1
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
2
|
Sharma S, Kumar M, Sircar D, Prasad R. Metabolic profiling and biomarkers identification in cluster bean under drought stress using GC-MS technique. Metabolomics 2024; 20:80. [PMID: 39066988 DOI: 10.1007/s11306-024-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The Cluster bean is an economically significant annual legume, widely known as guar. Plant productivity is frequently constrained by drought conditions. OBJECTIVE In this work, we have identified the untargeted drought stress-responsive metabolites in mature leaves of cluster beans under drought and control condition. METHODS To analyse the untargeted metabolites, gas chromatography-mass spectrometry (GC-MS) technique was used. Supervised partial least-squares discriminate analysis and heat map were used to identify the most significant metabolites for drought tolerance. RESULTS The mature leaves of drought-treated C. tetragonoloba cv. 'HG-365' which is a drought-tolerant cultivar, showed various types of amino acids, fatty acids, sugar alcohols and sugars as the major classes of metabolites recognized by GC-MS metabolome analysis. Metabolite profiling of guar leaves showed 23 altered metabolites. Eight metabolites (proline, valine, D-pinitol, palmitic acid, dodecanoic acid, threonine, glucose, and glycerol monostearate) with VIP score greater than one were considered as biomarkers and three metabolite biomarkers (D-pinitol, valine, and glycerol monostearate) were found for the first time in guar under drought stress. In this work, four amino acids (alanine, valine, serine and aspartic acid) were also studied, which played a significant role in drought-tolerant pathway in guar. CONCLUSION This study provides information on the first-ever GC-MS metabolic profiling of guar. This work gives in-depth details on guar's untargeted drought-responsive metabolites and biomarkers, which can plausibly be used for further identification of biochemical pathways, enzymes, and the location of various genes under drought stress.
Collapse
Affiliation(s)
- Shipra Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mukund Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
3
|
Dumschott K, Dörpholz H, Laporte MA, Brilhaus D, Schrader A, Usadel B, Neumann S, Arnaud E, Kranz A. Ontologies for increasing the FAIRness of plant research data. FRONTIERS IN PLANT SCIENCE 2023; 14:1279694. [PMID: 38098789 PMCID: PMC10720748 DOI: 10.3389/fpls.2023.1279694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The importance of improving the FAIRness (findability, accessibility, interoperability, reusability) of research data is undeniable, especially in the face of large, complex datasets currently being produced by omics technologies. Facilitating the integration of a dataset with other types of data increases the likelihood of reuse, and the potential of answering novel research questions. Ontologies are a useful tool for semantically tagging datasets as adding relevant metadata increases the understanding of how data was produced and increases its interoperability. Ontologies provide concepts for a particular domain as well as the relationships between concepts. By tagging data with ontology terms, data becomes both human- and machine- interpretable, allowing for increased reuse and interoperability. However, the task of identifying ontologies relevant to a particular research domain or technology is challenging, especially within the diverse realm of fundamental plant research. In this review, we outline the ontologies most relevant to the fundamental plant sciences and how they can be used to annotate data related to plant-specific experiments within metadata frameworks, such as Investigation-Study-Assay (ISA). We also outline repositories and platforms most useful for identifying applicable ontologies or finding ontology terms.
Collapse
Affiliation(s)
- Kathryn Dumschott
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dörpholz
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Marie-Angélique Laporte
- Digital Solutions Team, Digital Inclusion Lever, Bioversity International, Montpellier Office, Montpellier, France
| | - Dominik Brilhaus
- Data Science and Management & Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Schrader
- Data Science and Management & Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Björn Usadel
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Data Science & Cluster of Excellence on Plant Sciences (CEPLAS), Faculty of Mathematics and Life Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Neumann
- Program Center MetaCom, Leibniz Institute of Plant Biochemistry, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Elizabeth Arnaud
- Digital Solutions Team, Digital Inclusion Lever, Bioversity International, Montpellier Office, Montpellier, France
| | - Angela Kranz
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
4
|
Purdy SJ, Fuentes D, Ramamoorthy P, Nunn C, Kaiser BN, Merchant A. The Metabolic Profile of Young, Watered Chickpea Plants Can Be Used as a Biomarker to Predict Seed Number under Terminal Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112172. [PMID: 37299151 DOI: 10.3390/plants12112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Chickpea is the second-most-cultivated legume globally, with India and Australia being the two largest producers. In both of these locations, the crop is sown on residual summer soil moisture and left to grow on progressively depleting water content, finally maturing under terminal drought conditions. The metabolic profile of plants is commonly, correlatively associated with performance or stress responses, e.g., the accumulation of osmoprotective metabolites during cold stress. In animals and humans, metabolites are also prognostically used to predict the likelihood of an event (usually a disease) before it occurs, e.g., blood cholesterol and heart disease. We sought to discover metabolic biomarkers in chickpea that could be used to predict grain yield traits under terminal drought, from the leaf tissue of young, watered, healthy plants. The metabolic profile (GC-MS and enzyme assays) of field-grown chickpea leaves was analysed over two growing seasons, and then predictive modelling was applied to associate the most strongly correlated metabolites with the final seed number plant-1. Pinitol (negatively), sucrose (negatively) and GABA (positively) were significantly correlated with seed number in both years of study. The feature selection algorithm of the model selected a larger range of metabolites including carbohydrates, sugar alcohols and GABA. The correlation between the predicted seed number and actual seed number was R2 adj = 0.62, demonstrating that the metabolic profile could be used to predict a complex trait with a high degree of accuracy. A previously unknown association between D-pinitol and hundred-kernel weight was also discovered and may provide a single metabolic marker with which to predict large seeded chickpea varieties from new crosses. The use of metabolic biomarkers could be used by breeders to identify superior-performing genotypes before maturity is reached.
Collapse
Affiliation(s)
- Sarah J Purdy
- New South Wales Department of Primary Industries, 4 Marsden Park Road, Calala, NSW 2340, Australia
| | - David Fuentes
- Charles Perkins Centre, Sydney Mass Spectrometry, The University of Sydney, John Hopkins Drive, Sydney, NSW 2000, Australia
| | - Purushothaman Ramamoorthy
- Plant Breeding Institute, Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, 12656 Newell Hwy, Narrabri, NSW 2390, Australia
| | - Christopher Nunn
- CSIRO Agriculture and Food, Australian Cotton Research Institute, 21888 Kamilaroi Hwy, Narrabri, NSW 2390, Australia
| | - Brent N Kaiser
- Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Road, Sydney, NSW 2006, Australia
| | - Andrew Merchant
- The School of Life, Earth and Environmental Science, The University of Sydney, 380 Werombi Road, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Lahuta LB, Górecki RJ, Szablińska-Piernik J, Horbowicz M. Changes in the Carbohydrate Profile in Common Buckwheat ( Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration. Metabolites 2023; 13:metabo13050672. [PMID: 37233712 DOI: 10.3390/metabo13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Plant species are sensitive to stresses, especially at the seedling stage, and they respond to these conditions by making metabolic changes to counteract the negative effects of this. The objectives of this study were to determine carbohydrate profile in particular organs (roots, hypocotyl, and cotyledons) of common buckwheat seedlings and to verify whether carbohydrate accumulation is similar or not in the organs in response to cold stress and dehydration. Roots, hypocotyl, and cotyledons of common buckwheat seedlings have various saccharide compositions. The highest concentrations of cyclitols, raffinose, and stachyose were found in the hypocotyl, indicating that they may be transported from cotyledons, although this needs further studies. Accumulation of raffinose and stachyose is a strong indicator of the response of all buckwheat organs to introduced cold stress. Besides, cold conditions reduced d-chiro-inositol content, but did not affect d-pinitol level. Enhanced accumulation of raffinose and stachyose were also a distinct response of all organs against dehydration at ambient temperature. The process causes also a large decrease in the content of d-pinitol in buckwheat hypocotyl, which may indicate its transformation to d-chiro-inositol whose content increased at that time. In general, the sucrose and its galactosides in hypocotyl tissues were subject to the highest changes to the applied cold and dehydration conditions compared to the cotyledons and roots. This may indicate tissue differences in the functioning of the protective system(s) against such threats.
Collapse
Affiliation(s)
- Lesław B Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| | - Ryszard J Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| |
Collapse
|
6
|
Metabolic, physiological and anatomical responses of soybean plants under water deficit and high temperature condition. Sci Rep 2022; 12:16467. [PMID: 36183028 PMCID: PMC9526742 DOI: 10.1038/s41598-022-21035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Water deficit (WD) combined with high temperature (HT) is the major factor limiting agriculture worldwide, and it is predicted to become worse according to the current climate change scenario. It is thus important to understand how current cultivated crops respond to these stress conditions. Here we investigated how four soybean cultivars respond to WD and HT isolated or in combination at metabolic, physiological, and anatomical levels. The WD + HT increased the level of stress in soybean plants when compared to plants under well-watered (WW), WD, or HT conditions. WD + HT exacerbates the increases in ascorbate peroxidase activity, which was associated with the greater photosynthetic rate in two cultivars under WD + HT. The metabolic responses to WD + HT diverge substantially from plants under WW, WD, or HT conditions. Myo-inositol and maltose were identified as WD + HT biomarkers and were connected to subnetworks composed of catalase, amino acids, and both root and leaf osmotic potentials. Correlation-based network analyses highlight that the network heterogeneity increased and a higher integration among metabolic, physiological, and morphological nodes is observed under stress conditions. Beyond unveiling biochemical and metabolic WD + HT biomarkers, our results collectively highlight that the mechanisms behind the acclimation to WD + HT cannot be understood by investigating WD or HT stress separately.
Collapse
|
7
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
8
|
Marriboina S, Sharma K, Sengupta D, Yadavalli AD, Sharma RP, Reddy Attipalli R. Evaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone-metabolic network. PHYSIOLOGIA PLANTARUM 2021; 173:1514-1534. [PMID: 34165187 DOI: 10.1111/ppl.13486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress results in significant losses in plant productivity and loss of cultivable lands. Although Pongamia pinnata is reported to be a salt-tolerant semiarid biofuel tree, the adaptive mechanisms to saline environments are elusive. Despite a reduction in carbon exchange rate (CER), the unchanged relative water content provides no visible salinity induced symptoms in leaves of hydroponic cultivated Pongamia seedlings for 8 days. Our Na+ -specific fluorescence results demonstrated that there was an effective apoplastic sodium sequestration in the roots. Salinity stress significantly increased zeatin (~5.5-fold), and jasmonic acid (~3.8-fold) levels in leaves while zeatin (~2.5-fold) content increased in leaves as well as in roots of salt-treated plants. Metabolite analysis suggested that osmolytes such as myo-inositol and mannitol were enhanced by ~12-fold in leaves and roots of salt-treated plants. Additionally, leaves of Pongamia showed a significant enhancement in carbohydrate content, while fatty acids were accumulated in roots under salt stress condition. At the molecular level, salt stress enhanced the expression of genes related to transporters, including the Salt Overly Sensitive 2 gene (SOS2), SOS3, vacuolar-cation/proton exchanger, and vacuolar-proton/ATPase exclusively in leaves, whereas the Sodium Proton Exchanger1 (NHX1), Cation Calcium Exchanger (CCX), and Cyclic Nucleotide Gated Channel 5 (CNGC5) were up-regulated in roots. Antioxidant gene expression analysis clearly demonstrated that peroxidase levels were significantly enhanced by ~10-fold in leaves, while Catalase and Fe-superoxide Dismutase (Fe-SOD) genes were increased in roots under salt stress. The correlation interaction studies between phytohormones and metabolites revealed new insights into the molecular and metabolic adaptations that confer salinity tolerance to Pongamia.
Collapse
Affiliation(s)
- Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anurupa Devi Yadavalli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Prasad Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
9
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
10
|
Qiu J, Yan X, Liao Y, Yu D, Wen C, Xiang Z. An UPLC-MS/MS method for quantification of D-pinitol in rat plasma and its application to a pharmacokinetic and bioavailability study. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122498. [PMID: 33388525 DOI: 10.1016/j.jchromb.2020.122498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 11/15/2022]
Abstract
D-pinitol could be a potential therapeutic agent for the treatment of diabetes mellitus (DM) type II. In this work, a sensitive and rapid ultra performance liquid chromatography coupled with tandem mass spectrometry method was firstly developed and validated for the determination and pharmacokinetic study of D-pinitol in rat plasma. D-pinitol and 5,7-dihydroxychromone (Internal Standard, IS) were completely separated on a BEH C18 column. The plasma samples were deproteinated with acetonitrile: ethanol (1:1). The MRM transitions for D-pinitol was m/z 179.125 → 105.049, and for IS was m/z 195.085 → 109.031. The method linearity ranges was 5-200 ng/mL. The precision, accuracy, recovery, matrix effect, stability under different conditions, were all within the required criteria. After intragastric (50 mg/kg) administration of D-pinitol to the rats, the maximum plasma concentration (Cmax) was 77.8 ± 19.5 ng/mL. The time to reach the maximum plasma concentration (Tmax) was 2.2 ± 0.98 h. Apparent distribution volume (Vz) was 1557.5 ± 1329.1 L/kg and the plasma centration time curve (AUC0-t) was 1265.5 ± 479.3 µg/L*h. After intravenous (5.0 mg/kg) administration, Vz was 325.2 ± 107.8 L/kg and AUC(0-t) was 693.0 ± 89.9 µg/L*h. Our study indicated D-pinitol had a slow elimination phase and might be the high affinity binding to blood protein in vivo, which are helpful for its further drug development and clinical application.
Collapse
Affiliation(s)
- Jieying Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Xixi Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Deguan Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Congcong Wen
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
11
|
Arya H, Singh MB, Bhalla PL. Towards Developing Drought-smart Soybeans. FRONTIERS IN PLANT SCIENCE 2021; 12:750664. [PMID: 34691128 PMCID: PMC8526797 DOI: 10.3389/fpls.2021.750664] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Drought is one of the significant abiotic stresses threatening crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. Also, in dry periods, it may require supplemental irrigation for drought-susceptible soybean varieties. The effects of drought stress on soybean including osmotic adjustments, growth morphology and yield loss have been well studied. In addition, drought-resistant soybean cultivars have been investigated for revealing the mechanisms of tolerance and survival. Advanced high-throughput technologies have yielded remarkable phenotypic and genetic information for producing drought-tolerant soybean cultivars, either through molecular breeding or transgenic approaches. Further, transcriptomics and functional genomics have led to the characterisation of new genes or gene families controlling drought response. Interestingly, genetically modified drought-smart soybeans are just beginning to be released for field applications cultivation. In this review, we focus on breeding and genetic engineering approaches that have successfully led to the development of drought-tolerant soybeans for commercial use.
Collapse
|
12
|
Abstract
Drought stress affects growth, morphological and biochemical properties in plants. To develop resistance and adapt to drought, plants need metabolic changes. Adaptations to stress involve changes to gene expression that activate metabolic processes that promote drought resistance and that may include biosynthesis and accumulation of specialized metabolites. Such adaptations in specialized metabolism may be important mechanisms leading to plant stress resistance and involve production of phenolics, flavonoids, terpenoid and nitrogen containing compounds that are species and genotype specific. Most plants having special metabolites to adapt to drought stress belong to different botanical families. C3, C4 and CAM plants, apply both morphological and metabolic mechanisms to adapt to drought as well as to accumulate specialized metabolites. Generally, medicinal plants increase their functional metabolites content, when exposed to drought stress. During drought stress, transcription factors and related pathways for biosynthesis of phenolics, flavonoids, anthocyanins as well as for stress jasmonate and abscisic acid stress hormones are activated.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mahdieh Karimi
- Department of Horticultural Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|