1
|
Liu F, Xi L, Fu N. Genome-wide development of simple sequence repeat (SSR) markers at 2-Mb intervals in lotus (Nelumbo Adans.). BMC Genomics 2025; 26:4. [PMID: 39754041 PMCID: PMC11699769 DOI: 10.1186/s12864-024-11191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome. METHODS Using whole-genome resequencing, active SSR loci were identified throughout the genomes of eight typical Asian lotus. After that, high polymorphism SSR molecular markers were mined from each 2n + 0.5 Mb site on each chromosome (e.g., Chr.1-2.5, 4.5, 6.5 Mb) through four steps: online primer design, primer pair evaluation, agarose gel electrophoresis testing using six Asian lotus, one American lotus, and two their hybrids, and DNA sequence alignment. Finally, the polymerase chain reaction (PCR) efficiency of several SSR markers was validated in 20 Asian temperate lotus, eight Asian tropical lotus, and one American lotus. RESULTS A total of 463 SSR markers were developed based on each 2n + 0.5 Mb site of the eight lotus chromosomes (totaling 821.29 Mb). These markers were evenly distributed throughout the lotus genome at a density of 1 SSR per 1.76 Mb. The chromosomal locations of the SSR markers were determined precisely, and the specificity of the primer pairs for each site was verified by sequencing the PCR products. We further provided a set of genome-wide SSR loci, covering 129 per Mb, identified from eight representative Asian lotus, allowing other researchers to independently discover specific SSR markers for particular experiments. CONCLUSION These SSR markers, which have a density of 1 SSR marker per 1.76 Mb in this study, will act as a bridge connecting lotus phenotypes with the genome. This work reveals a novel and convenient strategy for developing highly polymorphic SSR markers at any location throughout the lotus genome, and it sheds light on the development of SSR molecular markers in other plant species.
Collapse
Affiliation(s)
- Fengluan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Naifeng Fu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China
| |
Collapse
|
2
|
Xuelian L, Yu Q, Dingding C, Jiao D, Songbiao C, Pingfang Y, Zhongyuan L. Identification and characterization of two APETALA2 homolog genes in lotus (Nelumbo nucifera) involved in sepal and petal development. BMC PLANT BIOLOGY 2024; 24:1186. [PMID: 39695956 DOI: 10.1186/s12870-024-05923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Lotus (Nelumbo nucifera) is a significant aquatic ornamental genus widely utilized in horticulture for its decorative, culinary, medicinal, and other practical uses. It presents a variety of flower shapes, including few-petalled, semi-double-petalled, double-petalled and thousand-petalled flowers, making it an ideal candidate for studying the flower development of aquatic plants. However, the molecular mechanism of floral development in lotus remains elusive. RESULTS In this study, two APETALA2 (AP2) homologues, NnAP2a and NnAP2b, were identified in lotus. Interestingly, both NnAP2a and NnAP2b proteins contained two conserved AP2 domains and were verified to be located primarily in the nucleus. Both NnAP2a and NnAP2b showed high expression levels in the floral buds and petals. Ectopic expression of NnAP2a and NnAP2b in Arabidopsis led to an increase in the number of petals and sepals compared to the wild type (WT). Meanwhile, each of the two NnAP2 genes was able to rescue the sepal and petal defective phenotype of the ap2-6 mutant in Arabidopsis. Furthermore, protein-protein interaction assays indicated that NnAP2s could form a protein complex with other proteins involved in floral organ development, such as AP3, PISTILLATA (PI), and SEPALLATA3 (SEP3). CONCLUSIONS These results suggest that NnAP2s could influence sepal and petal development in N. nucifera. Our findings not only provide some insights into molecular mechanism underlying sepal and petal development and formation of lotus, but also might help its breeding in improving flower morphology.
Collapse
Affiliation(s)
- Liu Xuelian
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China
| | - Qin Yu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cao Dingding
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Deng Jiao
- School of Life Sciences, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550025, China
| | - Chen Songbiao
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yang Pingfang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Lin Zhongyuan
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Zhou P, Jiang H, Li J, He X, Jin Q, Wang Y, Xu Y. A transposon DNA/hAT-Ac insertion promotes the formation of yellow tepals in lotus (Nelumbo). Int J Biol Macromol 2024; 283:137724. [PMID: 39577531 DOI: 10.1016/j.ijbiomac.2024.137724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Yellow tepal is a unique trait of the American lotus (Nelumbo lutea), and all yellow lotus cultivars in the market possess genetic material from the American lotus. However, the formation of yellow tepals in lotus and the genetic mechanism of their formation remain unclear. In this study, we identified a transposon DNA/hAT-Ac, located within the promoter region of an R2R3-MYB transcription factor, MYB12, by comparing the insertion patterns of transposons in the genomes of American and Asian lotus (Nelumbo nucifera). The transposon was found exclusively in yellow lotus cultivars and not in red or white lotus. The insertion of DNA/hAT-Ac facilitated the specific expression of MYB12 in the yellow lotus tepals. Transient expression in lotus tepals, dual-luciferase, and yeast one-hybrid assays demonstrated that MYB12 promotes the accumulation of carotenoids and flavonols by activating the expression of genes involved in carotenoid and flavonols biosynthesis, and it directly binds to the promoters of PSY and FLS. Our results indicated that the transposon DNA/hAT-Ac-mediated specific expression of MYB12 is crucial for the formation of yellow tepals in lotus, and the findings provide a theoretical basis for the breeding of yellow lotus cultivars.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Jingwen Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Xinrui He
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Sanya Research Institute of Nanjing Agricultural University, Sanya 572000, China.
| |
Collapse
|
4
|
Yang J, Wang J, Yang D, Xia W, Wang L, Wang S, Zhao H, Chen L, Hu H. Genome-Wide Analysis of CSL Family Genes Involved in Petiole Elongation, Floral Petalization, and Response to Salinity Stress in Nelumbo nucifera. Int J Mol Sci 2024; 25:12531. [PMID: 39684243 DOI: 10.3390/ijms252312531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Lotus (Nelumbo nucifera), a perennial aquatic plant, endures various environmental stresses. Its diverse ornamental traits make it an ideal model for studying multigene family functional differentiation and abiotic stress responses. The cellulose synthase-like (CSL) gene family includes multiple subfamilies and holds potentially pivotal roles in plant growth, development, and stress responses. Thus, understanding this family is essential for uncovering the attributes of ancient dicotyledonous lotus species and offering new genetic resources for targeted genetic improvement. Herein, we conducted a genome-wide NnCSL gene identification study, integrating tissue-specific expression analysis, RNA-seq, and qRT-PCR validation. We identified candidate NnCSL genes linked to petiole elongation, floral petalization, salinity stress responses, and potential co-expressed TFs. 22 NnCSL genes were categorized into six subfamilies: NnCSLA, NnCSLB, NnCSLC, NnCSLD, NnCSLE, and NnCSLG. Promoter regions contain numerous cis-acting elements related to growth, development, stress responses, and hormone regulation. Nineteen NnCSL genes showed specific differential expression in LPA (large plant architecture) versus SPA (small plant architecture): petioles, petalized carpels (CP) and normal carpels (C), and petalized stamens (SP) and normal stamens (S). Notably, most NnCSLC, NnCSLA, and NnCSLB subfamily genes play diverse roles in various aspects of lotus growth and development, while NnCSLE and NnCSLG are specifically involved in carpel petalization and petiole elongation, respectively. Additionally, 11 candidate NnCSL genes responsive to salinity stress were identified, generally exhibiting antagonistic effects on growth and developmental processes. These findings provide an important theoretical foundation and novel insights for the functional study of NnCSL genes in growth, development, and stress resistance in lotus.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Juan Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Dongmei Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Wennian Xia
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Sha Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
5
|
Hu H, Zhang R, Zhao Y, Yang J, Zhao H, Zhao L, Wang L, Cheng Z, Zhao W, Wang B, Larkin RM, Chen L. Cell wall remodeling confers plant architecture with distinct wall structure in Nelumbo nucifera. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1392-1409. [PMID: 39427333 DOI: 10.1111/tpj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Lotus (Nelumbo nucifera G.) is a perennial aquatic horticultural plant with diverse architectures. Distinct plant architecture (PA) has certain attractive and practical qualities, but its genetic morphogenesis in lotus remains elusive. In this study, we employ genome-wide association analysis (GWAS) for the seven traits of petiole length (PLL), leaf length (LL), leaf width (LW), peduncle length (PLF), flower diameter (FD), petal length (PeL), and petal width (PeW) in 301 lotus accessions. A total of 90 loci are identified to associate with these traits across 4 years of trials. Meanwhile, we perform RNA sequencing (RNA-seq) to analyze the differential expression of the gene (DEG) transcripts between large and small PA (LPA and SPA) of lotus stems (peduncles and petioles). As a result, eight key candidate genes are identified that are all primarily involved in plant cell wall remodeling significantly associated with PA traits by integrating the results of DEGs and GWAS. To verify this result, we compare the cell wall compositions and structures of LPA versus SPA in representative lotus germplasms. Intriguingly, compared with the SPA lotus, the LPA varieties have higher content of cellulose and hemicellulose, but less filling substrates of pectin and lignin. Additionally, we verified longer cellulose chains and higher cellulose crystallinity with less interference in LPA varieties. Taken together, our study illustrates how plant cell wall remodeling affects PA in lotus, shedding light on the genetic architecture of this significant ornamental trait and offering a priceless genetic resource for future genomic-enabled breeding.
Collapse
Affiliation(s)
- Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Ran Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yongjing Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Lin Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Zhipeng Cheng
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Wanyue Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Bo Wang
- Wuhan Genoseq Technology Co., Ltd, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
6
|
Ye L, Kuang W, Zhang L, Lin Y, Zhang Y, Sun X, Cui R. Functional Characterization of the Histone Acetyltransferase FcElp3 in Lotus Rhizome Rot-Causing Fungus Fusarium commune. PHYTOPATHOLOGY 2024; 114:2300-2309. [PMID: 39007807 DOI: 10.1094/phyto-01-24-0017-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fusarium commune is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in F. commune homologous to histone acetyltransferase Elp3. We further constructed a mutant strain of F. commune to determine the function of FcElp3 in fungal growth and pathogenicity. The results showed that the deletion of FcElp3 resulted in reduced mycelial growth and sporulation. Compared with the wild type, the ΔFcElp3 strain showed more tolerance to osmotic stress and cell wall stress responses but was highly sensitive to oxidative stress. The subcellular localization results indicated that FcElp3 was distributed in both the cytoplasm and nucleus. Western blotting showed that FcElp3 was important for acetylation of H3K14 and H4K8. RNA sequencing analysis showed significant transcriptional changes in the ΔFcElp3 mutant, with 3,098 genes upregulated and 5,770 genes downregulated. Peroxisome was the most significantly enriched metabolic pathway for downregulated genes. This led to a significant decrease in the expression of the core transcription factor Fcap1 involved in the oxidative stress response. Pathogenicity tests revealed that the ΔFcElp3 mutant's pathogenicity on lotus was significantly decreased. Together, these findings clearly demonstrated that FcElp3 was involved in fungal growth, development, stress response, and pathogenicity via the direct regulation of multiple target genes.
Collapse
Affiliation(s)
- Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Jiangxi Guangchang White Lotus Science and Technology Backyard, Guangchang, Jiangxi, 344900, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
7
|
Zhao S, Jiao J, Zhang C, Li F, Fan X, Wu P, Feng K, Li L. Identification of the function of a key gene NnHCT1 in lignin synthesis in petioles of Nelumbo nucifera. Int J Biol Macromol 2024; 274:133391. [PMID: 38917921 DOI: 10.1016/j.ijbiomac.2024.133391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Leaf petiole or stem strength is an important agronomic trait affecting the growth of underground organs as a channel for material exchange and plays a vital role in the quality and yield of crops and vegetables. There are two different types of petioles in lotus, floating leaf petioles and vertical leaf petioles; however, the internal difference mechanism between these petioles is unclear. In this study, we investigated the differences between the initial vertical leaf petioles and the initial floating leaf petioles based on RNA sequencing (RNA-seq), and >2858 differentially expressed genes were annotated. These genes were chiefly enriched in phenylpropanoid biosynthesis, which is the source of the lignin and cellulose in petioles and stems. Lignin biology-related gene NnHCT1 was identified, and subsequent biological function validation demonstrated that the transient overexpression of NnHCT1 significantly increased the lignin and cellulose contents in lotus petioles and tobacco leaves. In contrast, silencing NnHCT1 through virus-induced gene silencing significantly reduced petiole lignin synthesis. Additionally, differentially up-regulated MYB family transcription factors were identified using RNA-seq. Yeast-one-hybrid and dual-luciferase reporter assays demonstrated that MYB4 could bind to the NnHCT1 promoter and up-regulate NnHCT1 expression. These findings demonstrate the significant potential of NnHCT1 to enhance lignin synthesis, thereby improving stem or petiole resistance to stunting and explaining the need for the study of differential petiole relationships in plants.
Collapse
Affiliation(s)
- Shuping Zhao
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Jiao Jiao
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Chuyan Zhang
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Fenghua Li
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Xiaojing Fan
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Kai Feng
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China
| | - Liangjun Li
- School of Horticulture and Gardens, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Liu H, Liu Y, Liu F, Zeng L, Xu Y, Jin Q, Wang Y. Genome-wide identification of the Q-type C2H2 zinc finger protein gene family and expression analysis under abiotic stress in lotus (Nelumbo nucifera G.). BMC Genomics 2024; 25:648. [PMID: 38943098 PMCID: PMC11214253 DOI: 10.1186/s12864-024-10546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yidan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Fangyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihong Zeng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Li JJ, Qiu XY, Dai YJ, Nyonga TM, Li CC. Genome-Wide Identification and Co-Expression Networks of WOX Gene Family in Nelumbo nucifera. PLANTS (BASEL, SWITZERLAND) 2024; 13:720. [PMID: 38475567 DOI: 10.3390/plants13050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
WUSCHEL-related homeobox (WOX) genes are a class of plant-specific transcription factors, regulating the development of multiple tissues. However, the genomic characterizations and expression patterns of WOX genes have not been analyzed in lotus. In this study, 15 NnWOX genes were identified based on the well-annotated reference genome of lotus. According to the phylogenetic analysis, the NnWOX genes were clustered into three clades, i.e., ancient clade, intermediate clade, and WUS clade. Except for the conserved homeobox motif, we further found specific motifs of NnWOX genes in different clades and divergence gene structures, suggesting their distinct functions. In addition, two NnWOX genes in the ancient clade have conserved expression patterns and other NnWOX genes exhibit different expression patterns in lotus tissues, suggesting a low level of functional redundancy in lotus WOX genes. Furthermore, we constructed the gene co-expression networks for each NnWOX gene. Based on weighted gene co-expression network analysis (WGCNA), ten NnWOX genes and their co-expressed genes were assigned to the modules that were significantly related to the cotyledon and seed coat. We further performed RT-qPCR experiments, validating the expression levels of ten NnWOX genes in the co-expression networks. Our study reveals comprehensive genomic features of NnWOX genes in lotus, providing a solid basis for further function studies.
Collapse
Affiliation(s)
- Juan-Juan Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Xiao-Yan Qiu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yu-Jun Dai
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Tonny M Nyonga
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chang-Chun Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
10
|
Rani JMS, Akkarshana P, Neelaveni V, Mohan S, Rekha PD, Rao RM, Muthulakshmi L. Evaluation of the inhibitory potential of bioactive compounds against SARS-CoV-2 by in silico approach. J Mol Model 2024; 30:60. [PMID: 38321299 DOI: 10.1007/s00894-024-05858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT The COVID-19 (coronavirus disease 19) pandemic brought on by the SARS-CoV-2 outbreak (severe acute respiratory syndrome coronavirus 2) has stimulated the exploration of various available chemical compounds that could be used to treat the infection. This has driven numerous researchers to investigate the antiviral potential of several bioactive compounds from medicinal plants due to their reduced adverse effects compared to chemicals. Some of the bioactive compounds used in folklore treatment strategies are reported as effective inhibitors against the proliferative and infective cycles of SARS-CoV-2. The secondary metabolites from plants are generally used to treat various diseases due to their intact medicinal properties. The present study analyzes the inhibitory potential of phytochemicals from medicinal plants like Sphaeranthus indicus, Lantana camara, and Nelumbo nucifera against SARS-CoV-2 by molecular docking. METHODS Ten druggable protein targets from SARS-CoV-2 are docked against the phytochemicals from the selected medicinal plants. The phytocompounds astragalin, isoquercetin, and 5-hydroxy-7-methoxy-6-c-glycosy flavone were found to have lower binding energy depicting their inhibitive potential compared with the reported inhibitors that are used in the treatment of SARS-CoV-2 infection. The phytocompounds found to have the least binding energy were selected for further analyses. To assess the compounds' potential as drugs, their ADMET characteristics were also examined. Sphaeranthus indicus, Lantana camara, and Nelumbo nucifera six possible compounds were separately screened for ADME and toxicity characteristics; then, the results were analyzed. To assess the impact of the phytocompound binding on the dynamics of SARS-CoV-2 ribonuclease protein NSP15, microsecond-level all atomistic molecular dynamics simulations were performed, and their dynamics were analyzed. Microsecond-level molecular dynamics simulations of both the ligands complexed with NSP15 revealed that the ligand induces allosteric effects on NSP15, which could lead to destabilization of NSP15 hexameric interface and loss of RNA binding. The low binding energy exhibited by the phytochemicals from Lantana camera, Sphaeranthus indicus, and Nelumbo nucifera against the protein targets of SARS-CoV-2 showed inhibitory potential by the selected molecules. Their predicted interference of the enzymes involved in the molecular mechanisms aiding the proliferation of SARS-CoV-2 indicated the inhibitive ability of the phytochemicals.
Collapse
Affiliation(s)
- J Mariya Sneha Rani
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - P Akkarshana
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - V Neelaveni
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - Shalini Mohan
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangaluru, 575018, India
| | - Rajas M Rao
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangaluru, 575018, India.
| | - Lakshmanan Muthulakshmi
- Department of Biotechnology, Biomaterials and Product Development Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India.
| |
Collapse
|
11
|
Yang H, He S, Feng Q, Liu Z, Xia S, Zhou Q, Wu Z, Zhang Y. Lotus (Nelumbo nucifera): a multidisciplinary review of its cultural, ecological, and nutraceutical significance. BIORESOUR BIOPROCESS 2024; 11:18. [PMID: 38647851 PMCID: PMC10991372 DOI: 10.1186/s40643-024-00734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 04/25/2024] Open
Abstract
This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Simai He
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Dhull SB, Chandak A, Chawla P, Goksen G, Rose PK, Rani J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int J Biol Macromol 2023; 253:127543. [PMID: 37866555 DOI: 10.1016/j.ijbiomac.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| |
Collapse
|
13
|
Zhou T, Song G, Tian D, Liu Q, Shen J, Yang X, Zhao P. Nuciferine relieves type 2 diabetes mellitus via enhancing GLUT4 expression and translocation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Liu J, Wang Y, Deng X, Zhang M, Sun H, Gao L, Song H, Xin J, Ming R, Yang D, Yang M. Transcription factor NnMYB5 controls petal color by regulating GLUTATHIONE S-TRANSFERASE2 in Nelumbo nucifera. PLANT PHYSIOLOGY 2023; 193:1213-1226. [PMID: 37348874 PMCID: PMC10517185 DOI: 10.1093/plphys/kiad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023]
Abstract
Lotus (Nelumbo spp.) is an important aquatic ornamental genus in the family Nelumbonaceae comprising only 2 species: Nelumbo lutea with yellow flowers and Nelumbo nucifera with red or white flowers. The petal color variations between these 2 species have previously been associated with the potential activities of FLAVONOL SYNTHASE (FLS) and MYB5. However, the underlying genetic mechanisms of flower color divergence within the N. nucifera species remain unclear. Here, quantitative trait locus mapping led to the identification of MYB5, a candidate gene controlling petal color in N. nucifera. Genotyping of 213 natural lotus accessions revealed an 80 kb presence/absence variant (PAV) of the NnMYB5 gene that is associated with petal color variation. Transcriptome analysis, dual-luciferase, and yeast 1-hybrid assays showed that NnMYB5 could directly activate the anthocyanin transporter gene GLUTATHIONE S-TRANSFERASE2 (NnGST2). Heterologous expression of NnGST2 in Arabidopsis (Arabidopsis thaliana) and its overexpression in lotus petals induced anthocyanin accumulation. Deletion of the 80 kb PAV within NnMYB5 inactivated NnGST2 expression and blocked anthocyanin accumulation in white N. nucifera petals. In contrast, the anthocyanin deficiency of N. lutea occurred due to pseudogenized NlMYB5 alleles. Our results establish a regulatory link between NnMYB5 and NnGST2 in petal anthocyanin accumulation and demonstrate the independent mechanisms controlling flower coloration in Nelumbo.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| |
Collapse
|
15
|
Chen GZ, Huang J, Lin ZC, Wang F, Yang SM, Jiang X, Ahmad S, Zhou YZ, Lan S, Liu ZJ, Peng DH. Genome-Wide Analysis of WUSCHEL-Related Homeobox Gene Family in Sacred Lotus ( Nelumbo nucifera). Int J Mol Sci 2023; 24:14216. [PMID: 37762519 PMCID: PMC10531982 DOI: 10.3390/ijms241814216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera), which is a perennial aquatic plant with important edible, ornamental, and medicinal values. We identified 15 WOX TFs distributing on six chromosomes in the genome of N. nucifera. A total of 72 WOX genes from five species were divided into three clades and nine subclades based on the phylogenetic tree. NnWOXs in the same subclades had similar gene structures and conserved motifs. Cis-acting element analysis of the promoter regions of NnWOXs found many elements enriched in hormone induction, stress responses, and light responses, indicating their roles in growth and development. The Ka/Ks analysis showed that the WOX gene family had been intensely purified and selected in N. nucifera. The expression pattern analysis suggested that NnWOXs were involved in organ development and differentiation of N. nucifera. Furthermore, the protein-protein interaction analysis showed that NnWOXs might participate in the growth, development, and metabolic regulation of N. nucifera. Taken together, these findings laid a foundation for further analysis of NnWOX functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.-Z.C.); (J.H.); (Z.-C.L.); (F.W.); (S.-M.Y.); (X.J.); (S.A.); (Y.-Z.Z.); (S.L.)
| | - Dong-Hui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.-Z.C.); (J.H.); (Z.-C.L.); (F.W.); (S.-M.Y.); (X.J.); (S.A.); (Y.-Z.Z.); (S.L.)
| |
Collapse
|
16
|
Zhou P, Li J, Jiang H, Jin Q, Wang Y, Xu Y. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36 in regulating anthocyanin synthesis. BMC PLANT BIOLOGY 2023; 23:429. [PMID: 37710161 PMCID: PMC10503039 DOI: 10.1186/s12870-023-04425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) family is a predominant group of transcription factors in plants, involved in regulating plant growth, development, and response to stressors. Additionally, the bZIP gene family has a key role in anthocyanin production. Despite the significant role of bZIP genes in plants, their potential contribution in lotus remains understudied. RESULTS A total of 124 bZIP genes (59 NnbZIPs and 65 NlbZIPs) were identified from genomes of two lotus species. These genes were classified into 13 groups according to the grouping principle of the Arabidopsis bZIP gene family. Analysis of promoter cis-acting elements indicated that most bZIP gene family members in lotus are associated with response to abiotic stresses. The promoters of some bZIP genes contain MYB binding sites that regulate anthocyanin synthesis. We examined the anthocyanin content of the petals from three different colored lotus, combined with transcriptome data analysis and qRT-PCR results, showing that the expression trends of NnbZIP36 and the homologous gene NlbZIP38 were significantly correlated with the anthocyanin content in lotus petals. Furthermore, we found that overexpression of NnbZIP36 in Arabidopsis promoted anthocyanin accumulation by upregulating the expression of genes (4CL, CHI, CHS, F3H, F3'H, DFR, ANS and UF3GT) related to anthocyanin synthesis. CONCLUSIONS Our study enhances the understanding of the bZIP gene family in lotus and provides evidence for the role of NnbZIP36 in regulating anthocyanin synthesis. This study also sets the stage for future investigations into the mechanism by which the bZIP gene family regulates anthocyanin biosynthesis in lotus.
Collapse
Affiliation(s)
- Ping Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingwen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huiyan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
17
|
Deng X, Huang J, Zhang M, Wei X, Song H, Wang Y, Xin J, Sun H, Liu J, Yang D, Li J, Yang M. Metabolite profiling and screening of callus browning-related genes in lotus (Nelumbo nucifera). PHYSIOLOGIA PLANTARUM 2023; 175:e14027. [PMID: 37882309 DOI: 10.1111/ppl.14027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 10/27/2023]
Abstract
Callus browning is a major drawback to lotus callus proliferation and regeneration. However, the underlying mechanism of its formation remains largely unknown. Herein, we aimed to explore the metabolic and molecular basis of lotus callus browning by combining histological staining, high-throughput metabolomics, and transcriptomic assays for lotus callus at three browning stages. Histological stained brown callus cross sections displayed severe cell death symptoms, accompanied by an obvious accumulation of polyphenols and lignified materials. Widely targeted metabolomics revealed extensively decreased accumulation of most detected flavonoids and benzylisoquinoline alkaloids (BIAs), as well as a few phenolic acids, amino acids and their derivatives in callus with browning symptoms. Conversely, the contents of most detected tannins were significantly increased. Subsequent comparative transcriptomics identified a set of differentially expressed genes (DEGs) associated with the biosynthesis and regulation of flavonoids and BIAs in lotus. Notably, callus browning was coupled with significantly up-regulated expression of two polyphenol oxidase (PPO) and 17 peroxidase (POD) encoding genes, while the expression of ethylene associated genes remained at marginal levels. These results suggest that lotus callus browning is primarily controlled at the level of metabolism, wherein the oxidation of flavonoids and BIAs is crucially decisive.
Collapse
Affiliation(s)
- Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinghao Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Minghua Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Heyun Song
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Wang X, Li B, Sun S, Liu Q, Zhu J, Zhou X, Zhang H, Wu Q, Wang L. Analysis of proanthocyanidins and flavonols in the seedpods of Chinese Antique Lotus: A rich source of antioxidants. Food Chem 2023; 415:135756. [PMID: 36863237 DOI: 10.1016/j.foodchem.2023.135756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Antique Lotus (Nelumbo) is a perennial aquatic plant with unique historical significance and cultural value, whereas its potential economic value hasn't been fully explored. The present study showed that lotus seedpods had significantly higher antioxidant capacity than other parts by FRAP, ABTS, and ORAC assays and analyzed the proanthocyanidins and flavonols in the seedpods of Antique Lotus. Polyphenols contributed to great antioxidant activity and 51 polyphenols were identified by UPLC-TQ-MS analysis. In which, 27 compounds were identified from lotus seedpods for the first time, including 20 trimers, 5 dimers and 2 tetramers of proanthocyanidin. Total proanthocyanidins explained 70%-90% of the different antioxidant activities and the content of proanthocyanidin trimers showed the strongest correlations with the antioxidant activities. This study provided a fundamental reference for the research of polyphenols in lotus and found that Antique Lotus seedpod extracts have the promising prospects of additives used in feed and food processing.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jin Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijin Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Qian Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Jiang H, Chen J, Liu G, Zhou P, Jin Q, Wang Y, Guo H, Qian P, Xu Y. Screening of Early Flowering Lotus ( Nelumbo nucifera Gaertn.) Cultivars and Effects of Different Cultivars on Flowering Period. PLANTS (BASEL, SWITZERLAND) 2023; 12:1683. [PMID: 37111903 PMCID: PMC10140858 DOI: 10.3390/plants12081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Flowering time is an important trait that determines the breeding process of ornamental plants. The flowering period of lotus (Nelumbo nucifera Gaertn.) is mainly concentrated in June-August. During this period, the weather is hot and there are few tourists, which made many lotus scenic spots difficult to operate. People have a strong demand for early flowering lotus cultivars. In this paper, 30 lotus cultivars with high ornamental value were selected as materials and their phenological periods were observed for two consecutive years in 2019 and 2020. A number of cultivars with early flowering potential and stable flowering periods, such as 'Fenyanzi', 'Chengshanqiuyue', 'Xianghumingyue' and 'Wuzhilian', were screened by K-Means clustering method. The relationship between accumulated temperature and flowering time of 19 lotus cultivars at different growth stages was analyzed. It was found that lotus cultivars with early flowering traits could adapt well to the changes of early environmental temperature and were not affected by low temperature. On the other hand, by analyzing the relationship between different traits and flowering time of three typical cultivars, such as rhizome weight, phenological period, etc., it shows that the nutrient content of the rhizome and the early morphology of plants will affect the flowering time. These results provide a reference for the formation of a systematic lotus early flowering cultivar breeding mechanism and the establishment of a perfect flowering regulation technology system, which can further improve the ornamental value of lotus and promote industrial development.
Collapse
Affiliation(s)
- Huiyan Jiang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Chen
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyang Liu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhou
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Guo
- Zhejiang Weida Garden Engineering Company, Hangzhou 311201, China
| | - Ping Qian
- Hangzhou West Lake Scenic Area Management Committee, Hangzhou 310013, China
| | - Yingchun Xu
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Flower Biology and Germplasm Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Al Kury LT. Modulatory Effect of Medicinal Plants and Their Active Constituents on ATP-Sensitive Potassium Channels (KATP) in Diabetes. Pharmaceuticals (Basel) 2023; 16:ph16040523. [PMID: 37111281 PMCID: PMC10142548 DOI: 10.3390/ph16040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperglycemia, which is a chronic metabolic condition caused by either a defect in insulin secretion or insulin resistance, is a hallmark of diabetes mellitus (DM). Sustained hyperglycemia leads to the onset and development of many health complications. Despite the number of available antidiabetic medications on the market, there is still a need for novel treatment agents with increased efficacy and fewer adverse effects. Many medicinal plants offer a rich supply of bioactive compounds that have remarkable pharmacological effects with less toxicity and side effects. According to published evidence, natural antidiabetic substances influence pancreatic β-cell development and proliferation, inhibit pancreatic β-cell death, and directly increase insulin output. Pancreatic ATP-sensitive potassium channels play an essential role in coupling glucose metabolism to the secretion of insulin. Although much of the literature is available on the antidiabetic effects of medicinal plants, very limited studies discuss their direct action on pancreatic KATP. The aim of this review is to focus on the modulatory effects of antidiabetic medicinal plants and their active constituents on pancreatic KATP. The KATP channel should be regarded as a key therapeutic milestone in the treatment of diabetes. Therefore, continuous research into the interaction of medicinal plants with the KATP channel is crucial.
Collapse
Affiliation(s)
- Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
21
|
Chemoprevention of lotus leaf ethanolic extract through epigenetic activation of the NRF2-mediated pathway in murine skin JB6 P+ cell neoplastic transformation. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
22
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
23
|
Liu FL, Dai YL, Hoang TN, Puripunyavanich V, Chukiatman PW, Qin M, Fu YR, Chen YC, Tian DK. Genetic diversity and inferred ancestry of Asian lotus ( Nelumbo nucifera) germplasms in Thailand and Vietnam. PLANT DIVERSITY 2023; 45:69-79. [PMID: 36876309 PMCID: PMC9975477 DOI: 10.1016/j.pld.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 06/18/2023]
Abstract
Tropical lotus (Nelumbo) is an important and unique ecological type of lotus germplasm. Understanding the genetic relationship and diversity of the tropical lotus is necessary for its sustainable conservation and utilization. Using 42 EST-SSR (expressed sequence tag-simple sequence repeats) and 30 SRAP (sequence-related amplified polymorphism) markers, we assessed the genetic diversity and inferred the ancestry of representative tropical lotus from Thailand and Vietnam. In total, 164 and 41 polymorphic bands were detected in 69 accessions by 36 EST-SSR and seven SRAP makers, respectively. Higher genetic diversity was revealed in Thai lotus than in Vietnamese lotus. A Neighbor-Joining tree of five main clusters was constructed using combined EST-SSR and SRAP markers. Cluster I included 17 accessions of Thai lotus; cluster II contained three Thai accessions and 11 accessions from southern Vietnam; and cluster III was constituted by 13 accessions of seed lotus. Consistent with the results from the Neighbor-Joining tree, the genetic structure analysis showed that the genetic background of most Thai and Vietnamese lotus was pure, as artificial breeding has been rare in both countries. Furthermore, these analyses indicate that Thai and Vietnamese lotus germplasms belong to two different gene pools or populations. Most lotus accessions are genetically related to geographical distribution patterns in Thailand or Vietnam. Our findings showed that the origin or genetic relationships of some unidentified lotus sources can be evaluated by comparing morphological characteristics and the data of molecular markers. In addition, these findings provide reliable information for the targeted conservation of tropical lotus and parent selection in breeding novel cultivars of lotus.
Collapse
Affiliation(s)
- Feng-Luan Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, PR China
| | - Ya-Lan Dai
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, PR China
| | - Thi Nga Hoang
- Plant Resources Center, Vietnam Academy of Agricultural Sciences, Hanoi, 100803, Vietnam
| | | | | | - Mi Qin
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, PR China
| | - Yan-Rong Fu
- Chinese Society of Landscape Architecture, Beijing, 100835, PR China
| | - Yu-Chu Chen
- Zhejiang Humanity Landscape Co., Ltd., Hangzhou, Zhejiang, 310013, PR China
| | - Dai-Ke Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, PR China
| |
Collapse
|
24
|
Ahmad N, Lesa KN, Sudarmanto A, Fakhrudin N, Ikawati Z. The role of Phosphodiesterase-1 and its natural product inhibitors in Alzheimer's disease: A review. Front Pharmacol 2022; 13:1070677. [PMID: 36618909 PMCID: PMC9812569 DOI: 10.3389/fphar.2022.1070677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase-1 (PDE1) is a versatile enzyme that has surprisingly received considerable attention as a possible therapeutic target in Alzheimer's disease (AD) because it maintains the homeostasis of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in the brain. 3',5'-cyclic adenosine monophosphate and 3',5'-cyclic guanosine monophosphate are the two key second messengers that regulate a broad range of intracellular processes and neurocognitive functions, specifically memory and cognition, associated with Alzheimer's disease. However, the lack of available selective drugs on the market poses challenges to identifying the beneficial effects of natural products. The present review focuses on Phosphodiesterase-1 and its isoforms, splicing variants, location, distribution, and function; the role of Phosphodiesterase-1 inhibitors in Alzheimer's disease; and the use of vinpocetine and natural products as specific Phosphodiesterase-1 inhibitors. Moreover, it aims to provide ongoing updates, identify research gaps, and present future perspectives. This review indicates the potential role of Phosphodiesterase-1 inhibitors in the treatment of neurodegenerative disorders, such as Alzheimer's disease. Certain clinical trials on the alleviation of Alzheimer's disease in patients are still in progress. Among de novo outcomes, the employment of Phosphodiesterase-1 inhibitors to treat Alzheimer's disease is an important advancement given the absence of particular therapies in the pipeline for this highly prevalent disease. To sum up, Phosphodiesterase-1 inhibition has been specifically proposed as a critical therapeutic approach for Alzheimer's disease. This study provides a comprehensive review on the biological and pharmacological aspects of Phosphodiesterase-1, its role on the Alzheimer's diseases and its significance as Alzheimer's disease therapeutic target in drug discovery from natural products. This review will help clinical trials and scientific research exploring new entities for the treatment and prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Kaisun Nesa Lesa
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ari Sudarmanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia,Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia,*Correspondence: Nanang Fakhrudin,
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
25
|
Identification of the NAC Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. Int J Mol Sci 2022; 23:ijms232012394. [PMID: 36293250 PMCID: PMC9604248 DOI: 10.3390/ijms232012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Nelumbo nucifera Gaertn. is an important perennial aquatic herb that has high ornamental, edible, medicinal, and economic value, being widely distributed and used in China. The NAC superfamily (NAM, ATAF1/2, CUC2) plays critical roles in plant growth, development, and response to abiotic and biotic stresses. Though there have been a few reports about NAC genes in lotus, systematic analysis is still relatively lacking. The present study aimed to characterize all the NAC genes in the lotus and obtain better insights on the NnNACs in response to salt stress by depending on ABA signaling. Here, 97 NAC genes were identified by searching the whole lotus genome based on the raw HMM models of the conserved NAM domain and NAC domain. They were characterized by bioinformatics analysis and divided into 18 subgroups based on the phylogenetic tree. Cis-element analysis demonstrated that NAC genes are responsive to biotic and abiotic stresses, light, low temperature, and plant hormones. Meanwhile, NAC genes had tissue expression specificity. qRT-PCR analysis indicated that NAC genes could be upregulated or downregulated by NaCl treatment, ABA, and fluoridone. In addition, NAC016, NAC025, and NAC070, whose encoding genes were significantly induced by NaCl and ABA, were located in the nucleus. Further analysis showed the three NAC proteins had transcriptional activation capabilities. The co-expression network analysis reflected that NAC proteins may form complexes with other proteins to play a role together. Our study provides a theoretical basis for further research to be conducted on the regulatory mechanisms of salinity resistance in the lotus.
Collapse
|
26
|
Ren H, Xu Y, Lixie H, Kuang J, Wang Y, Jin Q. Integrated Transcriptome and Targeted Metabolite Analysis Reveal miRNA-mRNA Networks in Low-Light-Induced Lotus Flower Bud Abortion. Int J Mol Sci 2022; 23:9925. [PMID: 36077323 PMCID: PMC9456346 DOI: 10.3390/ijms23179925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Most Nelumbo nucifera (lotus) flower buds were aborted during the growing season, notably in low-light environments. How lotus produces so many aborted flower buds is largely unknown. An integrated transcriptome and targeted metabolite analysis was performed to reveal the genetic regulatory networks underlying lotus flower bud abortion. A total of 233 miRNAs and 25,351 genes were identified in lotus flower buds, including 68 novel miRNAs and 1108 novel genes. Further enrichment analysis indicated that sugar signaling plays a potential central role in regulating lotus flower bud abortion. Targeted metabolite analysis showed that trehalose levels declined the most in the aborting flower buds. A potential regulatory network centered on miR156 governs lotus flower bud abortion, involving multiple miRNA-mRNA pairs related to cell integrity, cell proliferation and expansion, and DNA repair. Genetic analysis showed that miRNA156-5p-overexpressing lotus showed aggravated flower bud abortion phenotypes. Trehalose-6-P synthase 1 (TPS1), which is required for trehalose synthase, had a negative regulatory effect on miR156 expression. TPS1-overexpression lotus showed significantly decreased flower bud abortion rates both in normal-light and low-light environments. Our study establishes a possible genetic basis for how lotus produces so many aborted flower buds, facilitating genetic improvement of lotus' shade tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Liu Y, Song H, Zhang M, Yang D, Deng X, Sun H, Liu J, Yang M. Identification of QTLs and a putative candidate gene involved in rhizome enlargement of Asian lotus (Nelumbo nucifera). PLANT MOLECULAR BIOLOGY 2022; 110:23-36. [PMID: 35648325 DOI: 10.1007/s11103-022-01281-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
QTL mapping studies identified three reliable QTLs of rhizome enlargement in lotus. NnBEL6 located within the confidence interval of the major QTL cqREI-LG2 is a key candidate gene enhancing rhizome enlargement. Lotus (Nelumbo) is perennial aquatic plant with nutritional, pharmacological, and ornamental significance. Rhizome is an underground lotus stem that acts as a storage organ and as a reproductive tissue for asexual production. The enlargement of lotus rhizome is an important adaptive strategy for surviving the cold winter. The aims of this study were to identify quantitative trait loci (QTLs) for rhizome enlargement traits including rhizome enlargement index (REI) and number of enlarged rhizome (NER), and to uncover their associated candidate genes. A high-density genetic linkage map was constructed, consisting of 2935 markers binned from 236,840 SNPs. A total of 14 significant QTLs were detected for REI and NER, which explained 6.7-22.3% of trait variance. Three QTL regions were repeatedly identified in at least 2 years, and a major QTL, designated cqREI-LG2, with a rhizome-enlargement effect and about 20% of the phenotypic contribution was identified across the 3 climatic years. A candidate NnBEL6 gene located within the confidence interval of cqREI-LG2 was considered to be putatively involved in lotus rhizome enlargement. The expression of NnBEL6 was exclusively induced by rhizome swelling. Sequence comparison of NnBEL6 among lotus cultivars revealed a functional Indel site in its promoter that likely initiates the rhizome enlargement process. Transgenic potato assay was used to confirm the role of NnBEL6 in inducing tuberization. The successful identification QTLs and functional validation of NnBEL6 gene reported in this study will enrich our knowledge on the genetic basis of rhizome enlargement in lotus.
Collapse
Affiliation(s)
- Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
28
|
Vajpayee M, Dave H, Singh M, Ledwani L. Cellulase Enzyme Based Wet‐Pretreatment of Lotus Fabric to Improve Antimicrobial Finishing with
A. indica
Extract and Enhance Natural Dyeing: Sustainable Approach for Textile Finishing. ChemistrySelect 2022. [DOI: 10.1002/slct.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mona Vajpayee
- Department of Chemistry Faculty of Science Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Hemen Dave
- National Forensic Sciences University Gandhinagar 382007 Gujarat India
| | - Mumal Singh
- Department of Chemistry Faculty of Science Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Lalita Ledwani
- Department of Chemistry Faculty of Science Manipal University Jaipur Jaipur 303007 Rajasthan India
| |
Collapse
|
29
|
Studies on Lotus Genomics and the Contribution to Its Breeding. Int J Mol Sci 2022; 23:ijms23137270. [PMID: 35806274 PMCID: PMC9266308 DOI: 10.3390/ijms23137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lotus (Nelumbo nucifera), under the Nelumbonaceae family, is one of the relict plants possessing important scientific research and economic values. Because of this, much attention has been paid to this species on both its biology and breeding among the scientific community. In the last decade, the genome of lotus has been sequenced, and several high-quality genome assemblies are available, which have significantly facilitated functional genomics studies in lotus. Meanwhile, re-sequencing of the natural and genetic populations along with different levels of omics studies have not only helped to classify the germplasm resources but also to identify the domestication of selected regions and genes controlling different horticultural traits. This review summarizes the latest progress of all these studies on lotus and discusses their potential application in lotus breeding.
Collapse
|
30
|
Zheng P, Sun H, Liu J, Lin J, Zhang X, Qin Y, Zhang W, Xu X, Deng X, Yang D, Wang M, Zhang Y, Song H, Huang Y, Orozco‐Obando W, Ming R, Yang M. Comparative analyses of American and Asian lotus genomes reveal insights into petal color, carpel thermogenesis and domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1498-1515. [PMID: 35362164 PMCID: PMC9325450 DOI: 10.1111/tpj.15753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Nelumbo lutea (American lotus), which differs from Nelumbo nucifera (Asian lotus) morphologically, is one of the two remaining species in the basal eudicot family Nelumbonaceae. Here, we assembled the 843-Mb genome of American lotus into eight pseudochromosomes containing 31 382 protein-coding genes. Comparative analyses revealed conserved synteny without large chromosomal rearrangements between the genomes of American and Asian lotus and identified 29 533 structural variants (SVs). Carotenoid and anthocyanin pigments determine the yellow and red petal colors of American and Asian lotus, respectively. The structural genes encoding enzymes of the carotenoid and anthocyanin biosynthesis pathways were conserved between two species but differed in expression. We detected SVs caused by repetitive sequence expansion or contraction among the anthocyanin biosynthesis regulatory MYB genes. Further transient overexpression of candidate NnMYB5 induced anthocyanin accumulation in lotus petals. Alternative oxidase (AOX), uncoupling proteins (UCPs), and sugar metabolism and transportation contributed to carpel thermogenesis. Carpels produce heat with sugars transported from leaves as the main substrates, because there was weak tonoplast sugar transporter (TST) activity, and with SWEETs were highly expressed during thermogenesis. Cell proliferation-related activities were particularly enhanced in the warmer carpels compared with stamens during the cold night before blooming, which suggested that thermogenesis plays an important role in flower protogyny. Population genomic analyses revealed deep divergence between American and Asian lotus, and independent domestication affecting seed, rhizome, and flower traits. Our findings provide a high-quality reference genome of American lotus for exploring the genetic divergence and variation between two species and revealed possible genomic bases for petal color, carpel thermogenesis and domestication in lotus.
Collapse
Affiliation(s)
- Ping Zheng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Xiuming Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Meng Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Yanting Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Yongji Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Warner Orozco‐Obando
- Virginia Cooperative of ExtensionVirginia Polytechnic Institute and State UniversityBlacksburgVA24061USA
| | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| |
Collapse
|
31
|
Zhang Y, Li H, Yang X, Chen J, Shi T. Expression rewiring and methylation of non-coding RNAs involved in rhizome phenotypic variations of lotus ecotypes. Comput Struct Biotechnol J 2022; 20:2848-2860. [PMID: 35765649 PMCID: PMC9193371 DOI: 10.1016/j.csbj.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, emerge as crucial components for gene regulation. Nelumbo nucifera (lotus), a horticulturally important plant, differentiates into a temperate ecotype of enlarged rhizomes and a tropical ecotype of thin rhizomes. Nevertheless, whether and how ncRNAs can be rewired in expression and differentially methylated contributing to adaptive divergence of this storage organ in lotus ecotypes is unclear. Herein, we study the expression behaviors and DNA methylation patterns of ncRNAs in temperate and tropical lotus rhizomes. By whole transcriptome sequencing, we found both mRNAs and lncRNAs have divergent expression patterns between ecotypes, whereas miRNAs and circRNAs tended to be accession-specific or noisier in expression. The differentially expressed ncRNAs are involved in phenotypic differentiation of lotus rhizome between ecotypes, as the genes that interacted with them in the competing endogenous RNA network are enriched in functions including carbohydrate metabolism and plant hormone signaling, being critical to rhizome enlargement. Intriguingly, ncRNA-targeted genes are less prone to show positive selection or differential expression during ecotypic divergence due to constraints from ncRNA-mRNA interactions. The methylation levels of ncRNAs generally tend to be higher in temperate lotus than in tropical lotus, and differential methylation of lncRNAs also tends to have expression changes. Overall, our study of ncRNAs and their targets highlights the role of ncRNAs in rhizome growth variation between lotus ecotypes through expression rewiring and methylation modification.
Collapse
|
32
|
The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn. Int J Mol Sci 2022; 23:ijms23094901. [PMID: 35563291 PMCID: PMC9102460 DOI: 10.3390/ijms23094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research.
Collapse
|
33
|
Comparative Analysis of the Antioxidant and Antidiabetic Potential of Nelumbo nucifera Gaertn. and Nymphaea lotus L. var. pubescens (Willd.). J CHEM-NY 2022. [DOI: 10.1155/2022/4258124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Nelumbo nucifera Gaertn. and Nymphaea lotus L. var. pubescens (Willd.) are both aquatic rhizomatous perennial plants mostly found in the tropical region of Nepal, India, Bangladesh, China, and Eastern Asia. Nymphaea pubescens and Nelumbo nucifera plants are famous for their different biological activities such as antidiabetic, antioxidant, hepatoprotective, antidiarrheal, and anti-inflammatory properties. Objective. The present study majorly focused on the determination of in vitro antioxidant and antidiabetic properties of Nelumbo nucifera and Nymphaea pubescens. Methods. In vitro α-glucosidase inhibition was performed using PNPG as a substrate. Antioxidant property of the plant extract was determined by DPPH free radical scavenging assay. The aluminium trichloride method was done for the estimation of total flavonoid content. Likewise, Folin–Ciocalteu reagent was used for determining total phenolic content. Results. The total phenolic content of N. nucifera and N. pubescens was found to be 172.827 ± 0.41 and 194.87 ± 0.93 mg GAE/g, respectively, while the total flavonoid content was reported 17.12 ± 1.04 and 34.59 ± 1.73 mg QE/g, respectively. The IC50 values of the crude extract and its fractions of N. nucifera against the DPPH free radical ranged from 33.46 ± 0.6 to 3.52 ± 0.09 μg/mL, while that of the N. pubescens ranged from 14.30 ± 0.43 to 1.43 ± 0.08 μg/mL. Similarly, for the in vitro α-glucosidase inhibition activity, the IC50 of the crude extract and its fractions of N. nucifera varied from 349.86 ± 2.91 to 29.06 ± 0.24 μg/mL and that of N. pubescens ranged from 224.4 ± 6.85 to 5.29 ± 0.39 μg/mL. Conclusion. Both aquatic plants N. nucifera and N. pubescens show antioxidant properties and can inhibit α-glucosidase in in vitro. Further research is required to identify the inhibiting compounds.
Collapse
|
34
|
Deng X, Yang D, Sun H, Liu J, Song H, Xiong Y, Wang Y, Ma J, Zhang M, Li J, Liu Y, Yang M. Time-course analysis and transcriptomic identification of key response strategies to complete submergence in Nelumbo nucifera. HORTICULTURE RESEARCH 2022; 9:uhac001. [PMID: 35147174 PMCID: PMC8973275 DOI: 10.1093/hr/uhac001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/12/2021] [Indexed: 05/12/2023]
Abstract
Water submergence is an environmental stress with detrimental effects on plant growth and survival. As a wetland plant species, lotus (Nelumbo nucifera) is widely cultivated in flood-prone lowlands throughout Asian countries, but little is known about its endurance and acclimation mechanisms to complete submergence. Here, we combined a time-course submergence experiment and an RNA-sequencing transcriptome analysis on two lotus varieties of "Qiuxing" and "China Antique". Both varieties showed a low submergence tolerance, with a median lethal time of around 10 days. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) identified a number of key genes putatively involved in lotus submergence responses. Lotus plants under complete submergence developed thinned leaves and elongated petioles containing high density of aerenchyma. All four lotus submergence responsive ERF-VII genes and gene sets corresponding to the low oxygen "escape" strategy (LOES) were elevated. In addition, a number of lotus innate immunity genes were rapidly induced by submergence, likely to confer resistance to possible pathogen infections. Our data also reveals the likely involvement of jasmonic acid in modulating lotus submergence responses, but to a lesser extent than the gaseous ethylene hormone. These results suggest that lotus plants primarily take the LOES strategy in coping with submergence-induced complex stresses, and will be valuable for people understanding the molecular basis underlying the plant submergence acclimations.
Collapse
Affiliation(s)
- Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaqian Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Junyu Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
35
|
Punia Bangar S, Dunno K, Kumar M, Mostafa H, Maqsood S. A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocopounds: A Tribute to Cancer Prevention and Intervention. Cancers (Basel) 2022; 14:cancers14030529. [PMID: 35158798 PMCID: PMC8833568 DOI: 10.3390/cancers14030529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The plant Nelumbo nucifera (Gaertn.), commonly known as lotus, sacred lotus, Indian lotus, water lily, or Chinese water lily, is an aquatic perennial crop belonging to the family of Nelumbonaceae. N. nucifera has traditionally been used as an herbal medicine and functional food in many parts of Asia. It has been found that different parts of this plant consist of various bioactive phytocompounds. Within the past few decades, N. nucifera and its phytochemicals have been subjected to intense cancer research. In this review, we critically evaluate the potential of N. nucifera phytoconstituents in cancer prevention and therapy with related mechanisms of action. Abstract Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus (Nelumbo nucifera Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of N. nucifera have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of N. nucifera represent the main edible parts. Different parts of N. nucifera have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of N. nucifera. In this review, we have analyzed the effects of N. nucifera extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of N. nucifera-derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
- Correspondence: or
| | - Palak A. Patel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Priya Sharma
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Shivani Thoutireddy
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India;
| |
Collapse
|
37
|
Li J, Li Y, Dang M, Li S, Chen S, Liu R, Zhang Z, Li G, Zhang M, Yang D, Yang M, Liu Y, Tian D, Deng X. Jasmonate-Responsive Transcription Factors NnWRKY70a and NnWRKY70b Positively Regulate Benzylisoquinoline Alkaloid Biosynthesis in Lotus ( Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2022; 13:862915. [PMID: 35783938 PMCID: PMC9240598 DOI: 10.3389/fpls.2022.862915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Lotus (Nelumbo nucifera) is a large aquatic plant that accumulates pharmacologically significant benzylisoquinoline alkaloids (BIAs). However, little is known about their biosynthesis and regulation. Here, we show that the two group III WRKY transcription factors (TFs), NnWRKY70a and NnWRKY70b, positively regulate the BIA biosynthesis in lotus. Both NnWRKY70s are jasmonic acid (JA) responsive, with their expression profiles highly correlated to the BIA concentration and BIA pathway gene expression. A dual-luciferase assay showed that NnWRKY70a could transactivate the NnTYDC promoter, whereas NnWRKY70b could activate promoters of the three BIA structural genes, including NnTYDC, NnCYP80G, and Nn7OMT. In addition, the transient overexpression of NnWRKY70a and NnWRKY70b in lotus petals significantly elevated the BIA alkaloid concentrations. Notably, NnWRKY70b seems to be a stronger BIA biosynthesis regulator, because it dramatically induced more BIA structural gene expressions and BIA accumulation than NnWRKY70a. A yeast two-hybrid assay further revealed that NnWRKY70b physically interacted with NnJAZ1 and two other group III WRKY TFs (NnWRKY53b and NnWRKY70a), suggesting that it may cooperate with the other group III WRKYs to adjust the lotus BIA biosynthesis via the JA-signaling pathway. To illustrate the mechanism underlying NnWRKY70b-mediated BIA regulation in the lotus, a simplified model is proposed. Our study provides useful insights into the regulatory roles of WRKY TFs in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yi Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Mingjing Dang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Shang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Simeng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruizhen Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Zeyu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guoqian Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Minghua Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dong Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yanling Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Daike Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xianbao Deng
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Xianbao Deng
| |
Collapse
|
38
|
Characterization of Genomic Variation from Lotus (Nelumbo Adans.) Mutants with Wide and Narrow Tepals. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compared with rose, chrysanthemum, and water lily, the absence of short-wide and long-narrow tepals of ornamental lotus (Nelumbo Adans.) limits the commercial value of flowers. In this study, the genomes of two groups of lotus mutants with wide-short and narrow-long tepals were resequenced to uncover the genomic variation and candidate genes associated with tepal shape. In group NL (short for N. lutea, containing two mutants and one control of N. lutea), 716,656 single nucleotide polymorphisms (SNPs) and 221,688 insertion-deletion mutations (Indels) were obtained, while 639,953 SNPs and 134,6118 Indels were obtained in group WSH (short for ‘Weishan Hong’, containing one mutant and two controls of N. nucifera ‘Weishan Hong’). Only a small proportion of these SNPs and Indels was mapped to exonic regions of genome: 1.92% and 0.47%, respectively, in the NL group, and 1.66% and 0.48%, respectively, in the WSH group. Gene Ontology (GO) analysis showed that out of 4890 (NL group) and 1272 (WSH group) annotated variant genes, 125 and 62 genes were enriched (Q < 0.05), respectively. Additionally, in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, 104 genes (NL group) and 35 genes (WSH group) were selected (p < 0.05). Finally, there were 306 candidate genes that were sieved to determine the development of tepal shape in lotus plants. It will be an essential reference for future identification of tepal-shaped control genes in lotus plants. This is the first comprehensive report of genomic variation controlling tepal shape in lotus, and the mutants in this study are promising materials for breeding novel lotus cultivars with special tepals.
Collapse
|
39
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
40
|
Lin Z, Cao D, Damaris RN, Yang P. Comparative transcriptomic analysis provides insight into carpel petaloidy in lotus ( Nelumbo nucifera). PeerJ 2021; 9:e12322. [PMID: 34754621 PMCID: PMC8552788 DOI: 10.7717/peerj.12322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/25/2021] [Indexed: 11/20/2022] Open
Abstract
Lotus (Nelumbo nucifera) is a highly recognized flower with high ornamental value. Flower color and flower morphology are two main factors for flower lotus breeding. Petaloidy is a universal phenomenon in lotus flowers. However, the genetic regulation of floral organ petaloidy in lotus remains elusive. In this study, the transcriptomic analysis was performed among three organs, including petal, carpel petaloidy, and carpel in lotus. A total of 1,568 DEGs related to carpel petaloidy were identified. Our study identified one floral homeotic gene encoded by the MADS-box transcription factor, AGAMOUS (AG) as the candidate gene for petaloid in lotus. Meanwhile, a predicted labile boundary in floral organs of N. nucifera was hypothesized. In summary, our results explored the candidate genes related to carpel petaloidy, setting a theoretical basis for the molecular regulation of petaloid phenotype.
Collapse
Affiliation(s)
- Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
41
|
Lü Z, Gong L, Ren Y, Chen Y, Wang Z, Liu L, Li H, Chen X, Li Z, Luo H, Jiang H, Zeng Y, Wang Y, Wang K, Zhang C, Jiang H, Wan W, Qin Y, Zhang J, Zhu L, Shi W, He S, Mao B, Wang W, Kong X, Li Y. Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nat Genet 2021; 53:742-751. [PMID: 33875864 PMCID: PMC8110480 DOI: 10.1038/s41588-021-00836-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei. Evolution of Psettodoidei involved similar but not identical genes. Our work provides valuable resources and insights for understanding the genetic origins of the unusual body plan of flatfishes.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongjiu Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenzhu Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yifan Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haifeng Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yanli Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianshe Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
42
|
Khalivulla SI, Mohammed A, Mallikarjuna K. Novel Phytochemical Constituents and their Potential to Manage Diabetes. Curr Pharm Des 2021; 27:775-788. [PMID: 33355047 DOI: 10.2174/1381612826666201222154159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant-based natural products have been in use from ancient times as ethnomedicine for the treatment of several diseases, including diabetes. As a result of that, there are several reports on plant-based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. These kinds of reports are essential to pool the available information to one source, followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to a few potential compounds from hundreds, which can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. METHODS Phytochemicals, along with their potential antidiabetic property, were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species are also included. RESULTS The scrutiny of literature led to the identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert anti-diabetic properties by improving or mimicking insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be potential active compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are obtained from triterpenoids, 13 from flavonoids and 7 from alkaloids. Among all the 44 plant species, the maximum number (7) of compounds were isolated from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. CONCLUSION This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish therapeutic drug candidates.
Collapse
Affiliation(s)
- Shaik I Khalivulla
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Arifullah Mohammed
- Institute of Food Security and Sustainable Agriculture (IFSSA), Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Kelantan, Malaysia
| | - Kokkanti Mallikarjuna
- Department of Botany and Microbiology, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, Andhra Pradesh, India
| |
Collapse
|
43
|
Cheng Y, Li HL, Zhou ZW, Long HZ, Luo HY, Wen DD, Cheng L, Gao LC. Isoliensinine: A Natural Compound with "Drug-Like" Potential. Front Pharmacol 2021; 12:630385. [PMID: 33967765 PMCID: PMC8100667 DOI: 10.3389/fphar.2021.630385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Isoliensinine, a bisbenzylisoquinoline alkaloid isolated from Nelumbo nucifera Gaertn, exerts a variety of beneficial effects, such as antitumor, cardioprotective, antioxidant, antidepressant, and anti-HIV effects, and ameliorates T2DM with hyperlipidemia and Alzheimer’s disease. In this article, the recent literature on isoliensinine, including its pharmacology, pharmacokinetics, and synthesis and extraction, is summarized. Moreover, possible future prospects and research directions are also discussed. Studies on isoliensinine were found by searching a combination of keywords including “pharmacology,” “pharmacokinetics,” and “synthesis and extraction” in the main databases, including PubMed, Google Scholar, Web of Science, NCBI, and Wan Fang. Many studies have pointed out that a major limitation of isoliensinine is its poor solubility in aqueous media. Considering its advantages and limitations, isoliensinine can be used as a lead compound to develop novel efficient and low-toxicity derivatives. The available literature indicates that isoliensinine displays “drug-like” potential. Additionally, there are many related issues and novel mechanisms that need to be explored.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Li Li
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Li-Chen Gao
- Department of Pharmacy, Phase I Clinical, Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
44
|
Cao D, Lin Z, Huang L, Damaris RN, Yang P. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics 2021; 22:171. [PMID: 33750315 PMCID: PMC7945336 DOI: 10.1186/s12864-021-07473-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background The AP2/ERF family is widely present in plants and plays a crucial regulatory role in plant growth and development. As an essential aquatic horticultural model plant, lotus has an increasingly prominent economic and research value. Results We have identified and analysed the AP2/ERF gene family in the lotus. Initially, 121 AP2/ERF family genes were identified. By analysing their gene distribution and protein structure, and their expression patterns during the development of lotus rhizome, combined with previous studies, we obtained an SNP (megascaffold_20:3578539) associated with lotus rhizome phenotype. This SNP was in the NnADAP gene of the AP2 subfamily, and the changes in SNP (C/T) caused amino acid conversion (proline/leucine). We constructed a population of 95 lotus varieties for SNP verification. Through population typing experiments, we found that the group with SNP CC had significantly larger lotus rhizome and higher soluble sugar content among the population. Conclusions In conclusion, we speculate that the alteration of the SNP in the NnADAP can affect the size and sugar content of the lotus rhizome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07473-w.
Collapse
Affiliation(s)
- Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Longyu Huang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
45
|
Cao D, Lin Z, Huang L, Damaris RN, Li M, Yang P. A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization. PLANTA 2021; 253:65. [PMID: 33564987 DOI: 10.1007/s00425-021-03581-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/30/2021] [Indexed: 05/27/2023]
Abstract
CONSTANS-LIKE 5 of Nelumbo nucifera is capable of promoting potato tuberization through CONSTANS-FLOWERING LOCUS T and gibberellin signaling pathways with a probable association with lotus rhizome enlargement. Lotus (Nelumbo nucifera) is an aquatic plant that is affiliated to the Nelumbonaceace family. It is widely used as an ornamental, vegetable, and medicinal herb with its rhizome being a popular vegetable. To explore the molecular mechanism underlying its rhizome enlargement, we conducted a systematic analysis on the CONSTANS-LIKE (COL) gene family, with the results, indicating that this gene plays a role in regulating potato tuber expansion. These analyses included phylogenetic relationships, gene structure, and expressional patterns of lotus COL family genes. Based on these analyses, NnCOL5 was selected for further study on its potential function in lotus rhizome formation. NnCOL5 was shown to be located in the nucleus, and its expression was positively associated with the enlargement of lotus rhizome. Besides, the overexpression of NnCOL5 in potato led to increased tuber weight and starch content under short-day conditions without changing the number of tubers. Further analysis suggested that the observed tuber changes might be mediated by affecting the expression of genes in CO-FT and GA signaling pathways. These results provide valuable insight in understanding the functions of COL gene as well as the enlargement of lotus rhizome.
Collapse
Affiliation(s)
- Dingding Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Longyu Huang
- Institute of Cotton Research of Chinese Academy of Agriculture Science, Anyang, 455000, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
46
|
Zhang L, Zhang F, Liu F, Shen J, Wang J, Jiang M, Zhang D, Yang P, Chen Y, Song S. The lotus NnFTIP1 and NnFT1 regulate flowering time in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110677. [PMID: 33288002 DOI: 10.1016/j.plantsci.2020.110677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
In higher plants, floral signals are mainly collected and transduced to FLOWERING LOCUS T (FT) in Arabidopsis and its orthologues. The movement of FT from leaves to the shoot apical meristem (SAM) is partially mediated by FT-INTERACTING PROTEIN1 (FTIP1). Although the functions of OsFTIP1 in rice and DOFTIP1 in orchid in FT transport have also been investigated, the FTIP1 homologue in lotus (Nelumbo nucifera Gaertn.), a type of horticultural plant with high economic and cultural value, has not been isolated, and the mechanism of NnFT1 transport has not been explored. Here, we revealed that NnFTIP1 mediates the transport of NnFT1 in ectopic transgenic lines in Arabidopsis. Overexpression of NnFTIP1 in the ftip1-1 background rescued the late flowering phenotype of ftip1-1, indicating that NnFTIP1 has a conserved function as FTIP1. NnFTIP1 and NnFT1 share similar tissue expression patterns and subcellular localization. NnFTIP1 and NnFT1 interact both in vitro and in vivo. In addition, NnFTIP1 affects NnFT1 transport from leaves to the SAM. Furthermore, we found that NnUOF8, a MYB-like transcription factor, directly regulates the expression of NnFTIP1. Our results suggest that the functions of FTIP1 and FT are conserved during evolution in flowering plants.
Collapse
Affiliation(s)
- Liang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Fan Zhang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Fangbing Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jun Shen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxuan Wang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Meng Jiang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Dasheng Zhang
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shiyong Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Liu Z, Zhu H, Zhou J, Jiang S, Wang Y, Kuang J, Ji Q, Peng J, Wang J, Gao L, Bai M, Jian J, Ke W. Resequencing of 296 cultivated and wild lotus accessions unravels its evolution and breeding history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1673-1684. [PMID: 33073434 DOI: 10.1111/tpj.15029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Lotus (family: Nelumbonaceae) are perennial aquatic plants that represent one of the most ancient basal dicots. In the present study, we resequenced 296 lotus accessions from various geographical locations and germplasms to explore their genomic diversity and population structure. This germplasm set consisted of four accessions of American wild lotus and 292 accessions of Asian lotus, which were divided into four subgroups: wild, rhizome, flower and seed. Total single nucleotide polymorphisms (SNPs) suggested that the wild lotus had the highest variant number (7 191 010). Population structure and genome diversity analysis indicated that the American wild lotus demonstrated a distant genetic relationship with the Asian lotus. Furthermore, the seed and rhizome lotus groups had not originated from a single source but rather had a more complex multisource origin. Besides that, the seed lotus showed higher genetic diversity, which might have been due to the gene flow from the flower lotus to seed lotus by artificial crossing, and the rhizome lotus showed a much lower genetic diversity than the other groups. The present study provides SNP markers for lotus genomic diversity analysis, which will be useful for guiding lotus breeding.
Collapse
Affiliation(s)
- Zhengwei Liu
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Honglian Zhu
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Juhong Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Sanjie Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Yun Wang
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Jing Kuang
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Qun Ji
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Jing Peng
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Jie Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- BGI-Agro Seed Service (Wuhan) Co Ltd, Wuhan, 430090, People's Republic of China
| | - Li Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Mingzhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Weidong Ke
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| |
Collapse
|
48
|
Showkat QA, Rather JA, Abida Jabeen, Dar BN, Makroo HA, Majid D. Bioactive components, physicochemical and starch characteristics of different parts of lotus (
Nelumbo nucifera
Gaertn.) plant: a review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qazi A. Showkat
- Department of Food Technology IUST Awantipora Kashmir192122India
| | | | - Abida Jabeen
- Division of Food Science and Technology SKUAST Srinagar Kashmir190025India
| | - B. N. Dar
- Department of Food Technology IUST Awantipora Kashmir192122India
| | - H. A. Makroo
- Department of Food Technology IUST Awantipora Kashmir192122India
| | - Darakshan Majid
- Department of Food Technology IUST Awantipora Kashmir192122India
| |
Collapse
|
49
|
The Establishment of an Efficient Callus Induction System for Lotus ( Nelumbo nucifera). PLANTS 2020; 9:plants9111436. [PMID: 33113801 PMCID: PMC7693671 DOI: 10.3390/plants9111436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
The lotus (Nelumbo nucifera) is one of the most popular aquatic plants in Asia, and has emerged as a novel model for studying flower and rhizome development, and primary and secondary metabolite accumulation. Here, we developed a highly efficient callus induction system for the lotus by optimizing a series of key factors that affect callus formation. The highest efficient callus production was induced on immature cotyledon and embryo explants grown on Murashige and Skoog (MS) basal medium containing an optimized combination of 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L 6-benzylaminopurine (6-BA). In addition, lotus callus induction was proven to be influenced by lotus genotypes, light conditions, the developmental stages of explants and the time of explant sampling. Collecting immature cotyledons from seeds of the genotype “Shilihe 1”, at 9 days post pollination, and to culture the explants in darkness, are proposed as the optimum conditions for lotus callus induction. Interestingly, highly efficient callus induction was also observed in explants of immature embryo derived aseptic seedlings; and a small amount of lotus benzylisoquinoline alkaloid (BIA) and obvious expression of BIA biosynthetic genes were detected in lotus callus.
Collapse
|
50
|
Zhang Q, Zhang X, Liu J, Mao C, Chen S, Zhang Y, Leng L. Identification of copy number variation and population analysis of the sacred lotus ( Nelumbo nucifera). Biosci Biotechnol Biochem 2020; 84:2037-2044. [PMID: 32594903 DOI: 10.1080/09168451.2020.1786351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The sacred lotus (Nelumbo nucifera) is widely cultured in East Asia for its horticultural, agricultural, and medicinal values. Although many molecular markers had been used to extrapolate population genetics of the sacred lotus, a study of large variations, such as copy number variation (CNV), are absent up to now. In this study, we applied whole-genome re-sequencing to 24 lotus accessions, and use read depth information to genotype and filter original CNV call. Totally 448 duplications and 4,267 deletions were identified in the final CNV set. Further analysis of population structure revealed that the population structure patterns revealed by CNV and SNP are largely consistent with each other. Our result indicated that deep sequencing followed by genotyping is a quick and straightforward way to mine out CNV from the population, and the CNV along with SNP could enable us to better comprehend the biology of the plant.
Collapse
Affiliation(s)
- Qing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Xueting Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Chaoyi Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Yujun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Liang Leng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| |
Collapse
|