1
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
2
|
Sun S, Mei X. Effect of CASC15 on apoptosis and oxidative stress of cardiomyocytes after hypoxia/reperfusion injury. Rev Port Cardiol 2024; 43:77-84. [PMID: 37652115 DOI: 10.1016/j.repc.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES The increasing incidence of ischemic heart disease is a serious threat to human health. Increased CASC15, a long non-coding RNA, has been shown to adversely affect cardiac muscle. The objective of this paper was to explore the effect of CASC15 on a cell model of myocardial infarction and its possible mechanism. METHODS H9c2 cells were selected to establish the myocardial infarction model through hypoxia/reoxygenation (H/R) treatment. The expression of CASC15 was attenuated by cell transfection in vitro. The level of CASC15 was detected by RT-qPCR. Cell viability was detected by CCK-8 assay, and cell apoptosis was assessed by flow cytometry. The content of MDA and the activity of SOD and GSH-Px were measured by ELISA. Luciferase reporter gene assay was used to determine the relationship between CASC15 and miRNA. RESULTS CASC15 expression was increased in H/R-treated H9c2 cells. Overexpression of CASC15 adversely affected cell viability and promoted H/R-induced oxidative stress. Inhibition of CASC15 promoted cell viability and suppressed cell apoptosis and oxidative stress damage. Additionally, luciferase reporter gene assay confirmed the targeting relationship between CASC15 and miR-542-3p, and attenuating CASC15 expression enhanced the level of miR-542-3p. Reduction of miR-542-3p weakened the viability of the H/R cell model, increased apoptosis, and enhanced oxidative stress damage. CONCLUSION This study suggests that overexpression of CASC15 may inhibit the viability of H9c2 cells, promote apoptosis and induce oxidative stress through targeted regulation of miR-542-3p expression.
Collapse
Affiliation(s)
- Shuai Sun
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Mei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China.
| |
Collapse
|
3
|
Mesquita FP, Lima LB, da Silva EL, Souza PFN, de Moraes MEA, Burbano RMR, Montenegro RC. A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy. Curr Protein Pept Sci 2024; 25:539-552. [PMID: 38424421 DOI: 10.2174/0113892037291318240130103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Luina Benevides Lima
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Emerson Lucena da Silva
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | | | - Rommel Mario Rodrigues Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil
| |
Collapse
|
4
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
5
|
Jiang SL, Mo JL, Peng J, Lei L, Yin JY, Zhou HH, Liu ZQ, Hong WX. Targeting translation regulators improves cancer therapy. Genomics 2020; 113:1247-1256. [PMID: 33189778 DOI: 10.1016/j.ygeno.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Jun-Luan Mo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China.
| |
Collapse
|
6
|
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12:169. [PMID: 33160401 PMCID: PMC7648940 DOI: 10.1186/s13148-020-00962-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of clinically aggressive diseases associated with poor prognosis. Except for ALK + anaplastic large-cell lymphoma (ALCL), most peripheral T-cell lymphomas are highly malignant and have an aggressive disease course and poor clinical outcomes, with a poor remission rate and frequent relapse after first-line treatment. Aberrant epigenetic alterations play an important role in the pathogenesis and development of specific types of peripheral T-cell lymphoma, including the regulation of the expression of genes and signal transduction. The most common epigenetic alterations are DNA methylation and histone modification. Histone modification alters the level of gene expression by regulating the acetylation status of lysine residues on the promoter surrounding histones, often leading to the silencing of tumour suppressor genes or the overexpression of proto-oncogenes in lymphoma. DNA methylation refers to CpG islands, generally leading to tumour suppressor gene transcriptional silencing. Genetic studies have also shown that some recurrent mutations in genes involved in the epigenetic machinery, including TET2, IDH2-R172, DNMT3A, RHOA, CD28, IDH2, TET2, MLL2, KMT2A, KDM6A, CREBBP, and EP300, have been observed in cases of PTCL. The aberrant expression of miRNAs has also gradually become a diagnostic biomarker. These provide a reasonable molecular mechanism for epigenetic modifying drugs in the treatment of PTCL. As epigenetic drugs implicated in lymphoma have been continually reported in recent years, many new ideas for the diagnosis, treatment, and prognosis of PTCL originate from epigenetics in recent years. Novel epigenetic-targeted drugs have shown good tolerance and therapeutic effects in the treatment of peripheral T-cell lymphoma as monotherapy or combination therapy. NCCN Clinical Practice Guidelines also recommended epigenetic drugs for PTCL subtypes as second-line therapy. Epigenetic mechanisms provide new directions and therapeutic strategies for the research and treatment of peripheral T-cell lymphoma. Therefore, this paper mainly reviews the epigenetic changes in the pathogenesis of peripheral T-cell lymphoma and the advancement of epigenetic-targeted drugs in the treatment of peripheral T-cell lymphoma (PTCL).
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China. .,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
7
|
Perez de Acha O, Rossi M, Gorospe M. Circular RNAs in Blood Malignancies. Front Mol Biosci 2020; 7:109. [PMID: 32676504 PMCID: PMC7333357 DOI: 10.3389/fmolb.2020.00109] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Circular (circ)RNAs influence a wide range of biological processes at least in part by interacting with proteins and microRNAs. CircRNAs expressed in the hematopoietic compartment have been increasingly recognized as modulators of physiological and pathological features of hematopoetic stem cell (HSC)-derived populations. In particular, several circRNAs were found to enhance or suppress tumor progression in blood malignancies such as leukemias and lymphomas. Moreover, numerous circRNAs have been proposed to help confer resistance to the conventional treatments used in hematopoietic cancers. Here, we review the most important circRNAs described thus far in acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), lymphomas, and multiple myeloma (MM). We discuss the usefulness of circRNAs as diagnostic and prognostic markers and their potential value as therapeutic targets.
Collapse
Affiliation(s)
- Olivia Perez de Acha
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
8
|
Li W, Ma N, Yuwen T, Yu B, Zhou Y, Yao Y, Li Q, Chen X, Wan J, Zhang Y, Zhang W. Comprehensive analysis of circRNA expression profiles and circRNA-associated competing endogenous RNA networks in the development of mouse thymus. J Cell Mol Med 2020; 24:6340-6349. [PMID: 32307889 PMCID: PMC7294154 DOI: 10.1111/jcmm.15276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022] Open
Abstract
The thymus plays an irreplaceable role as a primary lymphoid organ. However, the complicate processes of its development and involution are incompletely understood. Accumulating evidence indicates that non-coding RNAs play key roles in the regulation of biological development. At present, the studies of the circRNA profiles and of circRNA-associated competing endogenous RNAs (ceRNAs) in the thymus are still scarce. Here, deep-RNA sequencing was used to study the biological mechanisms underlying the development process (from 2-week-old to 6-week-old) and the recession process (from 6-week-old to 3-month-old) of the mouse thymus. It was found that 196 circRNAs, 233 miRNAs and 3807 mRNAs were significantly dysregulated. The circRNA-associated ceRNA networks were constructed in the mouse thymus, which were mainly involved in early embryonic development and the proliferation and division of T cells. Taken together, these results elucidated the regulatory roles of ceRNAs in the development and involution processes of the mouse thymus.
Collapse
Affiliation(s)
- Wenting Li
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ting Yuwen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yao Zhou
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Yufei Yao
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Qi Li
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhang
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Hainan, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
9
|
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019; 21:E132. [PMID: 31878193 PMCID: PMC6981965 DOI: 10.3390/ijms21010132] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins. Further, miRNAs control diverse biological and pathological processes via the silencing of target mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA strand selection, and modifications of miRNA pathway components, as well as the roles of RNA modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA networks, as well as the improvement of RNAi performance for both gene-specific targeting and genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and function have been applied to the design of synthetic gene circuits. In addition, the relationships between miRNA genes and super-enhancers provide the molecular basis for the highly biased cell type-specific expression patterns of miRNAs and the evolution of miRNA-target connections, while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of human diseases.
Collapse
Affiliation(s)
- Hironori Matsuyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., 1-11-1 Karasaki, Otsu-shi, Shiga 520-0106, Japan;
| | - Hiroshi I. Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Su Y, Lv X, Yin W, Zhou L, Hu Y, Zhou A, Qi F. CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression. Aging (Albany NY) 2019; 11:8183-8203. [PMID: 31581132 PMCID: PMC6814590 DOI: 10.18632/aging.102312] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Recent years, circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of many diseases. A growing number of evidences have identified the representative function of exosomal circRNAs in the physiological state of donor cells, which further induces cellular responses after captured by recipient cells. However, the contributions of circRNAs to HCC remain largely unknown. In vitro and in vivo regulatory roles of circRNA Cdr1as in proliferative and migratory abilities of HCC were evaluated by CCK8, EdU, Transwell and tumourigenicity assays, respectively. Results showed circRNA Cdr1as was highly expressed in HCC cell lines and tissues. Overexpression of circRNA Cdr1as greatly accelerated HCC cells to proliferate and migrate. Mechanistically, we found that Cdr1as could promote the expression of AFP, a well-known biomarker for HCC, by sponging miR-1270. Further studies showed exosomes extracted from HCC cells overexpressing circRNA Cdr1as accelerated the proliferative and migratory abilities of surrounding normal cells. In all, circRNA Cdr1as serves as a ceRNA to promote the progression of HCC. Meanwhile, it is directly transferred from HCC cells to surrounding normal cells via exosomes to further mediate the biological functions of surrounding cells.
Collapse
Affiliation(s)
- Yang Su
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiurui Lv
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Yin
- Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Lingling Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yilin Hu
- Research Center of Clinical Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Ang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - FuZhen Qi
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|