1
|
Gascoigne EL, Roell KR, Eaves LA, Fry RC, Manuck TA. Accelerated epigenetic clock aging in maternal peripheral blood and preterm birth. Am J Obstet Gynecol 2024; 230:559.e1-559.e9. [PMID: 37690595 PMCID: PMC10920398 DOI: 10.1016/j.ajog.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Epigenetic clocks use CpG DNA methylation to estimate biological age. Acceleration is associated with cancer, heart disease, and shorter life span. Few studies evaluate DNA methylation age and pregnancy outcomes. AgeAccelGrim is a novel epigenetic clock that combines 7 DNA methylation components. OBJECTIVE This study aimed to determine whether maternal biological aging (via AgeAccelGrim) is associated with early preterm birth. STUDY DESIGN A prospective cohort of patients with singleton pregnancies and at high risk of spontaneous preterm birth delivering at a tertiary university hospital were included in this study. Genome-wide CpG methylation was measured using the Illumina EPIC BeadChip (Illumina, Inc, San Diego, CA) from maternal blood samples obtained at <28 weeks of gestation. AgeAccelGrim and its 7 DNA methylation components were estimated by the Horvath DNA methylation age online tool. Positive values are associated with accelerated biological aging, whereas negative values are associated with slower biological aging relative to each subject's age. The primary outcome was preterm birth at <34 weeks of gestation (any indication). The secondary outcomes were preterm birth at <37 and <28 weeks of gestation. AgeAccelGrim was analyzed as a continuous variable and in quartiles. Exploratory analyses evaluated each of the 7 DNA methylation components included in the composite AgeAccelGrim. Data were analyzed by chi-square test, t test, rank-sum test, logistic regression (controlling a priori for maternal age, cell counts, low socioeconomic status, and gestational age at the time of sample collection), and Kaplan-Meier survival analyses. The log-rank test was used to test the equality of the survival functions. RESULTS Overall, 163 patients met the inclusion criteria. Of the patients, 48%, 39%, and 21% delivered at <37, <34, and <28 weeks of gestation, respectively. The median AgeAccelGrim was -0.35 years (interquartile range, -2.24 to 1.31) for those delivering at term. Those delivering preterm had higher AgeAccelGrim values that were inversely proportional to delivery gestational age (preterm birth at <37 weeks of gestation: +0.40 years [interquartile range: -1.21 to +2.28]; preterm birth at <34 weeks of gestation: +0.51 years [interquartile range: -1.05 to +2.67]; preterm birth at <28 weeks of gestation: +1.05 years [interquartile range: -0.72 to +2.72]). Estimated DNA methylation of the 7 epigenetic clock component values was increased among those with preterm birth at <34 weeks of gestation, although the differences were only significant for DNA methylation of plasminogen activation inhibitor 1. In regression models, AgeAcccelGrim was associated with an elevated risk of preterm birth with increasing magnitude for increasing severity of preterm birth. For each 1-year increase in the AgeAccelGrim value (ie, each 1-year increase in biological age compared with chronologic age), the adjusted odds of preterm birth were 11% (adjusted odds ratio, 1.11; 95% confidence interval, 1.00-1.24), 13% (adjusted odds ratio, 1.13; 95% confidence interval, 1.01-1.26), and 18% (adjusted odds ratio, 1.18; 95% confidence interval, 1.04-1.35) higher for preterm birth at <37, <34, and <28 weeks of gestation, respectively. Similarly, individuals with accelerated biological aging (≥75th percentile AgeAccelGrim) had more than double the odds of preterm birth at <34 weeks of gestation (adjusted odds ratio, 2.36; 95% confidence interval, 1.10-5.08) and more than triple the odds of preterm birth at <28 weeks of gestation (adjusted odds ratio, 3.89; 95% confidence interval, 1.61-9.38). The adjusted odds ratio for preterm birth at <37 weeks of gestation was 1.73 but spanned the null (adjusted odds ratio, 1.73; 95% confidence interval, 0.81-3.69). In Kaplan-Meier survival analyses, those in the highest AgeAccelGrim quartile delivered the earliest (log-rank P value of <.001). CONCLUSION Accelerated biological aging was associated with preterm birth among high-risk patients. Future research confirming these findings and elucidating factors that slow biological aging may improve birth outcomes.
Collapse
Affiliation(s)
- Emily L Gascoigne
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kyle R Roell
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC
| | - Lauren A Eaves
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC
| | - Tracy A Manuck
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC.
| |
Collapse
|
2
|
Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics 2024; 16:175-188. [PMID: 38131149 PMCID: PMC10841041 DOI: 10.2217/epi-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.
Collapse
Affiliation(s)
- Anna K Knight
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica B Spencer
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Garg A, Seli E. Leukocyte telomere length and DNA methylome as biomarkers of ovarian reserve and embryo aneuploidy: the intricate relationship between somatic and reproductive aging. Fertil Steril 2024; 121:26-33. [PMID: 37979607 DOI: 10.1016/j.fertnstert.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
The average childbearing age among women continues to rise, leading to an increased prevalence of infertility and a subsequent increased use of assisted reproductive technologies (ARTs). Ovarian aging, especially diminished ovarian reserve and poor ovarian response, have been implicated as common causes of infertility. Telomere length and DNA methylation-based epigenetic clocks are established hallmarks of cellular aging; however, the interplay between somatic and ovarian aging remains unclear. There appears to be a lack of correlation between leukocyte telomere length and the DNA methylation age of somatic and ovarian cells. Both the telomere length and methylome of follicular somatic cells (granulosa and cumulus) appear to be unaffected by chronologic age, infertility, or processes that result in diminished ovarian reserve and poor ovarian response. As such, they are unlikely candidates as surrogate biomarkers of reproductive potential, response to stimulation, or ART outcome. Meanwhile, telomere or methylome changes in leukocytes associated with aging seem to correlate with reproductive function and may have the potential to aid the characterization of women with reproductive decline; however, current data are limited and larger studies evaluating this within an ART setting are warranted.
Collapse
Affiliation(s)
- Akanksha Garg
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut; IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, New Jersey.
| |
Collapse
|
4
|
Moreno E, Martínez-Sanz J, Martín-Mateos R, Díaz-Álvarez J, Serrano-Villar S, Burgos-Santamaría D, Luna L, Vivancos MJ, Moreno-Zamora A, Pérez-Elías MJ, Moreno S, Dronda F, Montes ML, Sánchez-Conde M. Global DNA methylation and telomere length as markers of accelerated aging in people living with HIV and non-alcoholic fatty liver disease. BMC Genomics 2023; 24:567. [PMID: 37741970 PMCID: PMC10517540 DOI: 10.1186/s12864-023-09653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a comorbidity that generally increases in people living with HIV (PLWH). This condition is usually accompanied by persistent inflammation and premature immune system aging. In this prospective cohort study, we describe a straightforward methodology for quantifying biomarkers of aging, such as DNA methylation and telomere length, in PLWH and in the context of another relevant condition, such as MAFLD. Fifty-seven samples in total, thirty-eight from PLWH and nineteen from non-PLWH participants with or without MAFLD, were obtained and subjected to DNA extraction from peripheral blood mononuclear cells (PBMCs). Global DNA methylation and telomere length quantification were performed using an adapted enzyme-linked immunosorbent assay (ELISA) and qPCR, respectively. The quantification results were analysed and corrected by clinically relevant variables in this context, such as age, sex, and metabolic syndrome. Our results show an increased association of these biomarkers in PLWH regardless of their MAFLD status. Thus, we propose including the quantification of these age-related factors in studies of comorbidities. This will allow a better understanding of the effect of comorbidities of HIV infection and MAFLD and prevent their effects in these populations in the future.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rosa Martín-Mateos
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- Universidad de Alcalá, 28871, Madrid, Spain
| | - Jorge Díaz-Álvarez
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Diego Burgos-Santamaría
- Department of Gastroenterology and Hepatology, Metabolic Liver Disease Clinic, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Moreno-Zamora
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Pérez-Elías
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universidad de Alcalá, 28871, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Montes
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Internal Medicine Service, Hospital Universitario La Paz. IdiPAZ, 28046, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Hospital Universitario Ramón Y Cajal, Instituto Ramón Y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Saretzki G. Role of Telomeres and Telomerase in Cancer and Aging. Int J Mol Sci 2023; 24:9932. [PMID: 37373080 DOI: 10.3390/ijms24129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Seventeen papers published in 2019 and early 2020 demonstrate the ongoing interest and research concerning telomeres and telomerase in aging and cancer [...].
Collapse
Affiliation(s)
- Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
6
|
Banszerus VL, König M, Landmesser U, Vetter VM, Demuth I. Epigenetic aging in patients diagnosed with coronary artery disease: results of the LipidCardio study. Clin Epigenetics 2023; 15:16. [PMID: 36721243 PMCID: PMC9887837 DOI: 10.1186/s13148-023-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION People age biologically at different rates. Epigenetic clock-derived DNA methylation age acceleration (DNAmAA) is among the most promising markers proposed to assess the interindividual differences in biological age. Further research is needed to evaluate the characteristics of the different epigenetic clock biomarkers available with respect to the health domains they reflect best. METHODS In this study, we have analyzed 779 participants of the LipidCardio study (mean chronological age 69.9 ± 11.0 years, 30.6% women) who underwent diagnostic angiography at the Charité University Hospital in Berlin, Germany. DNA methylation age (DNAm age) was measured by methylation-sensitive single nucleotide primer extension (MS-SNuPE) and calculated with the 7-CpG clock. We compared the biological age as assessed as DNAmAA of participants with an angiographically confirmed coronary artery disease (CAD, n = 554) with participants with lumen reduction of 50% or less (n = 90) and patients with a normal angiogram (n = 135). RESULTS Participants with a confirmed CAD had on average a 2.5-year higher DNAmAA than patients with a normal angiogram. This association did not persist after adjustment for sex in a logistic regression analysis. High-density lipoprotein, low-density lipoprotein, triglycerides, lipoprotein (a), estimated glomerular filtration rate, physical activity, BMI, alcohol consumption, and smoking were not associated with DNAmAA. CONCLUSION The association between higher DNAmAA and angiographically confirmed CAD seems to be mainly driven by sex.
Collapse
Affiliation(s)
- Verena Laura Banszerus
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
- Berlin Institute of Health (BIH), Deutsches Zentrum Für Herzkreislaufforschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Power ML, Foley NM, Jones G, Teeling EC. Taking flight: An ecological, evolutionary and genomic perspective on bat telomeres. Mol Ecol 2022; 31:6053-6068. [PMID: 34387012 DOI: 10.1111/mec.16117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 01/31/2023]
Abstract
Over 20% of all living mammals are bats (order Chiroptera). Bats possess extraordinary adaptations including powered flight, laryngeal echolocation and a unique immune system that enables them to tolerate a diversity of viral infections without presenting clinical disease symptoms. They occupy multiple trophic niches and environments globally. Significant physiological and ecological diversity occurs across the order. Bats also exhibit extreme longevity given their body size with many species showing few signs of ageing. The molecular basis of this extended longevity has recently attracted attention. Telomere maintenance potentially underpins bats' extended healthspan, although functional studies are still required to validate the causative mechanisms. In this review, we detail the current knowledge on bat telomeres, telomerase expression, and how these relate to ecology, longevity and life-history strategies. Patterns of telomere shortening and telomerase expression vary across species, and comparative genomic analyses suggest that alternative telomere maintenance mechanisms evolved in the longest-lived bats. We discuss the unique challenges faced when working with populations of wild bats and highlight ways to advance the field including expanding long-term monitoring across species that display contrasting life-histories and occupy different environmental niches. We further review how new high quality, chromosome-level genome assemblies can enable us to uncover the molecular mechanisms governing telomere dynamics and how phylogenomic analyses can reveal the adaptive significance of telomere maintenance and variation in bats.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Ireland
| |
Collapse
|
8
|
Drewelies J, Hueluer G, Duezel S, Vetter VM, Pawelec G, Steinhagen-Thiessen E, Wagner GG, Lindenberger U, Lill CM, Bertram L, Gerstorf D, Demuth I. Using blood test parameters to define biological age among older adults: association with morbidity and mortality independent of chronological age validated in two separate birth cohorts. GeroScience 2022; 44:2685-2699. [PMID: 36151431 PMCID: PMC9768057 DOI: 10.1007/s11357-022-00662-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Biomarkers defining biological age are typically laborious or expensive to assess. Instead, in the current study, we identified parameters based on standard laboratory blood tests across metabolic, cardiovascular, inflammatory, and kidney functioning that had been assessed in the Berlin Aging Study (BASE) (n = 384) and Berlin Aging Study II (BASE-II) (n = 1517). We calculated biological age using those 12 parameters that individually predicted mortality hazards over 26 years in BASE. In BASE, older biological age was associated with more physician-observed morbidity and higher mortality hazards, over and above the effects of chronological age, sex, and education. Similarly, in BASE-II, biological age was associated with physician-observed morbidity and subjective health, over and above the effects of chronological age, sex, and education as well as alternative biomarkers including telomere length, DNA methylation age, skin age, and subjective age but not PhenoAge. We discuss the importance of biological age as one indicator of aging.
Collapse
Affiliation(s)
- Johanna Drewelies
- Humboldt University of Berlin, Berlin, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | | | - Sandra Duezel
- Max Planck Institute for Human Development, Berlin, Germany
| | - Valentin Max Vetter
- Humboldt University of Berlin, Berlin, Germany
- Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Pawelec
- University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | | | - Gert G Wagner
- Max Planck Institute for Human Development, Berlin, Germany
- German Institute for Economic Research (DIW Berlin), Berlin, Germany
| | - Ulman Lindenberger
- Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
- Ageing and Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Denis Gerstorf
- Humboldt University of Berlin, Berlin, Germany
- German Institute for Economic Research (DIW Berlin), Berlin, Germany
| | - Ilja Demuth
- Charite - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Sheldon EL, Ton R, Boner W, Monaghan P, Raveh S, Schrey AW, Griffith SC. Associations between DNA methylation and telomere length during early life: Insight from wild zebra finches (Taeniopygia guttata). Mol Ecol 2022; 31:6261-6272. [PMID: 34551154 DOI: 10.1111/mec.16187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023]
Abstract
Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere length dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between DNA based biomarkers of ageing, and of physiological reactions to environmental change.
Collapse
Affiliation(s)
- Elizabeth L Sheldon
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Riccardo Ton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Epigenetic aging and perceived psychological stress in old age. Transl Psychiatry 2022; 12:410. [PMID: 36163242 PMCID: PMC9513097 DOI: 10.1038/s41398-022-02181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/20/2022] Open
Abstract
Adverse effects of psychological stress on physical and mental health, especially in older age, are well documented. How perceived stress relates to the epigenetic clock measure, DNA methylation age acceleration (DNAmAA), is less well understood and existing studies reported inconsistent results. DNAmAA was estimated from five epigenetic clocks (7-CpG, Horvath's, Hannum's, PhenoAge and GrimAge DNAmAA). Cohen's Perceived Stress Scale (PSS) was used as marker of psychological stress. We analyzed data from 1,100 Berlin Aging Study II (BASE-II) participants assessed as part of the GendAge study (mean age = 75.6 years, SD = 3.8 years, 52.1% women). In a first step, we replicated well-established associations of perceived stress with morbidity, frailty, and symptoms of depression in the BASE-II cohort studied here. In a second step, we did not find any statistically significant association of perceived stress with any of the five epigenetic clocks in multiple linear regression analyses that adjusted for covariates. Although the body of literature suggests an association between higher DNAmAA and stress or trauma during early childhood, the current study found no evidence for an association of perception of stress with DNAmAA in older people. We discuss possible reasons for the lack of associations and highlight directions for future research.
Collapse
|
11
|
Reimann B, Martens DS, Wang C, Ghantous A, Herceg Z, Plusquin M, Nawrot TS. Interrelationships and determinants of aging biomarkers in cord blood. J Transl Med 2022; 20:353. [PMID: 35945616 PMCID: PMC9361565 DOI: 10.1186/s12967-022-03541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Vetter VM, Sommerer Y, Kalies CH, Spira D, Bertram L, Demuth I. Vitamin D supplementation is associated with slower epigenetic aging. GeroScience 2022; 44:1847-1859. [PMID: 35562603 PMCID: PMC9213628 DOI: 10.1007/s11357-022-00581-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Adverse effects of low vitamin D level on mortality and morbidity are controversially discussed. Especially older people are at risk for vitamin D deficiency and therefore exposed to its potentially harmful consequences. A way of measuring differences in the biological age is through DNA methylation age (DNAm age) and its deviation from chronological age, DNAm age acceleration (DNAmAA). We previously reported on an association between vitamin D deficiency and higher 7-CpG DNAmAA in participants of the Berlin Aging Study II (BASE-II). In this study, we employ a quasi-interventional study design to assess the relationship between DNAmAA of five epigenetic clocks and vitamin D supplementation. Longitudinal data were available for 1,036 participants of BASE-II that were reexamined on average 7.4 years later in the GendAge study (mean age at follow-up: 75.6 years, SD = 3.8 years, age range: 64.9-94.1 years, 51.9% female). DNAmAA was estimated with the 7-CpG clock, Horvath's clock, Hannum's clock, PhenoAge, and GrimAge. Methylation data were obtained through methylation-sensitive single nucleotide primer extension (MS-SNuPE) or Illumina's Infinium "MethylationEPIC" array. Vitamin D-deficient participants who chose to start vitamin D supplementation after baseline examination showed a 2.6-year lower 7-CpG DNAmAA (p = 0.011) and 1.3-year lower Horvath DNAmAA (p = 0.042) compared to untreated and vitamin D-deficient participants. DNAmAA did not statistically differ between participants with successfully treated vitamin D deficiency and healthy controls (p > 0.16). Therefore, we conclude that intake of vitamin D supplement is associated with lower DNAmAA in participants with vitamin D deficiency.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Christian Humberto Kalies
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik Spira
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Biology of Aging Group, Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
13
|
Pearce EE, Alsaggaf R, Katta S, Dagnall C, Aubert G, Hicks BD, Spellman SR, Savage SA, Horvath S, Gadalla SM. Telomere length and epigenetic clocks as markers of cellular aging: a comparative study. GeroScience 2022; 44:1861-1869. [PMID: 35585300 DOI: 10.1007/s11357-022-00586-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Telomere length (TL) and DNA methylation-based epigenetic clocks are markers of biological age, but the relationship between the two is not fully understood. Here, we used multivariable regression models to evaluate the relationships between leukocyte TL (LTL; measured by qPCR [n = 635] or flow FISH [n = 144]) and five epigenetic clocks (Hannum, DNAmAge pan-tissue, PhenoAge, SkinBlood, or GrimAge clocks), or their epigenetic age acceleration measures in healthy adults (age 19-61 years). LTL showed statistically significant negative correlations with all clocks (qPCR: r = - 0.26 to - 0.32; flow FISH: r = - 0.34 to - 0.49; p < 0.001 for all). Yet, models adjusted for age, sex, and race revealed significant associations between three of five clocks (PhenoAge, GrimAge, and Hannum clocks) and LTL by flow FISH (p < 0.01 for all) or qPCR (p < 0.001 for all). Significant associations between age acceleration measures for the same three clocks and qPCR or flow FISH TL were also found (p < 0.01 for all). Additionally, LTL (by qPCR or flow FISH) showed significant associations with extrinsic epigenetic age acceleration (EEAA: p < 0.0001 for both), but not intrinsic epigenetic age acceleration (IEAA; p > 0.05 for both). In conclusion, the relationships between LTL and epigenetic clocks were limited to clocks reflecting phenotypic age. The observed association between LTL and EEAA reflects the ability of both measures to detect immunosenescence. The observed modest correlations between LTL and epigenetic clocks highlight a possible benefit from incorporating both measures in understanding disease etiology and prognosis.
Collapse
Affiliation(s)
- Emily E Pearce
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, 55401, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Cao X, Li W, Wang T, Ran D, Davalos V, Planas-Serra L, Pujol A, Esteller M, Wang X, Yu H. Accelerated biological aging in COVID-19 patients. Nat Commun 2022; 13:2135. [PMID: 35440567 PMCID: PMC9018863 DOI: 10.1038/s41467-022-29801-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Chronological age is a risk factor for SARS-CoV-2 infection and severe COVID-19. Previous findings indicate that epigenetic age could be altered in viral infection. However, the epigenetic aging in COVID-19 has not been well studied. In this study, DNA methylation of the blood samples from 232 healthy individuals and 413 COVID-19 patients is profiled using EPIC methylation array. Epigenetic ages of each individual are determined by applying epigenetic clocks and telomere length estimator to the methylation profile of the individual. Epigenetic age acceleration is calculated and compared between groups. We observe strong correlations between the epigenetic clocks and individual's chronological age (r > 0.8, p < 0.0001). We also find the increasing acceleration of epigenetic aging and telomere attrition in the sequential blood samples from healthy individuals and infected patients developing non-severe and severe COVID-19. In addition, the longitudinal DNA methylation profiling analysis find that the accumulation of epigenetic aging from COVID-19 syndrome could be partly reversed at late clinic phases in some patients. In conclusion, accelerated epigenetic aging is associated with the risk of SARS-CoV-2 infection and developing severe COVID-19. In addition, the accumulation of epigenetic aging from COVID-19 may contribute to the post-COVID-19 syndrome among survivors.
Collapse
Affiliation(s)
- Xue Cao
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjuan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Wang
- Research & Development, Thermo Fisher Scientific Inc., Los Angeles, CA, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Pavanello S, Campisi M, Rigotti P, Bello MD, Nuzzolese E, Neri F, Furian L. DNA Methylation - and Telomere - Based Biological Age Estimation as Markers of Biological Aging in Donors Kidneys. Front Med (Lausanne) 2022; 9:832411. [PMID: 35402460 PMCID: PMC8984253 DOI: 10.3389/fmed.2022.832411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The biological age of an organ may represent a valuable tool for assessing its quality, especially in the elder. We examined the biological age of the kidneys [right (RK) and left kidney (LK)] and blood leukocytes in the same subject and compared these to assess whether blood mirrors kidney biological aging. Biological age was studied in n = 36 donors (median age: 72 years, range: 19-92; male: 42%) by exploring mitotic and non-mitotic pathways, using telomere length (TL) and age-methylation changes (DNAmAge) and its acceleration (AgeAcc). RK and LK DNAmAge are older than blood DNAmAge (RK vs. Blood, p = 0.0271 and LK vs. Blood, p = 0.0245) and RK and LK AgeAcc present higher score (this mean the AgeAcc is faster) than that of blood leukocytes (p = 0.0271 and p = 0.0245) in the same donor. TL of RK and LK are instead longer than that of blood (p = 0.0011 and p = 0.0098) and the increase in Remuzzi-Karpinski score is strongly correlated with kidney TL attrition (p = 0.0046). Finally, blood and kidney TL (p < 0.01) and DNAmAge (p < 0.001) were correlated. These markers can be evaluated in further studies as indicators of biological age of donor organ quality and increase the usage of organs from donors of advanced age therefore offering a potential translational research inkidney transplantation.
Collapse
Affiliation(s)
- Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Paolo Rigotti
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Marianna Di Bello
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Erica Nuzzolese
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| |
Collapse
|
16
|
Vetter VM, Kalies CH, Sommerer Y, Bertram L, Demuth I. Seven-CpG DNA Methylation Age Determined by Single Nucleotide Primer Extension and Illumina's Infinium MethylationEPIC Array Provide Highly Comparable Results. Front Genet 2022; 12:759357. [PMID: 35111197 PMCID: PMC8802213 DOI: 10.3389/fgene.2021.759357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
DNA methylation age (DNAm age, epigenetic clock) is a novel and promising biomarker of aging. It is calculated from the methylation fraction of specific cytosine phosphate guanine sites (CpG sites) of genomic DNA. Several groups have proposed epigenetic clock algorithms and these differ mostly regarding the number and location of the CpG sites considered and the method used to assess the methylation status. Most epigenetic clocks are based on a large number of CpGs, e.g. as measured by DNAm microarrays. We have recently evaluated an epigenetic clock based on the methylation fraction of seven CpGs that were determined by methylation-sensitive single nucleotide primer extension (MS-SNuPE). This method is more cost-effective when compared to array-based technologies as only a few CpGs need to be examined. However, there is only little data on the correspondence in epigenetic age estimation using the 7-CpG clock and other algorithms. To bridge this gap, in this study we measured the 7-CpG DNAm age using two methods, via MS-SNuPE and via the MethylationEPIC array, in a sample of 1,058 participants of the Berlin Aging Study II (BASE-II), assessed as part of the GendAge study. On average, participants were 75.6 years old (SD: 3.7, age range: 64.9-90.0, 52.6% female). Agreement between methods was assessed by Bland-Altman plots. DNAm age was highly correlated between methods (Pearson's r = 0.9) and Bland-Altman plots showed a difference of 3.1 years. DNAm age by the 7-CpG formula was 71.2 years (SD: 6.9 years, SNuPE) and 68.1 years (SD: 6.4 years, EPIC array). The mean of difference in methylation fraction between methods for the seven individual CpG sites was between 0.7 and 13 percent. To allow direct conversion of DNAm age obtained from both methods we developed an adjustment formula with a randomly selected training set of 529 participants using linear regression. After conversion of the Illumina data in a second and independent validation set, the adjusted DNAm age was 71.44 years (SD: 6.1 years, n = 529). In summary, we found the results of DNAm clocks to be highly comparable. Furthermore, we developed an adjustment formula that allows for direct conversion of DNAm age estimates between methods and enables one singular clock to be used in studies that employ either the Illumina or the SNuPE method.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Humberto Kalies
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
17
|
Vetter VM, Kalies CH, Sommerer Y, Spira D, Drewelies J, Regitz-Zagrosek V, Bertram L, Gerstorf D, Demuth I. Relationship between five Epigenetic Clocks, Telomere Length and Functional Capacity assessed in Older Adults: Cross-sectional and Longitudinal Analyses. J Gerontol A Biol Sci Med Sci 2022; 77:1724-1733. [PMID: 35032170 DOI: 10.1093/gerona/glab381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation age acceleration (DNAmAA, derived from an epigenetic clock) and relative leukocyte telomere length (rLTL) are widely accepted biomarkers of aging. Nevertheless, it is still unclear which aspects of aging they represent best. Here we evaluated longitudinal associations between baseline rLTL and DNAmAA (estimated with 7-CpG clock) and functional assessments covering different domains of aging. Additionally, we made use of cross-sectional data on these assessments and examined their association with DNAmAA estimated by five different DNAm age measures. Two-wave longitudinal data was available for 1,083 participants of the Berlin Aging Study II (BASE-II) who were re-examined on average 7.4 years after baseline as part of the GendAge study. Functional outcomes were assessed with Fried's frailty score, Tinetti mobility test, falls in the past 12 months (yes/no), Finger-floor distance, Mini Mental State Examination (MMSE), Center for Epidemiologic Studies Depression Scale (CES-D), Activities of Daily Living (ADL), Instrumented ADL (IADL) and Mini Nutritional Assessment (MNA). Overall, we found no evidence for an association between the molecular biomarkers measured at baseline, rLTL and DNAmAA (7-CpG clock), and functional assessments assessed at follow-up. Similarly, a cross-sectional analyses of follow-up data did also not show evidence for associations of the various DNAmAA measures (7-CpG clock, Horvath's clock, Hannum's clock PhenoAge, and GrimAge) with functional assessments. In conclusion, neither rLTL nor 7-CpG DNAmAA were able to predict impairment in the analyzed assessments over a ~7-year time-course. Similarly, DNAmAA estimated from five epigenetic clocks was not a good cross-sectional marker of health deterioration either.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Humberto Kalies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Johanna Drewelies
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany.,Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Denis Gerstorf
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
18
|
Cardiovascular health is associated with the epigenetic clock in the Berlin Aging Study II (BASE-II). Mech Ageing Dev 2021; 201:111616. [PMID: 34879249 DOI: 10.1016/j.mad.2021.111616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
The epigenetic clock parameter DNAm age acceleration is a promising biomarker of aging. We have recently described an epigenetic clock based on only seven cytosine-phosphate-guanine sites, which is highly associated with chronological age. The aim of this study was to examine this epigenetic clock with respect to its relationship with cardiovascular health (CVH) in older adults. We used data from the Berlin Aging Study II (BASE-II; 1,671 participants; 68.8 ± 3.7 years old). CVH was operationalized using two different CVH scores, the Framingham Risk Score (FRS), and the Life's simple 7 (LS7). To adjust for potential confounding, e.g. by sex, we performed regression analyses. The LS7 score was higher, i.e. more favorable, in woman than in men (8.8 ± 2 vs. 8.2 ± 2, p < 0.001). DNAm age acceleration was associated with the FRS (β = 0.122, p = 0.028) and with the LS7 (β = -0.804, p = 0.032). In more detail, physical activity (β = -0.461, p = 0.05), HDL-cholesterol (β = 0.343, p = 0.03) and total cholesterol (β = -0.364, p = 0.002) were associated with epigenetic age acceleration. We present evidence suggesting that better CVH is associated with decelerated biological aging measured by the epigenetic clock.
Collapse
|
19
|
Vetter VM, Spira D, Banszerus VL, Demuth I. Epigenetic Clock and Leukocyte Telomere Length Are Associated with Vitamin D Status but not with Functional Assessments and Frailty in the Berlin Aging Study II. J Gerontol A Biol Sci Med Sci 2021; 75:2056-2063. [PMID: 32324874 DOI: 10.1093/gerona/glaa101] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation (DNAm) age acceleration, a parameter derived via the epigenetic clock, has recently been suggested as a biomarker of aging. We hypothesized that accelerated biological aging, measured by both this new and the established biomarker of aging, relative leukocyte telomere length (rLTL), are associated with vitamin D deficiency. Moreover, we tested for an association between rLTL/DNAm age acceleration and different clinical assessments for functional capacity, including the Fried frailty score. Cross-sectional data of 1,649 participants of the Berlin Aging Study II was available (~50% female, age: 22-37 and 60-84 years). A seven cytosine-phosphate-guanine clock was estimated to calculate the DNAm age acceleration. rLTL was measured by quantitative real-time polymerase chain reaction (PCR). 25-hydroxyvitamin D (25(OH)D) serum levels <25 nmol/L was defined as vitamin D deficiency and <50 nmol/L as vitamin D insufficiency. Vitamin D-sufficient individuals had a 1.4 years lower mean DNAm age acceleration (p < .05, analysis of variance [ANOVA]) and a 0.11 longer rLTL (p < .001, ANOVA) than vitamin D-deficient participants. Likewise, vitamin D-sufficient participants had lower DNAm age acceleration (β = 1.060, p = .001) and longer rLTL (β = -0.070; p < .001) than vitamin D nonsufficient subjects in covariate-adjusted analysis. Neither DNAm age acceleration nor rLTL were significantly associated with the Fried frailty score or the functional assessments. Only the clock drawing test was associated with DNAm age acceleration (subgroup of older men: β = 1.898, p = .002). Whether the analyzed biomarkers of aging can be used to predict an individual's functional capacity or will be associated with frailty in the advanced course of aging, will be clarified by future longitudinal analyses.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Verena Laura Banszerus
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Germany
| |
Collapse
|
20
|
Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front Genet 2021; 11:630186. [PMID: 33552142 PMCID: PMC7859450 DOI: 10.3389/fgene.2020.630186] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening is a well-known hallmark of both cellular senescence and organismal aging. An accelerated rate of telomere attrition is also a common feature of age-related diseases. Therefore, telomere length (TL) has been recognized for a long time as one of the best biomarkers of aging. Recent research findings, however, indicate that TL per se can only allow a rough estimate of aging rate and can hardly be regarded as a clinically important risk marker for age-related pathologies and mortality. Evidence is obtained that other indicators such as certain immune parameters, indices of epigenetic age, etc., could be stronger predictors of the health status and the risk of chronic disease. However, despite these issues and limitations, TL remains to be very informative marker in accessing the biological age when used along with other markers such as indices of homeostatic dysregulation, frailty index, epigenetic clock, etc. This review article is aimed at describing the current state of the art in the field and at discussing recent research findings and divergent viewpoints regarding the usefulness of leukocyte TL for estimating the human biological age.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| |
Collapse
|
21
|
Cypris O, Eipel M, Franzen J, Rösseler C, Tharmapalan V, Kuo CC, Vieri M, Nikolić M, Kirschner M, Brümmendorf TH, Zenke M, Lampert A, Beier F, Wagner W. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clin Epigenetics 2020; 12:125. [PMID: 32819411 PMCID: PMC7439574 DOI: 10.1186/s13148-020-00914-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Monika Eipel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vithurithra Tharmapalan
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
22
|
Raj K, Horvath S. Current perspectives on the cellular and molecular features of epigenetic ageing. Exp Biol Med (Maywood) 2020; 245:1532-1542. [PMID: 32276545 DOI: 10.1177/1535370220918329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT The field of epigenetic ageing is relatively new, and the speed of its expansion presents a challenge in keeping abreast with new discoveries and their implications. Several reviews have already addressed the great number of pathologies, health conditions, life-style, and external stressors that are associated with changes to the rate of epigenetic ageing. While these associations highlight and affirm the ability of epigenetic clock to capture biologically meaningful changes associated with age, they do not inform us about the underlying mechanisms. In this very early period since the development of the clock, there have been rather limited experimental research that are aimed at uncovering the mechanism. Hence, the perspective that we proffer is derived from available but nevertheless limited lines of evidence that together provide a seemingly coherent narrative that can be tested. This, we believe would be helpful towards uncovering the workings of the epigenetic clock.
Collapse
Affiliation(s)
- Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA and Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
The Psilocybin-Telomere Hypothesis: An empirically falsifiable prediction concerning the beneficial neuropsychopharmacological effects of psilocybin on genetic aging. Med Hypotheses 2020; 134:109406. [DOI: 10.1016/j.mehy.2019.109406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
|
24
|
Socio-Economic Position Under the Microscope: Getting ‘Under the Skin’ and into the Cells. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00217-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
König M, Joshi S, Leistner DM, Landmesser U, Sinning D, Steinhagen-Thiessen E, Demuth I. Cohort profile: role of lipoproteins in cardiovascular disease-the LipidCardio study. BMJ Open 2019; 9:e030097. [PMID: 31481563 PMCID: PMC6731918 DOI: 10.1136/bmjopen-2019-030097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The LipidCardio Study was established for in-depth analyses of cardiovascular risk factors, providing well-defined cardiovascular and metabolic phenotypes. In particular, the role of lipoproteins in the pathobiological process and treatment of cardiovascular disease (CVD) will be a main focus. PARTICIPANTS 1005 individuals aged 21 years and older undergoing cardiac catheterisation during 17 months at a tertiary academic cardiology centre were enrolled (troponin-positive acute coronary syndrome was exclusion criterion). The baseline data not only contain detailed phenotyping, broad biochemical parameters, genetic data, but also standardised personal and family history, a screening test for cognitive impairment, pulse wave analysis and measurements of hand grip strength, among others. Blood samples were stored in a biobank for future analyses. FINDINGS TO DATE The mean age of the participants at enrolment was 70.9±11.1 years (70% male). Coronary angiography provided evidence of obstructive coronary artery disease (CAD) in 69.9% of participants. Those with evidence of CAD were significantly more likely to be male, inactive, diabetic and with a family history of CVD than participants without CAD.About 20% of patients had lipoprotein(a) (Lp(a)) concentrations above 106.9 nmol/L (fifth quintile). These patients had significantly increased odds of obstructive CAD compared with participants in quintiles 1-4 (crude OR 1.70, 95% CI 1.17 to 2.48, p=0.005). There was reasonable evidence that with increasing severity of CAD the odds of having elevated Lp(a) increased. We were able to replicate the established strong association between specified single nucleotide polymorphisms (SNPs) in the LPA gene (rs10455872, rs3798220 and rs186696265) and the APOE gene (rs7412), and the concentration of Lp(a), validating our phenotype database and biobank. FUTURE PLANS Mortality information will be obtained in 2 year intervals. Follow-up phone interviews will be conducted at 3 and 6 years after enrolment. We seek to cooperate with other researchers, for example, by sharing data and biobank samples.
Collapse
Affiliation(s)
- Maximilian König
- Medical Department, Division of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Samita Joshi
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David M Leistner
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, Berlin, Germany
| | - David Sinning
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ilja Demuth
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|