1
|
Severi AA, Akbari B. CRISPR-Cas9 delivery strategies and applications: Review and update. Genesis 2024; 62:e23598. [PMID: 38727638 DOI: 10.1002/dvg.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/28/2024]
Abstract
Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ali Alizadeh Severi
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
2
|
Masani MYA, Norfaezah J, Bahariah B, Fizree MDPMAA, Sulaiman WNSW, Shaharuddin NA, Rasid OA, Parveez GKA. Towards DNA-free CRISPR/Cas9 genome editing for sustainable oil palm improvement. 3 Biotech 2024; 14:166. [PMID: 38817736 PMCID: PMC11133284 DOI: 10.1007/s13205-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR/Cas9 genome editing system has been in the spotlight compared to programmable nucleases such as ZFNs and TALENs due to its simplicity, versatility, and high efficiency. CRISPR/Cas9 has revolutionized plant genetic engineering and is broadly used to edit various plants' genomes, including those transformation-recalcitrant species such as oil palm. This review will comprehensively present the CRISPR-Cas9 system's brief history and underlying mechanisms. We then highlighted the establishment of the CRISPR/Cas9 system in plants with an emphasis on the strategies of highly efficient guide RNA design, the establishment of various CRISPR/Cas9 vector systems, approaches of multiplex editing, methods of transformation for stable and transient techniques, available methods for detecting and analyzing mutations, which have been applied and could be adopted for CRISPR/Cas9 genome editing in oil palm. In addition, we also provide insight into the strategy of DNA-free genome editing and its potential application in oil palm.
Collapse
Affiliation(s)
- Mat Yunus Abdul Masani
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Jamaludin Norfaezah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Bohari Bahariah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
| | - Omar Abdul Rasid
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ghulam Kadir Ahmad Parveez
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
3
|
Liu Y, Ma D, Constabel CP. CRISPR/Cas9 Disruption of MYB134 and MYB115 in Transgenic Poplar Leads to Differential Reduction of Proanthocyanidin Synthesis in Roots and Leaves. PLANT & CELL PHYSIOLOGY 2023; 64:1189-1203. [PMID: 37522631 DOI: 10.1093/pcp/pcad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Proanthocyanidins (PAs) are common specialized metabolites and particularly abundant in trees and woody plants. In poplar (Populus spp.), PA biosynthesis is stress-induced and regulated by two previously studied transcription factors MYB115 and MYB134. To determine the relative contribution of these regulators to PA biosynthesis, we created single- and double-knockout (KO) mutants for both genes in transgenic poplars using CRISPR/Cas9. Knocking out either MYB134 or MYB115 showed reduced PA accumulation and downregulated flavonoid genes in leaves, but MYB134 disruption had the greatest impact and reduced PAs to 30% of controls. In roots, by contrast, only the MYB134/MYB115 double-KOs showed a significant change in PA concentration. The loss of PAs paralleled the lower expression of PA biosynthesis genes and concentrations of flavan-3-ol PA precursors catechin and epicatechin. Interestingly, salicinoids were also affected in double-KOs, with distinct patterns in roots and shoots. We conclude that the regulatory pathways for PA biosynthesis differ in poplar leaves and roots. The residual PA content in the double-KO plants indicates that other transcription factors must also be involved in control of the PA pathway.
Collapse
Affiliation(s)
- Yalin Liu
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P5C3, Canada
| | - Dawei Ma
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P5C3, Canada
| | - C Peter Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P5C3, Canada
| |
Collapse
|
4
|
Yao T, Yuan G, Lu H, Liu Y, Zhang J, Tuskan GA, Muchero W, Chen JG, Yang X. CRISPR/Cas9-based gene activation and base editing in Populus. HORTICULTURE RESEARCH 2023; 10:uhad085. [PMID: 37323227 PMCID: PMC10266945 DOI: 10.1093/hr/uhad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
The genus Populus has long been used for environmental, agroforestry and industrial applications worldwide. Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research. As such, various modern biotechnologies, including CRISPR/Cas9-based techniques, have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition. However, CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone "717-1B4" (P. tremula x P. alba clone INRA 717-1B4). Alternative CRISPR/Cas9-based technologies, e.g. those involving modified Cas9 for gene activation and base editing, have not been evaluated in most Populus species for their efficacy. Here we employed a deactivated Cas9 (dCas9)-based CRISPR activation (CRISPRa) technique to fine-tune the expression of two target genes, TPX2 and LecRLK-G which play important roles in plant growth and defense response, in hybrid poplar clone "717-1B4" and poplar clone "WV94" (P. deltoides "WV94"), respectively. We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation, demonstrating the effectiveness of dCas9-based CRISPRa system in Populus. In addition, we applied Cas9 nickase (nCas9)-based cytosine base editor (CBE) to precisely introduce premature stop codons via C-to-T conversion, with an efficiency of 13%-14%, in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone "717-1B4". Overall, we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species, facilitating the adoption of emerging genome editing tools in woody species.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Academic Education, Central Community College –Hastings; Hastings; NE 68901, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Trieu A, Belaffif MB, Hirannaiah P, Manjunatha S, Wood R, Bathula Y, Billingsley RL, Arpan A, Sacks EJ, Clemente TE, Moose SP, Reichert NA, Swaminathan K. Transformation and gene editing in the bioenergy grass Miscanthus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:148. [PMID: 36578060 PMCID: PMC9798709 DOI: 10.1186/s13068-022-02241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Miscanthus, a C4 member of Poaceae, is a promising perennial crop for bioenergy, renewable bioproducts, and carbon sequestration. Species of interest include nothospecies M. x giganteus and its parental species M. sacchariflorus and M. sinensis. Use of biotechnology-based procedures to genetically improve Miscanthus, to date, have only included plant transformation procedures for introduction of exogenous genes into the host genome at random, non-targeted sites. RESULTS We developed gene editing procedures for Miscanthus using CRISPR/Cas9 that enabled the mutation of a specific (targeted) endogenous gene to knock out its function. Classified as paleo-allopolyploids (duplicated ancient Sorghum-like DNA plus chromosome fusion event), design of guide RNAs (gRNAs) for Miscanthus needed to target both homeologs and their alleles to account for functional redundancy. Prior research in Zea mays demonstrated that editing the lemon white1 (lw1) gene, involved in chlorophyll and carotenoid biosynthesis, via CRISPR/Cas9 yielded pale green/yellow, striped or white leaf phenotypes making lw1 a promising target for visual confirmation of editing in other species. Using sequence information from both Miscanthus and sorghum, orthologs of maize lw1 were identified; a multi-step screening approach was used to select three gRNAs that could target homeologs of lw1. Embryogenic calli of M. sacchariflorus, M. sinensis and M. x giganteus were transformed via particle bombardment (biolistics) or Agrobacterium tumefaciens introducing the Cas9 gene and three gRNAs to edit lw1. Leaves on edited Miscanthus plants displayed the same phenotypes noted in maize. Sanger sequencing confirmed editing; deletions in lw1 ranged from 1 to 26 bp in length, and one deletion (433 bp) encompassed two target sites. Confocal microscopy verified lack of autofluorescence (chlorophyll) in edited leaves/sectors. CONCLUSIONS We developed procedures for gene editing via CRISPR/Cas9 in Miscanthus and, to the best of our knowledge, are the first to do so. This included five genotypes representing three Miscanthus species. Designed gRNAs targeted all copies of lw1 (homeologous copies and their alleles); results also confirmed lw1 made a good editing target in species other than Z. mays. The ability to target specific loci to enable endogenous gene editing presents a new avenue for genetic improvement of this important biomass crop.
Collapse
Affiliation(s)
- Anthony Trieu
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Mohammad B. Belaffif
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Pradeepa Hirannaiah
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Shilpa Manjunatha
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Rebekah Wood
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Yokshitha Bathula
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Rebecca L. Billingsley
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, 295 Lee Blvd., Mississippi State, MS 39762 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Anjali Arpan
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, 295 Lee Blvd., Mississippi State, MS 39762 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Erik J. Sacks
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, E.R. Madigan Laboratory, University of Illinois Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Thomas E. Clemente
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Stephen P. Moose
- grid.35403.310000 0004 1936 9991Department of Crop Sciences, E.R. Madigan Laboratory, University of Illinois Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Nancy A. Reichert
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, 295 Lee Blvd., Mississippi State, MS 39762 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Kankshita Swaminathan
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA ,grid.35403.310000 0004 1936 9991DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
7
|
Shih SY, Mortensen UH, Chang FR, Tsai H. Editing Aspergillus terreus using the CRISPR-Cas9 system. SYNTHETIC BIOLOGY (OXFORD, ENGLAND) 2022; 7:ysac031. [PMID: 36582448 PMCID: PMC9795164 DOI: 10.1093/synbio/ysac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 technology has been utilized in different organisms for targeted mutagenesis, offering a fast, precise and cheap approach to speed up molecular breeding and study of gene function. Until now, many researchers have established the demonstration of applying the CRISPR/Cas9 system to various fungal model species. However, there are very few guidelines available for CRISPR/Cas9 genome editing in Aspergillus terreus. In this study, we present CRISPR/Cas9 genome editing in A. terreus. To optimize the guide ribonucleic acid (gRNA) expression, we constructed a modified single-guide ribonucleic acid (sgRNA)/Cas9 expression plasmid. By co-transforming an sgRNA/Cas9 expression plasmid along with maker-free donor deoxyribonucleic acid (DNA), we precisely disrupted the lovB and lovR genes, respectively, and created targeted gene insertion (lovF gene) and iterative gene editing in A. terreus (lovF and lovR genes). Furthermore, co-delivering two sgRNA/Cas9 expression plasmids resulted in precise gene deletion (with donor DNA) in the ku70 and pyrG genes, respectively, and efficient removal of the DNA between the two gRNA targeting sites (no donor DNA) in the pyrG gene. Our results showed that the CRISPR/Cas9 system is a powerful tool for precise genome editing in A. terreus, and our approach provides a great potential for manipulating targeted genes and contributions to gene functional study of A. terreus.
Collapse
Affiliation(s)
- Sra-Yh Shih
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | | | - Fang-Rong Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | |
Collapse
|
8
|
Conifer Biotechnology: An Overview. FORESTS 2022. [DOI: 10.3390/f13071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The peculiar characteristics of conifers determine the difficulty of their study and their great importance from various points of view. However, their study faces numerous important scientific, methodological, cultural, economic, social, and legal challenges. This paper presents an approach to several of those challenges and proposes a multidisciplinary scientific perspective that leads to a holistic understanding of conifers from the perspective of the latest technical, computer, and scientific advances. This review highlights the deep connection that all scientific contributions to conifers can have in each other as fully interrelated communicating vessels.
Collapse
|
9
|
Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1197-1212. [PMID: 35266285 PMCID: PMC9129088 DOI: 10.1111/pbi.13803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/21/2023]
Abstract
Cellulose is the most abundant unique biopolymer in nature with widespread applications in bioenergy and high-value bioproducts. The large transmembrane-localized cellulose synthase (CESA) complexes (CSCs) play a pivotal role in the biosynthesis and orientation of the para-crystalline cellulose microfibrils during secondary cell wall (SCW) deposition. However, the hub CESA subunit with high potential homo/heterodimerization capacity and its functional effects on cell wall architecture, cellulose crystallinity, and saccharification efficiency remains unclear. Here, we reported the highly potent binding site containing four residues of Pro435, Trp436, Pro437, and Gly438 in the plant-conserved region (P-CR) of PalCESA4 subunit, which are involved in the CESA4-CESA8 heterodimerization. The CRISPR/Cas9-knockout mutagenesis in the predicted binding site results in physiological abnormalities, stunt growth, and deficient roots. The homozygous double substitution of W436Q and P437S and heterozygous double deletions of W436 and P437 residues potentially reduced CESA4-binding affinity resulting in normal roots, 1.5-2-fold higher plant growth and cell wall regeneration rates, 1.7-fold thinner cell wall, high hemicellulose content, 37%-67% decrease in cellulose content, high cellulose DP, 25%-37% decrease in cellulose crystallinity, and 50% increase in saccharification efficiency. The heterozygous deletion of W436 increases about 2-fold CESA4 homo/heterodimerization capacity led to the 50% decrease in plant growth and increase in cell walls thickness, cellulose content (33%), cellulose DP (20%), and CrI (8%). Our findings provide a strategy for introducing commercial CRISPR/Cas9-mediated bioengineered poplars with promising cellulose applications. We anticipate our results could create an engineering revolution in bioenergy and cellulose-based nanomaterial technologies.
Collapse
Affiliation(s)
- Shahnoush Nayeri
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Asadollah Ahmadikhah
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Nasser Mahna
- Department of Horticultural SciencesFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
10
|
Bonillo M, Pfromm J, Fischer MD. Challenges to Gene Editing Approaches in the Retina. Klin Monbl Augenheilkd 2022; 239:275-283. [PMID: 35316854 DOI: 10.1055/a-1757-9810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retinal gene therapy has recently been at the cutting edge of clinical development in the diverse field of genetic therapies. The retina is an attractive target for genetic therapies such as gene editing due to the distinctive anatomical and immunological features of the eye, known as immune privilege, so that inherited retinal diseases (IRDs) have been studied in several clinical studies. Thus, rapid strides are being made toward developing targeted treatments for IRDs. Gene editing in the retina faces a group of heterogenous challenges, including editing efficiencies, off-target effects, the anatomy of the target organ, immune responses, inactivation, and identifying optimal application methods. As clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) based technologies are at the forefront of current gene editing advances, their specific editing efficiency challenges and potential off-target effects were assessed. The immune privilege of the eye reduces the likelihood of systemic immune responses following retinal gene therapy, but possible immune responses must not be discounted. Immune responses to gene editing in the retina may be humoral or cell mediated, with immunologically active cells, including microglia, implicated in facilitating possible immune responses to gene editing. Immunogenicity of gene therapeutics may also lead to the inactivation of edited cells, reducing potential therapeutic benefits. This review outlines the broad spectrum of potential challenges currently facing retinal gene editing, with the goal of facilitating further advances in the safety and efficacy of gene editing therapies.
Collapse
Affiliation(s)
- Mario Bonillo
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - Julia Pfromm
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- Clinic of Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Clinic of Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany.,Oxford University NHS Foundation Trust, Oxford Eye Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland.,Department of Clinical Neurosciences, University of Oxford Nuffield Laboratory of Ophthalmology, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
12
|
Singer SD, Burton Hughes K, Subedi U, Dhariwal GK, Kader K, Acharya S, Chen G, Hannoufa A. The CRISPR/Cas9-Mediated Modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in Alfalfa Leads to Distinct Phenotypic Outcomes. FRONTIERS IN PLANT SCIENCE 2022; 12:774146. [PMID: 35095953 PMCID: PMC8793889 DOI: 10.3389/fpls.2021.774146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Alfalfa (Medicago sativa L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 (MsSPL8) was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance. In this study, we aimed to further characterize the function of MsSPL8 in alfalfa using CRISPR/Cas9-induced mutations in this gene. We successfully generated alfalfa genotypes with small insertions/deletions (indels) at the target site in up to three of four MsSPL8 alleles in the first generation. The efficiency of editing appeared to be tightly linked to the particular gRNA used. The resulting genotypes displayed consistent morphological alterations, even with the presence of up to two wild-type MsSPL8 alleles, including reduced leaf size and early flowering. Other phenotypic effects appeared to be dependent upon mutational dosage, with those plants with the highest number of mutated MsSPL8 alleles also exhibiting significant decreases in internode length, plant height, shoot and root biomass, and root length. Furthermore, MsSPL8 mutants displayed improvements in their ability to withstand water-deficit compared to empty vector control genotypes. Taken together, our findings suggest that allelic mutational dosage can elicit phenotypic gradients in alfalfa, and discrepancies may exist in terms of MsSPL8 function between alfalfa genotypes, growth conditions, or specific alleles. In addition, our results provide the foundation for further research exploring drought tolerance mechanisms in a forage crop.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gaganpreet Kaur Dhariwal
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kazi Kader
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Surya Acharya
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
13
|
Lin X, Wang G, Ma L, Liu G. Study on Factors Affecting the Performance of a CRISPR/Cas-Assisted New Immunoassay: Detection of Salivary Insulin as an Example. Front Bioeng Biotechnol 2021; 9:752514. [PMID: 34858958 PMCID: PMC8632245 DOI: 10.3389/fbioe.2021.752514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas is now playing a significant role in biosensing applications, especially when the trans-cleavage activity of several Cas effectors is discovered. Taking advantages of both CRISPR/Cas and the enzyme-linked immunosorbent assay (ELISA) in analytical and clinical investigations, CRISPR/Cas-powered ELISA has been successfully designed to detect a spectrum of analytes beyond nucleic acid. Herein, we developed a CRISPR/Cas12a-assisted new immunoassay (CANi) for detection of salivary insulin as an example. Specifically, factors (antibody selection, temperature, and assay time) affecting the CRISPR/Cas-based ELISA system's performance were investigated. It was observed that the concentration of blocking solution, selection of the capture antibody pairs, and the sequences of triggering ssDNA and guiding RNA affected this immunoassay sensitivity. In contrast, the preincubation of CRISPR/Cas12a working solution and pre-mixture of detection antibody with anti-IgG-ssDNA did not show influence on the performance of CANi for the detection of insulin. Under optimized conditions, the sensitivity for detection of salivary insulin was 10 fg/ml with a linear range from 10 fg/ml to 1 ng/ml.
Collapse
Affiliation(s)
- Xiaoting Lin
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Gonglei Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
14
|
Gong J, Kan L, Zhang X, He Y, Pan J, Zhao L, Li Q, Liu M, Tian J, Lin S, Lu Z, Xue L, Wang C, Tang G. An enhanced method for nucleic acid detection with CRISPR-Cas12a using phosphorothioate modified primers and optimized gold-nanopaticle strip. Bioact Mater 2021; 6:4580-4590. [PMID: 34095617 PMCID: PMC8141609 DOI: 10.1016/j.bioactmat.2021.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas12a system has been shown promising for nucleic acid diagnostics due to its rapid, portable and accurate features. However, cleavage of the amplicons and primers by the cis- and trans-activity of Cas12a hinders the attempts to integrate the amplification and detection into a single reaction. Through phosphorothioate modification of primers, we realized onepot detection with high sensitivity using plasmids of SARS-CoV-2, HPV16 and HPV18. We also identified the activated Cas12a has a much higher affinity to C nucleotide-rich reporter than others. By applying such reporters, the reaction time required for a lateral-flow readout was significantly reduced. Furthermore, to improve the specificity of the strip-based assay, we created a novel reporter and, when combined with a customized gold-nanopaticle strip, the readout was greatly enhanced owing to the elimination of the nonspecific signal. This established system, termed Targeting DNA by Cas12a-based Eye Sight Testing in an Onepot Reaction (TESTOR), was validated using clinical cervical scrape samples for human papillomaviruses (HPVs) detection. Our system represents a general approach to integrating the nucleic acid amplification and detection into a single reaction in CRISPR-Cas systems, highlighting its potential as a rapid, portable and accurate detection platform of nucleic acids.
Collapse
Affiliation(s)
- Jiaojiao Gong
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| | - Lijuan Kan
- Department of Laboratory Medicine, Luohu District People's Hospital, Shenzhen 518001, China
| | - Xiuming Zhang
- Department of Laboratory Medicine, Luohu District People's Hospital, Shenzhen 518001, China
| | - Ying He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jiaqiang Pan
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| | - Liping Zhao
- Department of Laboratory Medicine, Nanning First People's Hospital, Nanning 530022, China
| | - Qianyun Li
- Department of Neurology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Menghao Liu
- Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Tian
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| | - Sili Lin
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| | - Zhouyu Lu
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| | - Liang Xue
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| | - Chaojun Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guanghui Tang
- Yaneng Biotech, Co., Ltd, Fosun Pharma, Shenzhen 518100, China
| |
Collapse
|
15
|
Bae EK, Choi H, Choi JW, Lee H, Kim SG, Ko JH, Choi YI. Efficient knockout of the phytoene desaturase gene in a hybrid poplar (Populus alba × Populus glandulosa) using the CRISPR/Cas9 system with a single gRNA. Transgenic Res 2021; 30:837-849. [PMID: 34259977 DOI: 10.1007/s11248-021-00272-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
The CRISPR/Cas9 system has been used for genome editing in several plant species; however, there are few reports on its use in trees. Here, CRISPR/Cas9 was used to mutate a target gene in Populus alba × Populus glandulosa hybrid poplars. The hybrid poplar is routinely used in molecular biological studies due to the well-established Agrobacterium-mediated transformation method. A single guide RNA (sgRNA) with reported high mutation efficiency in other popular species was designed with a protospacer adjacent motif sequence for the phytoene desaturase 1 (PagPDS1) gene. The pHSE/Cas9-PagPDS1 sgRNA vector was delivered into hybrid poplar cells using Agrobacterium-mediated transformation. The transgenic plants were propagated and classified them into three groups according to their phenotypes. Among a total of 110 lines of transgenic hybrid poplars, 82 lines showed either an albino or a pale green phenotype, indicating around 74.5% phenotypic mutation efficiency of the PagPDS1 gene. The albino phenotypes were observed when the CRISPR/Cas9-mediated mutations in both PagPDS1 alleles in the transgenic plants. There was no off-target modification of the PagPDS2 gene, which has a potential sgRNA target sequence with two mismatches. The results confirmed that the sgRNA can specifically edit PagPDS1 rather than PagPDS2, indicating that CRISPR/Cas9-mediated genome editing can effectively induce target mutations in the hybrid poplar. This technique will be useful to improve tree quality in hybrid poplars (P. alba × P. glandulosa); for example, by enhancing biomass or stress tolerance.
Collapse
Affiliation(s)
- Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, 672 Jinju-daero, Jinju, 52817, Korea
| | - Ji Won Choi
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Korea
| | - Jae-Heung Ko
- Plant and Environmental New Resources, Kyung Hee University, 1732 Deongyeong-daero, Giheung-gu, Yongin, 17104, Korea
| | - Young-Im Choi
- Forest Bioresources Department, National Institute of Forest Science, 39 Onjeong-ro, Gwonseon-gu, Suwon, 16631, Korea.
| |
Collapse
|
16
|
Targeted CRISPR/Cas9-Based Knock-Out of the Rice Orthologs TILLER ANGLE CONTROL 1 (TAC1) in Poplar Induces Erect Leaf Habit and Shoot Growth. FORESTS 2021. [DOI: 10.3390/f12121615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyramidal-, erect- or upright-growing plant forms are characterized by narrow branch angles of shoots and leaves. The putative advantage of upright-leaf and shoot habit could be a more efficient penetration of light into lower canopy layers. Pyramidal genotypes have already been reported for various tree genotypes including peach. The paralogous rice ortholog TILLER ANGLE CONTROL 1 (TAC1) has been proposed to be the responsible gene for upright growth. However, it has not really been demonstrated for any of the pyramidal tree genotypes that a knock-out mutation of the TAC1 gene is causing pyramidal plant growth. By in silico analyses, we have identified a putative rice TAC1 ortholog (Potri.014G102600, “TAC-14”) and its paralog (Potri.002G175300, “TAC-2”) in the genome of P. trichocarpa. Two putative PcTAC1 orthologs in the P. × canescens clone INRA 717-1B4 were successfully knocked-out by applying a transgenic CRISPR/Cas9-approach. The mutants were molecularly analyzed and phenotyped over a period of three years in a glasshouse. Our results indicate that the homozygous knock-out of “TAC-14” is sufficient to induce pyramidal plant growth in P. × canescens. If up to twice as many pyramidal individuals were planted on short rotation coppices (SRCs), this could lead to higher wood yield, without any breeding, simply by increasing the number of trees on a default field size.
Collapse
|
17
|
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021; 9:775309. [PMID: 34869290 PMCID: PMC8640246 DOI: 10.3389/fbioe.2021.775309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, Moscow, Russia
- Medical Faculty, Russian State Social University, Moscow, Russia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
18
|
Hassan MM, Zhang Y, Yuan G, De K, Chen JG, Muchero W, Tuskan GA, Qi Y, Yang X. Construct design for CRISPR/Cas-based genome editing in plants. TRENDS IN PLANT SCIENCE 2021; 26:1133-1152. [PMID: 34340931 DOI: 10.1016/j.tplants.2021.06.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 05/06/2023]
Abstract
CRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
19
|
Ahmar S, Ballesta P, Ali M, Mora-Poblete F. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing. Int J Mol Sci 2021; 22:10583. [PMID: 34638922 PMCID: PMC8508745 DOI: 10.3390/ijms221910583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| | - Paulina Ballesta
- The National Fund for Scientific and Technological Development, Av. del Agua 3895, Talca 3460000, Chile
| | - Mohsin Ali
- Department of Forestry and Range Management, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile;
| |
Collapse
|
20
|
Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, Thorlby G. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC PLANT BIOLOGY 2021; 21:363. [PMID: 34376154 PMCID: PMC8353756 DOI: 10.1186/s12870-021-03143-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND To meet increasing demand for forest-based products and protect natural forests from further deforestation requires increased productivity from planted forests. Genetic improvement of conifers by traditional breeding is time consuming due to the long juvenile phase and genome complexity. Genetic modification (GM) offers the opportunity to make transformational changes in shorter time frames but is challenged by current genetically modified organism (GMO) regulations. Genome editing, which can be used to generate site-specific mutations, offers the opportunity to rapidly implement targeted improvements and is globally regulated in a less restrictive way than GM technologies. RESULTS We have demonstrated CRISPR/Cas9 genome editing in P. radiata targeting a single-copy cell wall gene GUX1 in somatic embryogenic tissue and produced plantlets from the edited tissue. We generated biallelic INDELs with an efficiency of 15 % using a single gRNA. 12 % of the transgenic embryogenic tissue was edited when two gRNAs were used and deletions of up to 1.3 kb were identified. However, the regenerated plants did not contain large deletions but had single nucleotide insertions at one of the target sites. We assessed the use of CRISPR/Cas9 ribonucleoproteins (RNPs) for their ability to accomplish DNA-free genome editing in P. radiata. We chose a hybrid approach, with RNPs co-delivered with a plasmid-based selectable marker. A two-gRNA strategy was used which produced an editing efficiency of 33 %, and generated INDELs, including large deletions. Using the RNP approach, deletions found in embryogenic tissue were also present in the plantlets. But, all plants produced using the RNP strategy were monoallelic. CONCLUSIONS We have demonstrated the generation of biallelic and monoallelic INDELs in the coniferous tree P. radiata with the CRISPR/Cas9 system using plasmid expressed Cas9 gRNA and RNPs respectively. This opens the opportunity to apply genome editing in conifers to rapidly modify key traits of interest.
Collapse
|
21
|
Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. PLANTS (BASEL, SWITZERLAND) 2021; 10:1347. [PMID: 34371550 PMCID: PMC8309169 DOI: 10.3390/plants10071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
Fruit trees provide essential nutrients to humans by contributing to major agricultural outputs and economic growth globally. However, major constraints to sustainable agricultural productivity are the uncontrolled proliferation of the population, and biotic and abiotic stresses. Tree mutation breeding has been substantially improved using different physical and chemical mutagens. Nonetheless, tree plant breeding has certain crucial bottlenecks including a long life cycle, ploidy level, occurrence of sequence polymorphisms, nature of parthenocarpic fruit development and linkage. Genetic engineering of trees has focused on boosting quality traits such as productivity, wood quality, and resistance to biotic and abiotic stresses. Recent technological advances in genome editing provide a unique opportunity for the genetic improvement of woody plants. This review examines application of the CRISPR-Cas system to reduce disease susceptibility, alter plant architecture, enhance fruit quality, and improve yields. Examples are discussed of the contemporary CRISPR-Cas system to engineer easily scorable PDS genes, modify lignin, and to alter the flowering onset, fertility, tree architecture and certain biotic stresses.
Collapse
Affiliation(s)
- Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.N.S.); (Z.I.)
| | - Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - S. Mohan Jain
- Department of Agricultural Sciences, PL-27, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
22
|
Shen D, Holmer R, Kulikova O, Mannapperuma C, Street NR, Yan Z, van der Maden T, Bu F, Zhang Y, Geurts R, Magne K. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1366-1386. [PMID: 33735477 PMCID: PMC9543857 DOI: 10.1111/tpj.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
Tree stems undergo a massive secondary growth in which secondary xylem and phloem tissues arise from the vascular cambium. Vascular cambium activity is driven by endogenous developmental signalling cues and environmental stimuli. Current knowledge regarding the genetic regulation of cambium activity and secondary growth is still far from complete. The tropical Cannabaceae tree Parasponia andersonii is a non-legume research model of nitrogen-fixing root nodulation. Parasponia andersonii can be transformed efficiently, making it amenable for CRISPR-Cas9-mediated reverse genetics. We considered whether P. andersonii also could be used as a complementary research system to investigate tree-related traits, including secondary growth. We established a developmental map of stem secondary growth in P. andersonii plantlets. Subsequently, we showed that the expression of the co-transcriptional regulator PanNODULE ROOT1 (PanNOOT1) is essential for controlling this process. PanNOOT1 is orthologous to Arabidopsis thaliana BLADE-ON-PETIOLE1 (AtBOP1) and AtBOP2, which are involved in the meristem-to-organ-boundary maintenance. Moreover, in species forming nitrogen-fixing root nodules, NOOT1 is known to function as a key nodule identity gene. Parasponia andersonii CRISPR-Cas9 loss-of-function Pannoot1 mutants are altered in the development of the xylem and phloem tissues without apparent disturbance of the cambium organization and size. Transcriptomic analysis showed that the expression of key secondary growth-related genes is significantly down-regulated in Pannoot1 mutants. This allows us to conclude that PanNOOT1 positively contributes to the regulation of stem secondary growth. Our work also demonstrates that P. andersonii can serve as a tree research system.
Collapse
Affiliation(s)
- Defeng Shen
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Rens Holmer
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeå907 36Sweden
| | - Zhichun Yan
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Thomas van der Maden
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Yuanyuan Zhang
- Laboratory of Plant PhysiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708 PBThe Netherlands
- Present address:
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmCollege of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
| | - Kévin Magne
- Laboratory of Molecular BiologyDepartment of Plant SciencesWageningen University & ResearchWageningen6708PBThe Netherlands
- Present address:
Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris‐SaclayCNRSINRAEUniv EvryOrsay91405France
| |
Collapse
|
23
|
Miladinovic D, Antunes D, Yildirim K, Bakhsh A, Cvejić S, Kondić-Špika A, Marjanovic Jeromela A, Opsahl-Sorteberg HG, Zambounis A, Hilioti Z. Targeted plant improvement through genome editing: from laboratory to field. PLANT CELL REPORTS 2021; 40:935-951. [PMID: 33475781 PMCID: PMC8184711 DOI: 10.1007/s00299-020-02655-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/20/2020] [Indexed: 05/19/2023]
Abstract
This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.
Collapse
Affiliation(s)
| | | | - Kubilay Yildirim
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ondokuzmayıs University, Samsun, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | | | | | | - Antonios Zambounis
- Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, Naoussa, Greece
| | - Zoe Hilioti
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece.
| |
Collapse
|
24
|
Chung PJ, Chung H, Oh N, Choi J, Bang SW, Jung SE, Jung H, Shim JS, Kim JK. Efficiency of Recombinant CRISPR/rCas9-Mediated miRNA Gene Editing in Rice. Int J Mol Sci 2020; 21:ijms21249606. [PMID: 33339449 PMCID: PMC7766165 DOI: 10.3390/ijms21249606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022] Open
Abstract
Drought is one of the major environmental stresses adversely affecting crop productivity worldwide. Precise characterization of genes involved in drought response is necessary to develop new crop varieties with enhanced drought tolerance. Previously, we identified 66 drought-induced miRNAs in rice plants. For the further functional investigation of the miRNAs, we applied recombinant codon-optimized Cas9 (rCas9) for rice with single-guide RNAs specifically targeting mature miRNA sequences or sites required for the biogenesis of mature miRNA. A total of 458 T0 transgenic plants were analyzed to determine the frequency and type of mutations induced by CRISPR/rCas9 on 13 independent target miRNAs. The average mutation frequency for 13 genes targeted by single guide RNAs (sgRNAs) in T0 generation was 59.4%, including mono-allelic (8.54%), bi-allelic (11.1%), and hetero-allelic combination (39.7%) mutations. The mutation frequency showed a positive correlation with Tm temperature of sgRNAs. For base insertion, one base insertion (99%) was predominantly detected in transgenic plants. Similarly, one base deletion accounted for the highest percentage, but there was also a significant percentage of cases in which more than one base was deleted. The deletion of more than two bases in OsmiR171f and OsmiR818b significantly reduced the level of corresponding mature miRNAs. Further functional analysis using CRISPR/Cas9-mediated mutagenesis confirmed that OsmiR818b is involved in drought response in rice plants. Overall, this study suggests that the CRISPR/rCas9 system is a powerful tool for loss-of-function analysis of miRNA in rice.
Collapse
Affiliation(s)
- Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- Temasek Life Science Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hoyong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- 3BIGS, Suwon 16506, Korea
| | - Nuri Oh
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Joohee Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- Novel food Division, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea
| | - Seung Woon Bang
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
| | - Se Eun Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- NUS Synthetic Biology for Clinical and Technological Innovation, Department of Biochemistry, Yong Loo Lin, School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.S.S.); (J.-K.K.); Tel.: +82-62-530-0507 (J.S.S.); +82-33-339-5826 (J.-K.K.)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea; (P.J.C.); (H.C.); (N.O.); (J.C.); (S.W.B.); (S.E.J.); (H.J.)
- Correspondence: (J.S.S.); (J.-K.K.); Tel.: +82-62-530-0507 (J.S.S.); +82-33-339-5826 (J.-K.K.)
| |
Collapse
|
25
|
Uddin F, Rudin CM, Sen T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol 2020; 10:1387. [PMID: 32850447 PMCID: PMC7427626 DOI: 10.3389/fonc.2020.01387] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
A series of recent discoveries harnessing the adaptive immune system of prokaryotes to perform targeted genome editing is having a transformative influence across the biological sciences. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins has expanded the applications of genetic research in thousands of laboratories across the globe and is redefining our approach to gene therapy. Traditional gene therapy has raised some concerns, as its reliance on viral vector delivery of therapeutic transgenes can cause both insertional oncogenesis and immunogenic toxicity. While viral vectors remain a key delivery vehicle, CRISPR technology provides a relatively simple and efficient alternative for site-specific gene editing, obliviating some concerns raised by traditional gene therapy. Although it has apparent advantages, CRISPR/Cas9 brings its own set of limitations which must be addressed for safe and efficient clinical translation. This review focuses on the evolution of gene therapy and the role of CRISPR in shifting the gene therapy paradigm. We review the emerging data of recent gene therapy trials and consider the best strategy to move forward with this powerful but still relatively new technology.
Collapse
Affiliation(s)
- Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
26
|
Hus K, Betekhtin A, Pinski A, Rojek-Jelonek M, Grzebelus E, Nibau C, Gao M, Jaeger KE, Jenkins G, Doonan JH, Hasterok R. A CRISPR/Cas9-Based Mutagenesis Protocol for Brachypodium distachyon and Its Allopolyploid Relative, Brachypodium hybridum. FRONTIERS IN PLANT SCIENCE 2020; 11:614. [PMID: 32508865 PMCID: PMC7251944 DOI: 10.3389/fpls.2020.00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system enables precise genome editing and is a useful tool for functional genomic studies. Here we report a detailed protocol for targeted genome editing in the model grass Brachypodium distachyon and its allotetraploid relative B. hybridum, describing gRNA design, a transient protoplast assay to test gRNA efficiency, Agrobacterium-mediated transformation and the selection and analysis of regenerated plants. In B. distachyon, we targeted the gene encoding phytoene desaturase (PDS), which is a crucial enzyme in the chlorophyll biosynthesis pathway. The albino phenotype of mutants obtained confirmed the effectiveness of the protocol for functional gene analysis. Additionally, we targeted two genes related to cell wall maintenance, encoding a fasciclin-like arabinogalactan protein (FLA) and a pectin methylesterase (PME), also in B. distachyon. Two genes encoding cyclin-dependent kinases (CDKG1 and CDKG2), which may be involved in DNA recombination were targeted in both B. distachyon and B. hybridum. Cas9 activity induces mainly insertions or deletions, resulting in frameshift mutations that, may lead to premature stop codons. Because of the close phylogenetic relationship between Brachypodium species and key temperate cereals and forage grasses, this protocol should be easily adapted to target genes underpinning agronomically important traits.
Collapse
Affiliation(s)
- Karolina Hus
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Artur Pinski
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, Cracow, Poland
| | - Candida Nibau
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mingjun Gao
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Katja E. Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department for Plant Adaptation, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
27
|
Implementing the CRISPR/Cas9 Technology in Eucalyptus Hairy Roots Using Wood-Related Genes. Int J Mol Sci 2020; 21:ijms21103408. [PMID: 32408486 PMCID: PMC7279396 DOI: 10.3390/ijms21103408] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/25/2023] Open
Abstract
Eucalypts are the most planted hardwoods worldwide. The availability of the Eucalyptus grandis genome highlighted many genes awaiting functional characterization, lagging behind because of the lack of efficient genetic transformation protocols. In order to efficiently generate knock-out mutants to study the function of eucalypts genes, we implemented the powerful CRISPR/Cas9 gene editing technology with the hairy roots transformation system. As proofs-of-concept, we targeted two wood-related genes: Cinnamoyl-CoA Reductase1 (CCR1), a key lignin biosynthetic gene and IAA9A an auxin dependent transcription factor of Aux/IAA family. Almost all transgenic hairy roots were edited but the allele-editing rates and spectra varied greatly depending on the gene targeted. Most edition events generated truncated proteins, the prevalent edition types were small deletions but large deletions were also quite frequent. By using a combination of FT-IR spectroscopy and multivariate analysis (partial least square analysis (PLS-DA)), we showed that the CCR1-edited lines, which were clearly separated from the controls. The most discriminant wave-numbers were attributed to lignin. Histochemical analyses further confirmed the decreased lignification and the presence of collapsed vessels in CCR1-edited lines, which are characteristics of CCR1 deficiency. Although the efficiency of editing could be improved, the method described here is already a powerful tool to functionally characterize eucalypts genes for both basic research and industry purposes.
Collapse
|
28
|
Cardoso TB, Pinto RT, Paiva LV. Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp. PLoS One 2019; 14:e0223217. [PMID: 31600239 PMCID: PMC6786596 DOI: 10.1371/journal.pone.0223217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022] Open
Abstract
The adaptation of crops to acid soils is needed for the maintenance of food security in a sustainable way, as decreasing fertilizers use and mechanical interventions in the soil would favor the reduction of agricultural practices' environmental impact. Phosphate deficiency and the presence of reactive aluminum affect vital processes to the plant in this soil, mostly water and nutrient absorption. From this, the understanding of the molecular response to these stresses can foster strategies for genetic improvement, so the aim was to broadly analyze the transcriptional variations in Poupulus spp. in response to these abiotic stresses, as a plant model for woody crops. A co-expression network was constructed among 3,180 genes differentially expressed in aluminum-stressed plants with 34,988 connections. Of this total, 344 genes presented two-fold transcriptional variation and the group of genes associated with those regulated after 246 hours of stress had higher number of connections per gene, with some already characterized genes related to this stress as main hubs. Another co-expression network was made up of 8,380 connections between 550 genes regulated by aluminum stress and phosphate deficiency, in which 380 genes had similar profile in both stresses and only eight with transcriptional variation higher than 20%. All the transcriptomic data are presented here with functional enrichment and homology comparisons with already characterized genes in another species that are related to the explored stresses, in order to provide a broad analysis of the co-opted responses for both the stresses as well as some specificity. This approach improves our understanding regarding the plants adaptation to acid soils and may contribute to strategies of crop genetic improvement for this condition that is widely present in regions of high agricultural activity.
Collapse
Affiliation(s)
- Thiago Bergamo Cardoso
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Renan Terassi Pinto
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|