1
|
Liu Y, Bian C, Ma KY, Yang Y, Wang Y, Liu C, Ouyang G, Xu M, Sun J, Shao C, Chen J, Shi Q, Mu X. Reference genome provide insights into sex determination of silver aworana (Osteoglossum bicirrhosum). BMC Biol 2025; 23:29. [PMID: 39875888 PMCID: PMC11776183 DOI: 10.1186/s12915-025-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Silver arowana (Osteoglossum bicirrhosum) is a basal fish species with sexual monomorphism, while its sex determination mechanism has been poorly understood, posing a significant challenge to its captive breeding efforts. RESULTS We constructed two high-quality chromosome-level genome assemblies for both female and male silver arowana, with scaffold N50 values over 10 Mb. Combining re-sequencing data of 109 individuals, we identified a female-specific region, which was localized in a non-coding region, i.e., around 26-kb upstream of foxl2 gene (encoding forkhead box L2). Its strong interaction with the neighboring foxl2 on the same chromosome suggests foxl2 as a candidate sex-related gene in silver arowana. We subsequently propose a complex gene network in the sex determination process of silver arowana, with foxl2 acting as the central contributor. Transcriptome sequencing of gonads support our hypothesis that the regulation of foxl2 can be influenced by the spatial proximity of the female-specific fragment, thereby promoting ovarian function or inhibiting testicular function to stimulate gonadal differentiation. Furthermore, we found the sex chromosomes to be homomorphic with a potentially recent origin, as a linkage disequilibrium analysis proved minor recombination suppression. CONCLUSIONS These results taken together serve as a crucial foundation for conducting extensive investigations on the evolution and differentiation of sex-determining mechanisms, as well as the emergence and development of sex chromosomes in various fishes.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ka Yan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chao Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guochang Ouyang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Shanghai Ocean University, Shanghai, China
| | - Meng Xu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinhui Sun
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Changwei Shao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiehu Chen
- Science Corporation of Gene (SCGene), Guangzhou, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Toma GA, Dos Santos N, Dos Santos R, Rab P, Kretschmer R, Ezaz T, Bertollo LAC, Liehr T, Porto-Foresti F, Hatanaka T, Tanomtong A, Utsunomia R, Cioffi MB. Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus. Int J Mol Sci 2023; 24:ijms24109005. [PMID: 37240350 DOI: 10.3390/ijms24109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.
Collapse
Affiliation(s)
- Gustavo A Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | | | | | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Tariq Ezaz
- Institute for Aplied Ecology, University of Canberra, Canberra 2617, Australia
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | | | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | | | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
4
|
Tura V, Kretschmer R, Sassi FDMC, de Moraes RLR, Barcellos SA, de Rosso VO, de Souza MS, Cioffi MDB, Gunski RJ, Garnero ADV. Chromosomal Evolution of Suboscines: Karyotype Diversity and Evolutionary Trends in Ovenbirds (Passeriformes, Furnariidae). Cytogenet Genome Res 2023; 162:644-656. [PMID: 36996794 DOI: 10.1159/000530428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Furnariidae (ovenbirds) is one of the most diversified families in the Passeriformes order and Suboscines suborder. Despite the great diversity of species, cytogenetic research is still in its early stages, restricting our knowledge of their karyotype evolution. We combined traditional and molecular cytogenetic analyses in three representative species, Synallaxis frontalis, Syndactyla rufosuperciliata, and Cranioleuca obsoleta, to examine the chromosomal structure and evolution of ovenbirds. Our findings revealed that all the species studied had the same diploid number (2n = 82). Differences in chromosomal morphology of some macrochromosomes indicate the presence of intrachromosomal rearrangements. Although the three species only had the 18S rDNA on one microchromosome pair, chromosomal mapping of six simple short repeats revealed a varied pattern of chromosome distribution among them, suggesting that each species underwent different repetitive DNA accumulation upon their divergence. The interspecific comparative genomic hybridization experiment revealed that the Furnariidae species investigated carry centromeric regions enriched in similar repetitive sequences, bolstering the Furnariidae family's karyotype conservation. Nonetheless, the outgroup species Turdus rufiventris (Turdidae) demonstrated an advanced stage of sequence divergence with hybridization signals that were almost entirely limited to a few microchromosomes. Overall, the findings imply that Furnariidae species have a high degree of chromosomal conservation, and we could also observe a differentiation of repetitive sequences in both Passeriformes suborders (Suboscines and Oscines).
Collapse
Affiliation(s)
- Victoria Tura
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Suziane Alves Barcellos
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Vitor Oliveira de Rosso
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | - Ricardo J Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | |
Collapse
|
5
|
Knytl M, Forsythe A, Kalous L. A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius. Int J Mol Sci 2022; 23:8095. [PMID: 35897665 PMCID: PMC9330404 DOI: 10.3390/ijms23158095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
Collapse
Affiliation(s)
- Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Adrian Forsythe
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden;
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16521 Prague, Czech Republic;
| |
Collapse
|
6
|
Machado MDA, da Silva M, Feldberg E, O'Brien PCM, Ferguson-Smith MA, Pieczarka JC, Nagamachi CY. Chromosome Painting in Gymnotus carapo "Catalão" (Gymnotiformes, Teleostei): Dynamics of Chromosomal Rearrangements in Cryptic Species. Front Genet 2022; 13:832495. [PMID: 35401658 PMCID: PMC8992654 DOI: 10.3389/fgene.2022.832495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The genus Gymnotus is a large monophyletic group of freshwater weakly-electric fishes, with wide distribution in Central and South America. It has 46 valid species divided into six subgenera (Gymnotus, Tijax, Tigre, Lamontianus, Tigrinus and Pantherus) with large chromosome plasticity and diploid numbers (2n) ranging from 34 to 54. Within this rich diversity, there is controversy about whether Gymnotus (Gymnotus) carapo species is a single widespread species or a complex of cryptic species. Cytogenetic studies show different diploid numbers for G. carapo species, ranging from 40 to 54 chromosomes with varied karyotypes found even between populations sharing the same 2n. Whole chromosome painting has been used in studies on fish species and recently has been used for tracking the chromosomal evolution of Gymnotus and assisting in its cytotaxonomy. Comparative genomic mapping using chromosome painting has shown more complex rearrangements in Gymnotus carapo than shown in previous studies by classical cytogenetics. These studies demonstrate that multiple chromosome pairs are involved in its chromosomal reorganization, suggesting the presence of a complex of cryptic species due to a post zygotic barrier. In the present study, metaphase chromosomes of G. carapo occidentalis "catalão" (GCC, 2n = 40, 30m/sm+10st/a) from the Catalão Lake, Amazonas, Brazil, were hybridized with whole chromosome probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30m/sm+12st/a). The results reveal chromosome rearrangements and a high number of repetitive DNA sites. Of the 12 pairs of G. carapo chromosomes that could be individually identified (GCA 1-3, 6, 7, 9, 14, 16 and 18-21), 8 pairs (GCA 1, 2, 6, 7, 9, 14, 20, 21) had homeology conserved in GCC. Of the GCA pairs that are grouped (GCA [4, 8], [5, 17], [10, 11] and [12, 13, 15]), most kept the number of signals in GCC (GCA [5, 17], [10, 11] and [12, 13, 15]). The remaining chromosomes are rearranged in the GCC karyotype. Analysis of both populations of the G. carapo cytotypes shows extensive karyotype reorganization. Along with previous studies, this suggests that the different cytotypes analyzed here may represent different species and supports the hypothesis that G. carapo is not a single widespread species, but a group of cryptic species.
Collapse
Affiliation(s)
- Milla de Andrade Machado
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Belém, Brazil
| | - Maelin da Silva
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patricia Caroline Mary O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Belém, Brazil
| |
Collapse
|
7
|
Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei, Characiformes). BIOLOGY 2022; 11:biology11020315. [PMID: 35205181 PMCID: PMC8869172 DOI: 10.3390/biology11020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Fish present astonishing diversity, comprising more species than the combined total of all other vertebrates. Here, we integrated cytogenetic and genomic data to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation in the fish species Erythrinus erythrinus. We hypothesized that the presence of multiple sex chromosomes has contributed to the genetic differentiation of populations, which could have potentially accelerated speciation. Abstract Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone.
Collapse
|
8
|
de Moraes RLR, Sassi FDMC, Bertollo LAC, Marinho MMF, Viana PF, Feldberg E, Oliveira VCS, Deon GA, Al-Rikabi ABH, Liehr T, Cioffi MDB. Tracking the Evolutionary Trends Among Small-Size Fishes of the Genus Pyrrhulina (Characiforme, Lebiasinidae): New Insights From a Molecular Cytogenetic Perspective. Front Genet 2021; 12:769984. [PMID: 34691160 PMCID: PMC8526856 DOI: 10.3389/fgene.2021.769984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Miniature fishes have always been a challenge for cytogenetic studies due to the difficulty in obtaining chromosomal preparations, making them virtually unexplored. An example of this scenario relies on members of the family Lebiasinidae which include miniature to medium-sized, poorly known species, until very recently. The present study is part of undergoing major cytogenetic advances seeking to elucidate the evolutionary history of lebiasinids. Aiming to examine the karyotype diversification more deeply in Pyrrhulina, here we combined classical and molecular cytogenetic analyses, including Giemsa staining, C-banding, repetitive DNA mapping, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) to perform the first analyses in five Pyrrhulina species (Pyrrhulina aff. marilynae, Pyrrhulina sp., P. obermulleri, P. marilynae and Pyrrhulina cf. laeta). The diploid number (2n) ranged from 40 to 42 chromosomes among all analyzed species, but P. marilynae is strikingly differentiated by having 2n = 32 chromosomes and a karyotype composed of large meta/submetacentric chromosomes, whose plesiomorphic status is discussed. The distribution of microsatellites does not markedly differ among species, but the number and position of the rDNA sites underwent significant changes among them. Interspecific comparative genome hybridization (CGH) found a moderate divergence in the repetitive DNA content among the species’ genomes. Noteworthy, the WCP reinforced our previous hypothesis on the origin of the X1X2Y multiple sex chromosome system in P. semifasciata. In summary, our data suggest that the karyotype differentiation in Pyrrhulina has been driven by major structural rearrangements, accompanied by high dynamics of repetitive DNAs.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Laboratorio de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | | | - Luiz Antonio Carlos Bertollo
- Laboratorio de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Manoela Maria Ferreira Marinho
- Museu de Zoologia da Universidade de São Paulo (MZUSP), São Paulo, Brazil.,Laboratório de Sistemática e Morfologia de Peixes, Departamento de Sistemática e Ecologia (DSE), Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Gentética Animal, Instituto Nacional de Pesquisa da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Eliana Feldberg
- Laboratório de Gentética Animal, Instituto Nacional de Pesquisa da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Vanessa Cristina Sales Oliveira
- Laboratorio de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Geize Aparecida Deon
- Laboratorio de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil.,Laboratório de Biologia Cromossômica, Estrutura e Função, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | | | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Marcelo de Bello Cioffi
- Laboratorio de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
9
|
A fossil-calibrated time-tree of all Australian freshwater fishes. Mol Phylogenet Evol 2021; 161:107180. [PMID: 33887481 DOI: 10.1016/j.ympev.2021.107180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
Australian freshwater fishes are a relatively species-poor assemblage, mostly comprising groups derived from older repeated freshwater invasions by marine ancestors, plus a small number of Gondwanan lineages. These taxa are both highly endemic and highly threatened, but a comprehensive phylogeny for Australian freshwater fishes is lacking. This has hampered efforts to study their phylogenetic diversity, distribution of extinction risk, speciation rates, and rates of trait evolution. Here, we present a comprehensive dated phylogeny of 412 Australian fishes. We include all formally recognized freshwater species plus a number of genetically distinct subpopulations, species awaiting formal description, and predominantly brackish-water species that sometimes enter fresh water. The phylogeny was inferred using maximum-likelihood analysis of a multilocus data set comprising six mitochondrial and three nuclear genes from 326 taxa. We inferred the evolutionary timescale using penalized likelihood, then used a statistical approach to add 86 taxa for which no molecular data were available. The time-tree inferred in our study will provide a useful resource for macroecological studies of Australian freshwater fishes by enabling corrections for phylogenetic non-independence in evolutionary and ecological comparative analyses.
Collapse
|
10
|
Ferreira AMV, Viana PF, Zuanon J, Ezaz T, Cioffi MB, Takagui FH, Feldberg E. Cytogenetic Analysis of Panaqolus tankei Cramer & Sousa, 2016 (Siluriformes, Loricariidae), an Ornamental Fish Endemic to Xingu River, Brazil. Cytogenet Genome Res 2021; 161:187-194. [PMID: 33744896 DOI: 10.1159/000514061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
Despite conservation of the diploid number, a huge diversity in karyotype formulae is found in the Ancistrini tribe (Loricariidae, Hypostominae). However, the lack of cytogenetic data for many groups impairs a comprehensive understanding of the chromosomal relationships and the impact of chromosomal changes on their evolutionary history. Here, we present for the first time the karyotype of Panaqolus tankei Cramer & Sousa, 2016. We focused on the chromosomal characterization, using conventional and molecular cytogenetic techniques to unravel the evolutionary trends of this tribe. P. tankei, as most species of its sister group Pterygoplichthini, also possessess a conserved diploid number of 52 chromosomes. We observed heterochromatin regions in the centromeres of many chromosomes; pairs 5 and 6 presented interstitial heterochromatin regions, whereas pairs 23 and 24 showed extensive heterochromatin regions in their q arms. In situ localization of 18S rDNA showed hybridization signals correlating with the nucleolus organizer regions, which are located in the q arms of pair 5. However, the 5S rDNA was detected in the centromeric and terminal regions of the q arms of pair 8. (TTAGGG)n hybridized only in the terminal regions of all chromosomes. Microsatellite in situ localization showed divergent patterns, (GA)15 repeated sequences were restricted to the terminal regions of some chromosomes, whereas (AC)15 and (GT)15 showed a scattered hybridization pattern throughout the genome. Intraspecific comparative genomic hybridization was performed on the chromosomes of P. tankei to verify the existence of sex-specific regions. The results revealed only a limited number of overlapping hybridization signals, coinciding with the heterochromatin in centromeric regions without any sex-specific signals in both males and females. Our study provides a karyotype description of P. tankei, highlighting extensive differences in the karyotype formula, the heterochromatin regions, and sites of 5S and 18S rDNA, as compared with data available for the genus.
Collapse
Affiliation(s)
- Alex M V Ferreira
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil,
| | - Patrik F Viana
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Jansen Zuanon
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fábio H Takagui
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
| |
Collapse
|
11
|
Matoulek D, Borůvková V, Ocalewicz K, Symonová R. GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics. Genes (Basel) 2020; 12:50. [PMID: 33396302 PMCID: PMC7823971 DOI: 10.3390/genes12010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.
Collapse
Affiliation(s)
- Dominik Matoulek
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic; (D.M.); (V.B.)
| | - Veronika Borůvková
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic; (D.M.); (V.B.)
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, 80-309 Gdansk, Poland;
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 80333 Freising, Germany
| |
Collapse
|
12
|
Hao S, Han K, Meng L, Huang X, Cao W, Shi C, Zhang M, Wang Y, Liu Q, Zhang Y, Sun H, Seim I, Xu X, Liu X, Fan G. African Arowana Genome Provides Insights on Ancient Teleost Evolution. iScience 2020; 23:101662. [PMID: 33134892 PMCID: PMC7586111 DOI: 10.1016/j.isci.2020.101662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/27/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoglossiformes is a basal clade of teleost, evolving since the Jurassic period. The genomes of Osteoglossiformes species would shed light on the evolution and adaptation of teleost. Here, we established a chromosome-level genome of African arowana. Together with the genomes of pirarucu and Asian arowana, we found that they diverged at ∼106.1 million years ago (MYA) and ∼59.2 MYA, respectively, which are coincident with continental separation. Interestingly, we identified a dynamic genome evolution characterized by a fast evolutionary rate and a high pseudogenization rate in African arowana and pirarucu. Additionally, more transposable elements were found in Asian arowana which confer more gene duplications. Moreover, we found the contraction of olfactory receptor and the expansion of UGT in African arowana might be related to its transformation from carnivore to be omnivore. Taken together, we provided valuable genomic resource of Osteoglossidae and revealed the correlation of biogeography and teleost evolution. An evolutionary model of Osteoglossidae along the continental drift is provided A faster evolving rate of African arowana than Asian arowana is revealed The gene duplications of Asian arowana are related to more class I TE insertions A mechanism of African arowana’s feeding habits transition is proposed.
Collapse
Affiliation(s)
- Shijie Hao
- BGI Education Center, University of Chinese Academic of Sciences, Shenzhen 518083, China.,BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | - Kai Han
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | - Lingfeng Meng
- BGI Education Center, University of Chinese Academic of Sciences, Shenzhen 518083, China.,BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | | | - Wei Cao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengcheng Shi
- BGI Education Center, University of Chinese Academic of Sciences, Shenzhen 518083, China.,BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | - Mengqi Zhang
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yilin Wang
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qun Liu
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yaolei Zhang
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Haixi Sun
- BGI-Shenzhen, Shenzhen 518083, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.,School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4102, QLD, Australia
| | - Xun Xu
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Liu
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Guangyi Fan
- BGI-Qingqao, BGI-Shenzhen, Qingdao, 266555, China.,BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
13
|
Viana PF, Ezaz T, Cioffi MDB, Liehr T, Al-Rikabi A, Tavares-Pinheiro R, Bertollo LAC, Feldberg E. Revisiting the Karyotype Evolution of Neotropical Boid Snakes: A Puzzle Mediated by Chromosomal Fissions. Cells 2020; 9:cells9102268. [PMID: 33050432 PMCID: PMC7601083 DOI: 10.3390/cells9102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
The Boidae family is an ancient group of snakes widely distributed across the Neotropical region, where several biogeographic events contributed towards shaping their evolution and diversification. Most species of this family have a diploid number composed of 2n = 36; however, among Booidea families, the Boidae stands out by presenting the greatest chromosomal diversity, with 2n ranging between 36 and 44 chromosomes and an undifferentiated XY sex chromosome system. Here, we applied a comparative chromosome analysis using cross-species chromosome paintings in five species representing four Boidae genera, to decipher the evolutionary dynamics of some chromosomes in these Neotropical snakes. Our study included all diploid numbers (2n = 36, 40, and 44) known for this family and our comparative chromosomal mappings point to a strong evolutionary relationship among the genera Boa, Corallus, Eunectes, and Epicrates. The results also allowed us to propose the cytogenomic diversification that had occurred in this family: a process mediated by centric fissions, including fission events of the putative and undifferentiated XY sex chromosome system in the 2n = 44 karyotype, which is critical in solving the puzzle of the karyotype evolution of boid snakes.
Collapse
Affiliation(s)
- Patrik F. Viana
- Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, AM, Brazil; (P.F.V.); (E.F.)
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra 12 2616, ACT, Australia;
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-090, SP, Brazil; (M.d.B.C.); (L.A.C.B.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9396850
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Rodrigo Tavares-Pinheiro
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Herpetologia, Universidade Federal do Amapá, Macapá 68903-419, AP, Brazil;
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-090, SP, Brazil; (M.d.B.C.); (L.A.C.B.)
| | - Eliana Feldberg
- Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, AM, Brazil; (P.F.V.); (E.F.)
| |
Collapse
|
14
|
The Amazonian Red Side-Necked Turtle Rhinemys rufipes (Spix, 1824) (Testudines, Chelidae) Has a GSD Sex-Determining Mechanism with an Ancient XY Sex Microchromosome System. Cells 2020; 9:cells9092088. [PMID: 32932633 PMCID: PMC7563702 DOI: 10.3390/cells9092088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
The Amazonian red side-necked turtle Rhynemis rufipes is an endemic Amazonian Chelidae species that occurs in small streams throughout Colombia and Brazil river basins. Little is known about various biological aspects of this species, including its sex determination strategies. Among chelids, the greatest karyotype diversity is found in the Neotropical species, with several 2n configurations, including cases of triploidy. Here, we investigate the karyotype of Rhinemys rufipes by applying combined conventional and molecular cytogenetic procedures. This allowed us to discover a genetic sex-determining mechanism that shares an ancestral micro XY sex chromosome system. This ancient micro XY system recruited distinct repeat motifs before it diverged from several South America and Australasian species. We propose that such a system dates back to the earliest lineages of the chelid species before the split of South America and Australasian lineages.
Collapse
|
15
|
Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae). Genes (Basel) 2020; 11:genes11060698. [PMID: 32630412 PMCID: PMC7348930 DOI: 10.3390/genes11060698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes. All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae. In most previous studies of these sex chromosomes, the focus has been on Australian species from the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages. However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive rearrangements and reveals a complex history of sequences leading to their association with important biological processes such as the evolution of sex chromosomes and sex determination.
Collapse
|
16
|
Simanovsky S, Medvedev D, Tefera F, Golubtsov A. First cytogenetic information for five Nilotic elephantfishes and a problem of ancestral karyotype of the family Mormyridae (Osteoglossiformes). COMPARATIVE CYTOGENETICS 2020; 14:387-397. [PMID: 32904050 PMCID: PMC7449985 DOI: 10.3897/compcytogen.14i3.52727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 05/17/2023]
Abstract
The elephantfish family Mormyridae is the most diverse lineage of the primitive teleostean clade Osteoglossomorpha distributed in inland waters of all continents except Antarctica and Europe. The family Mormyridae is endemic to Africa and includes 22 genera and almost 230 species. The evolutionary radiation of mormyrids most probably should be attributed to their capability of both generating and receiving weak electric signals. Up-to-date cytogenetic studies have revealed substantial karyotype differentiation among the nine investigated elephantfish species and genera (a single species studied per each genus). In the present study, karyotypes of five species representing five mormyrid genera (four unexplored ones) collected from the White Nile system in southwestern Ethiopia are described for the first time. The results show substantial variety of the diploid chromosome and fundamental numbers: 2n = 48 and FN = 54 in Brevimyrus niger (Günther, 1866), 2n = 50 and FN = 72 in Cyphomyrus petherici (Boulenger, 1898), 2n = 50 and FN = 78 in Hippopotamyrus pictus (Marcusen, 1864), 2n = 50 and FN = 76 in Marcusenius cyprinoides (Linnaeus, 1758), 2n = 52 and FN = 52 in Mormyrops anguilloides (Linnaeus, 1758). Karyotype structure in the latter species seems to be close to the ancestral condition for the family. This hypothesis is discussed in the light of available data on karyotype diversity and phylogeny of mormyrids.
Collapse
Affiliation(s)
- Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| | - Dmitry Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, Sebeta, P.O. Box 64, EthiopiaEthiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., Moscow, 119071, RussiaRussian Academy of SciencesMoscowRussia
| |
Collapse
|