysis showed that the codon usage pattern of VvDnaJs differs obviously from the monocotyledon counterparts. Tissue-specific analysis revealed that 12 VvDnaJs present a distinct expression profile, implying their distinct roles in various tissues. Cis-acting element analysis showed that almost all VvDnaJs contained the elements responsive to either hormones or stresses. Therefore, the expression levels of VvDnaJs subjected to exogenous hormone applications and stress treatments were determined, and we found that VvDnaJs were sensitive to hormone treatments and shade, salt, and heat stresses, especially VIT_00s0324g00040. The findings of this study could provide comprehensive information for the further investigation on the genetics and protein functions of the DnaJ gene family in grape.
Collapse
|
13
|
The Arabinogalactan Protein Family of Centaurium erythraea Rafn. PLANTS 2021; 10:plants10091870. [PMID: 34579403 PMCID: PMC8471777 DOI: 10.3390/plants10091870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
Centaurium erythraea (centaury) is a medicinal plant with exceptional developmental plasticity in vitro and vigorous, often spontaneous, regeneration via shoot organogenesis and somatic embryogenesis, during which arabinogalactan proteins (AGPs) play an important role. AGPs are highly glycosylated proteins belonging to the super family of O-glycosylated plant cell surface hydroxyproline-rich glycoproteins (HRGPs). HRGPs/AGPs are intrinsically disordered and not well conserved, making their homology-based mining ineffective. We have applied a recently developed pipeline for HRGP/AGP mining, ragp, which is based on machine learning prediction of proline hydroxylation, to identify HRGP sequences in centaury transcriptome and to classify them into motif and amino acid bias (MAAB) classes. AGP sequences with low AG glycomotif representation were also identified. Six members of each of the three AGP subclasses, fasciclin-like AGPs, receptor kinase-like AGPs and AG peptides, were selected for phylogenetic and expression analyses. The expression of these 18 genes was recorded over 48 h following leaf mechanical wounding, as well as in 16 tissue samples representing plants from nature, plants cultivated in vitro, and developmental stages during shoot organogenesis and somatic embryogenesis. None of the selected genes were upregulated during both wounding recovery and regeneration. Possible functions of AGPs with the most interesting expression profiles are discussed.
Collapse
|
14
|
3,4-Dehydro-L-proline Induces Programmed Cell Death in the Roots of Brachypodium distachyon. Int J Mol Sci 2021; 22:ijms22147548. [PMID: 34299166 PMCID: PMC8303501 DOI: 10.3390/ijms22147548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023] Open
Abstract
As cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs) take part in plant growth and various developmental processes. To fulfil their functions, HRGPs, extensins (EXTs) in particular, undergo the hydroxylation of proline by the prolyl-4-hydroxylases. The activity of these enzymes can be inhibited with 3,4-dehydro-L-proline (3,4-DHP), which enables its application to reveal the functions of the HRGPs. Thus, to study the involvement of HRGPs in the development of root hairs and roots, we treated seedlings of Brachypodium distachyon with 250 µM, 500 µM, and 750 µM of 3,4-DHP. The histological observations showed that the root epidermis cells and the cortex cells beneath them ruptured. The immunostaining experiments using the JIM20 antibody, which recognizes the EXT epitopes, demonstrated the higher abundance of this epitope in the control compared to the treated samples. The transmission electron microscopy analyses revealed morphological and ultrastructural features that are typical for the vacuolar-type of cell death. Using the TUNEL test (terminal deoxynucleotidyl transferase dUTP nick end labelling), we showed an increase in the number of nuclei with damaged DNA in the roots that had been treated with 3,4-DHP compared to the control. Finally, an analysis of two metacaspases' gene activity revealed an increase in their expression in the treated roots. Altogether, our results show that inhibiting the prolyl-4-hydroxylases with 3,4-DHP results in a vacuolar-type of cell death in roots, thereby highlighting the important role of HRGPs in root hair development and root growth.
Collapse
|
15
|
Miao Y, Cao J, Huang L, Yu Y, Lin S. FLA14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC PLANT BIOLOGY 2021; 21:254. [PMID: 34082704 PMCID: PMC8173729 DOI: 10.1186/s12870-021-03038-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND As an important subfamily of arabinogalactan proteins (AGPs), fasciclin-like AGPs (FLAs) contribute to various aspects of growth, development and adaptation, yet their function remains largely elusive. Despite the diversity of FLAs, only two members, Arabidopsis FLA3 and rice MTR1, are reported to be involved in sexual reproduction. In this study, another Arabidopsis FLA-encoding gene, FLA14, was identified, and its role was investigated. RESULTS Arabidopsis FLA14 was found to be a pollen grain-specific gene. Expression results from fusion with green fluorescent protein showed that FLA14 was localized along the cell membrane and in Hechtian strands. A loss-of-function mutant of FLA14 showed no discernible defects during male gametogenesis, but precocious pollen germination occurred inside the mature anthers under high moisture conditions. Overexpression of FLA14 caused 39.2% abnormal pollen grains with a shrunken and withered appearance, leading to largely reduced fertility with short mature siliques and lower seed set. Cytological and ultramicroscopic observation showed that ectopic expression of FLA14 caused disruption at the uninucleate stage, resulting in either collapsed pollen with absent intine or pollen of normal appearance but with a thickened intine. CONCLUSIONS Taken together, our data suggest a role for FLA14 in pollen development and preventing premature pollen germination inside the anthers under high relative humidity in Arabidopsis.
Collapse
Affiliation(s)
- Yingjing Miao
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, China
| | - Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
16
|
Allelign Ashagre H, Zaltzman D, Idan-Molakandov A, Romano H, Tzfadia O, Harpaz-Saad S. FASCICLIN-LIKE 18 Is a New Player Regulating Root Elongation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:645286. [PMID: 33897736 PMCID: PMC8058476 DOI: 10.3389/fpls.2021.645286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
The plasticity of root development represents a key trait that enables plants to adapt to diverse environmental cues. The pattern of cell wall deposition, alongside other parameters, affects the extent, and direction of root growth. In this study, we report that FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 18 (FLA18) plays a role during root elongation in Arabidopsis thaliana. Using root-specific co-expression analysis, we identified FLA18 to be co-expressed with a sub-set of genes required for root elongation. FLA18 encodes for a putative extra-cellular arabinogalactan protein from the FLA-gene family. Two independent T-DNA insertion lines, named fla18-1 and fla18-2, display short and swollen lateral roots (LRs) when grown on sensitizing condition of high-sucrose containing medium. Unlike fla4/salt overly sensitive 5 (sos5), previously shown to display short and swollen primary root (PR) and LRs under these conditions, the PR of the fla18 mutants is slightly longer compared to the wild-type. Overexpression of the FLA18 CDS complemented the fla18 root phenotype. Genetic interaction between either of the fla18 alleles and sos5 reveals a more severe perturbation of anisotropic growth in both PR and LRs, as compared to the single mutants and the wild-type under restrictive conditions of high sucrose or high-salt containing medium. Additionally, under salt-stress conditions, fla18sos5 had a small, chlorotic shoot phenotype, that was not observed in any of the single mutants or the wild type. As previously shown for sos5, the fla18-1 and fla18-1sos5 root-elongation phenotype is suppressed by abscisic acid (ABA) and display hypersensitivity to the ABA synthesis inhibitor, Fluridon. Last, similar to other cell wall mutants, fla18 root elongation is hypersensitive to the cellulose synthase inhibitor, Isoxaben. Altogether, the presented data assign a new role for FLA18 in the regulation of root elongation. Future studies of the unique vs. redundant roles of FLA proteins during root elongation is anticipated to shed a new light on the regulation of root architecture during plant adaptation to different growth conditions.
Collapse
Affiliation(s)
- Hewot Allelign Ashagre
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Zaltzman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Idan-Molakandov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Romano
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Tzfadia
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Přerovská T, Henke S, Bleha R, Spiwok V, Gillarová S, Yvin JC, Ferrières V, Nguema-Ona E, Lipovová P. Arabinogalactan-like Glycoproteins from Ulva lactuca (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. JOURNAL OF PHYCOLOGY 2021; 57:619-635. [PMID: 33338254 DOI: 10.1111/jpy.13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) encompass a diverse group of plant cell wall proteoglycans, which play an essential role in plant development, signaling, plant-microbe interactions, and many others. Although they are widely distributed throughout the plant kingdom and extensively studied, they remain largely unexplored in the lower plants, especially in seaweeds. Ulva species have high economic potential since various applications were previously described including bioremediation, biofuel production, and as a source of bioactive compounds. This article presents the first experimental confirmation of AGP-like glycoproteins in Ulva species and provides a simple extraction protocol of Ulva lactuca AGP-like glycoproteins, their partial characterization and unique comparison to scarcely described Solanum lycopersicum AGPs. The reactivity with primary anti-AGP antibodies as well as Yariv reagent showed a great variety between Ulva lactuca and Solanum lycopersicum AGP-like glycoproteins. While the amino acid analysis of the AGP-like glycoproteins purified by the β-d-glucosyl Yariv reagent showed a similarity between algal and land plant AGP-like glycoproteins, neutral saccharide analysis revealed unique glycosylation of the Ulva lactuca AGP-like glycoproteins. Surprisingly, arabinose and galactose were not the most prevalent monosaccharides and the most outstanding was the presence of 3-O-methyl-hexose, which has never been described in the AGPs. The exceptional structure of the Ulva lactuca AGP-like glycoproteins implies a specialized adaptation to the marine environment and might bring new insight into the evolution of the plant cell wall.
Collapse
Affiliation(s)
- Tereza Přerovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Svatopluk Henke
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Simona Gillarová
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Jean-Claude Yvin
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| |
Collapse
|
18
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
19
|
Meng J, Hu B, Yi G, Li X, Chen H, Wang Y, Yuan W, Xing Y, Sheng Q, Su Z, Xu C. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. PLANT CELL REPORTS 2020; 39:693-708. [PMID: 32128627 DOI: 10.1007/s00299-020-02524-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Thirty MaFLAs vary in their molecular features. MaFLA14/18/27/29 are likely to be involved in banana chilling tolerance by facilitating the cold signaling pathway and enhancing the cell wall biosynthesis. Although several studies have identified the molecular functions of individual fasciclin-like arabinogalactan protein (FLA) genes in plant growth and development, little information is available on their involvement in plant tolerance to low-temperature (LT) stress, and the related underlying mechanism is far from clear. In this study, the different expression of FLAs of banana (Musa acuminata) (MaFLAs) in the chilling-sensitive (CS) and chilling-tolerant (CT) banana cultivars under natural LT was investigated. Based on the latest banana genome database, a genome-wide identification of this gene family was done and the molecular features were analyzed. Thirty MaFLAs were distributed in 10 out of 11 chromosomes and these clustered into four major phylogenetic groups based on shared gene structure. Twenty-four MaFLAs contained N-terminal signal, 19 possessed predicted glycosylphosphatidylinositol (GPI), while 16 had both. Most MaFLAs were downregulated by LT stress. However, MaFLA14/18/29 were upregulated by LT in both cultivars with higher expression level recorded in the CT cultivar. Interestingly, MaFLA27 was significantly upregulated in the CT cultivar, but the opposite occurred for the CS cultivar. MaFLA27 possessed only N-terminal signal, MaFLA18 contained only GPI anchor, MaFLA29 possessed both, while MaFLA14 had neither. Thus, it was suggested that the accumulation of these FLAs in banana under LT could improve banana chilling tolerance through facilitating cold signal pathway and thereafter enhancing biosynthesis of plant cell wall components. The results provide background information of MaFLAs, suggest their involvement in plant chilling tolerance and their potential as candidate genes to be targeted when breeding CT banana.
Collapse
Affiliation(s)
- Jian Meng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bei Hu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yingying Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Weina Yuan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Xing
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiming Sheng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zuxiang Su
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Shafee T, Bacic A, Johnson K. Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Mol Biol Evol 2020; 37:2155-2172. [DOI: 10.1093/molbev/msaa096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Approaches for studying the evolution of globular proteins are now well established yet are unsuitable for disordered sequences. Our understanding of the evolution of proteins containing disordered regions therefore lags that of globular proteins, limiting our capacity to estimate their evolutionary history, classify paralogs, and identify potential sequence–function relationships. Here, we overcome these limitations by using new analytical approaches that project representations of sequence space to dissect the evolution of proteins with both ordered and disordered regions, and the correlated changes between these. We use the fasciclin-like arabinogalactan proteins (FLAs) as a model family, since they contain a variable number of globular fasciclin domains as well as several distinct types of disordered regions: proline (Pro)-rich arabinogalactan (AG) regions and longer Pro-depleted regions.
Sequence space projections of fasciclin domains from 2019 FLAs from 78 species identified distinct clusters corresponding to different types of fasciclin domains. Clusters can be similarly identified in the seemingly random Pro-rich AG and Pro-depleted disordered regions. Sequence features of the globular and disordered regions clearly correlate with one another, implying coevolution of these distinct regions, as well as with the N-linked and O-linked glycosylation motifs. We reconstruct the overall evolutionary history of the FLAs, annotated with the changing domain architectures, glycosylation motifs, number and length of AG regions, and disordered region sequence features. Mapping these features onto the functionally characterized FLAs therefore enables their sequence–function relationships to be interrogated. These findings will inform research on the abundant disordered regions in protein families from all kingdoms of life.
Collapse
Affiliation(s)
- Thomas Shafee
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| | - Kim Johnson
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| |
Collapse
|
21
|
Jamet E, Dunand C. Plant Cell Wall Proteins and Development. Int J Mol Sci 2020; 21:E2731. [PMID: 32326416 PMCID: PMC7215729 DOI: 10.3390/ijms21082731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022] Open
Abstract
Plant cell walls surround cells and provide both external protection and a means of cell-to-cell communication [...].
Collapse
Affiliation(s)
- Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31320 Auzeville Tolosane, France
| |
Collapse
|
22
|
Happ K, Classen B. Arabinogalactan-Proteins from the Liverwort Marchantia polymorpha L., a Member of a Basal Land Plant Lineage, Are Structurally Different to Those of Angiosperms. PLANTS (BASEL, SWITZERLAND) 2019; 8:E460. [PMID: 31671872 PMCID: PMC6918356 DOI: 10.3390/plants8110460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023]
Abstract
The thalloid liverwort Marchantia polymorpha as a member of a basal land plant lineage has to cope with the challenge of terrestrial life. Obviously, the plant cell wall has been strongly involved in the outstanding evolutionary process of water-to-land-transition. AGPs are signaling glycoproteins of the cell wall, which seem to be ubiquitous in seed plants and might play a role in adaption to abiotic and biotic stress situations. Therefore, we investigated the cell wall composition of Marchantia polymorpha with special focus on structural characterization of arabinogalactan-proteins. The Marchantia AGP shows typical features known from seed plant AGPs like precipitation with β-glucosyl-Yariv's reagent, a protein moiety with hydroxyproline and a carbohydrate part with 1,3,6-linked galactose and terminal arabinose residues. On the other hand, striking differences to AGPs of angiosperms are the occurrence of terminal 3-O-methyl-rhamnose and a highly branched galactan lacking appreciable amounts of 1,6-linked galactose. Binding of different AGP-antibodies (JIM13, KM1, LM2, LM6, LM14, LM26, and MAC207) to Marchantia AGP was investigated and confirmed structural differences between liverwort and angiosperm AGP, possibly due to deviating functions of these signaling molecules in the different taxonomic groups.
Collapse
Affiliation(s)
- Kathrin Happ
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
| |
Collapse
|