1
|
Kinsella JA, Debant M, Parsonage G, Morley LC, Bajarwan M, Revill C, Foster R, Beech DJ. Pharmacology of PIEZO1 channels. Br J Pharmacol 2024; 181:4714-4732. [PMID: 39402010 DOI: 10.1111/bph.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.
Collapse
Affiliation(s)
- Jacob A Kinsella
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lara C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Muath Bajarwan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Wasi M, Chu T, Guerra RM, Kooker R, Maldonado K, Li X, Lin CY, Song X, Xiong J, You L, Wang L. Mitigating aging and doxorubicin induced bone loss in mature mice via mechanobiology based treatments. Bone 2024; 188:117235. [PMID: 39147353 PMCID: PMC11475016 DOI: 10.1016/j.bone.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Aging leads to a reduced anabolic response to mechanical stimuli and a loss of bone mass and structural integrity. Chemotherapy agents such as doxorubicin exacerbate the degeneration of aging skeleton and further subject older cancer patients to a higher fracture risk. To alleviate this clinical problem, we proposed and tested a novel mechanobiology-based therapy. Building upon prior findings that i) Yoda1, the Piezo1 agonist, promoted bone growth in young adult mice and suppressed bone resorption markers in aged mice, and ii) moderate tibial loading protected bone from breast cancer-induced osteolysis, we hypothesized that combined Yoda1 and moderate loading would improve the structural integrity of adult and aged skeletons in vivo and protect bones from deterioration after chemotherapy. We first examined the effects of 4-week Yoda1 (dose 5 mg/kg, 5 times/week) and moderate tibial loading (4.5 N peak load, 4 Hz, 300 cycles for 5 days/week), individually and combined, on mature mice (∼50 weeks of age). Combined Yoda1 and loading was found to mitigate age-associated cortical and trabecular bone loss better than individual interventions. As expected, the non-treated controls experienced an average drop of cortical polar moment of inertia (Ct.pMOI) by -4.3 % over four weeks and the bone deterioration occurred in the majority (64 %) of the samples. Relative to no treatment, loading alone, Yoda1 alone, and combined Yoda1 and loading increased Ct.pMOI by +7.3 %, +9.5 %, +12.0 % and increased the % of samples with positive Ct.pMOI changes by +32 %, +26 %, and +43 %, respectively, suggesting an additive protection of aging-related bone loss for the combined therapy. We further tested if the treatment efficacy was preserved in mature mice following two weeks (six injections) of doxorubicin at the dose of 2.5 or 5 mg/kg. As expected, doxorubicin increased osteocyte apoptosis, altered bone remodeling, and impaired bone structure. However, the effects induced by DOX were too severe to be rescued by Yoda1 and loading, alone or combined, although loading and Yoda1 individually, or combined, increased the number of mice showing positive responsiveness by 0 %, +15 %, and +29 % relative to no intervention after doxorubicin exposure. Overall, this study supported the potentials and challenges of the Yoda1-based strategy in mitigating the detrimental skeletal effects caused by aging and doxorubicin.
Collapse
Affiliation(s)
- Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Tiankuo Chu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Rosa M Guerra
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Rory Kooker
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Kenneth Maldonado
- Department of Biomedical Engineering, Kansas State University, Manhattan, KS, USA
| | - Xuehua Li
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chun-Yu Lin
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lidan You
- Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 DOI: 10.1113/jp284077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M F Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Kara L Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
- Lead contact
| |
Collapse
|
4
|
Demagny J, Poirault‐Chassac S, Ilsaint DN, Marchelli A, Gomila C, Ouled‐Haddou H, Collet L, Le Guyader M, Gaussem P, Garçon L, Bachelot‐Loza C. Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation. J Cell Mol Med 2024; 28:e70055. [PMID: 39304946 PMCID: PMC11415291 DOI: 10.1111/jcmm.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain-of-function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step-by-step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5-fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA-PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.
Collapse
Affiliation(s)
- Julien Demagny
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
- Biological Hematology DepartmentCHU Amiens‐PicardieAmiensFrance
| | | | | | - Aurore Marchelli
- Université de Paris Cité, Innovative Therapies in Hemostasis, INSERMParisFrance
| | - Cathy Gomila
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
| | | | - Louison Collet
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
| | | | - Pascale Gaussem
- Université de Paris Cité, Innovative Therapies in Hemostasis, INSERMParisFrance
- Service d'hématologie biologiqueHôpital Européen Georges Pompidou, Assistance Publique‐Hôpitaux de ParisParisFrance
| | - Loïc Garçon
- HEMATIM UE4666, University Picardie Jules VerneAmiensFrance
- Biological Hematology DepartmentCHU Amiens‐PicardieAmiensFrance
| | | |
Collapse
|
5
|
Hao Y, Yang N, Sun M, Yang S, Chen X. The role of calcium channels in osteoporosis and their therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1450328. [PMID: 39170742 PMCID: PMC11335502 DOI: 10.3389/fendo.2024.1450328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoporosis, a systemic skeletal disorder marked by diminished bone mass and compromised bone microarchitecture, is becoming increasingly prevalent due to an aging population. The underlying pathophysiology of osteoporosis is attributed to an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Osteoclasts play a crucial role in the development of osteoporosis through various molecular pathways, including the RANK/RANKL/OPG signaling axis, cytokines, and integrins. Notably, the calcium signaling pathway is pivotal in regulating osteoclast activation and function, influencing bone resorption activity. Disruption in calcium signaling can lead to increased osteoclast-mediated bone resorption, contributing to the progression of osteoporosis. Emerging research indicates that calcium-permeable channels on the cellular membrane play a critical role in bone metabolism by modulating these intracellular calcium pathways. Here, we provide an overview of current literature on the regulation of plasma membrane calcium channels in relation to bone metabolism with particular emphasis on their dysregulation during the progression of osteoporosis. Targeting these calcium channels may represent a potential therapeutic strategy for treating osteoporosis.
Collapse
Affiliation(s)
- Ying Hao
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Ningning Yang
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Mengying Sun
- College of Sports, Northwest Normal University, Lanzhou, China
| | - Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
6
|
Zhang Y, Yan J, Zhang Y, Liu H, Han B, Li W. Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out. Int J Oral Sci 2024; 16:52. [PMID: 39085217 PMCID: PMC11291511 DOI: 10.1038/s41368-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jiale Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
7
|
Liu Y, Chen P, Hu B, Xiao Y, Su T, Luo X, Tu M, Cai G. Excessive mechanical loading promotes osteoarthritis development by upregulating Rcn2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167251. [PMID: 38795835 DOI: 10.1016/j.bbadis.2024.167251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Exposure of articular cartilage to excessive mechanical loading is closely related to the pathogenesis of osteoarthritis (OA). However, the exact molecular mechanism by which excessive mechanical loading drives OA remains unclear. In vitro, primary chondrocytes were exposed to cyclic tensile strain at 0.5 Hz and 10 % elongation for 30 min to simulate excessive mechanical loading in OA. In vivo experiments involved mice undergoing anterior cruciate ligament transection (ACLT) to model OA, followed by interventions on Rcn2 expression through adeno-associated virus (AAV) injection and tamoxifen-induced gene deletion. 10 μL AAV2/5 containing AAV-Rcn2 or AAV-shRcn2 was administered to the mice by articular injection at 1 week post ACLT surgery, and Col2a1-creERT: Rcn2flox/flox mice were injected with tamoxifen intraperitoneally to obtain Rcn2-conditional knockout mice. Finally, we explored the mechanism of Rcn2 affecting OA. Here, we identified reticulocalbin-2 (Rcn2) as a mechanosensitive factor in chondrocytes, which was significantly elevated in chondrocytes under mechanical overloading. PIEZO type mechanosensitive ion channel component 1 (Piezo1) is a critical mechanosensitive ion channel, which mediates the effect of mechanical loading on chondrocytes, and we found that increased Rcn2 could be suppressed through knocking down Piezo1 under excessive mechanical loading. Furthermore, chondrocyte-specific deletion of Rcn2 in adult mice alleviated OA progression in the mice receiving the surgery of ACLT. On the contrary, articular injection of Rcn2-expressing adeno-associated virus (AAV) accelerated the progression of ACLT-induced OA in mice. Mechanistically, Rcn2 accelerated the progression of OA through promoting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (Stat3).
Collapse
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Manli Tu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, China; Jiangxi Branch of National Clinical Research Center for metabolic Disease, China.
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
8
|
Kang T, Yang Z, Zhou M, Lan Y, Hong Y, Gong X, Wu Y, Li M, Chen X, Zhang W. The role of the Piezo1 channel in osteoblasts under cyclic stretching: A study on osteogenic and osteoclast factors. Arch Oral Biol 2024; 163:105963. [PMID: 38608563 DOI: 10.1016/j.archoralbio.2024.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.
Collapse
Affiliation(s)
- Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ziyuan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yaya Hong
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyi Gong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Min Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Weifang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Lei L, Wen Z, Cao M, Zhang H, Ling SKK, Fu BSC, Qin L, Xu J, Yung PSH. The emerging role of Piezo1 in the musculoskeletal system and disease. Theranostics 2024; 14:3963-3983. [PMID: 38994033 PMCID: PMC11234281 DOI: 10.7150/thno.96959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024] Open
Abstract
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Lei Lei
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingde Cao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruma Sai-Chuen Fu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
13
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
14
|
Chen Y, Chen Y, Xie Z, Yang Y, Chen S, Han T, Li M, Guo Z, Sun N, Wang C. A Biomimetic Nanogenerator to Enhance Bone Regeneration by Restoring Electric Microenvironments. ACS Biomater Sci Eng 2024; 10:525-536. [PMID: 38099722 DOI: 10.1021/acsbiomaterials.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Piezoelectric materials have received increasing attention in bone regeneration due to their prominent role in bioelectricity in bone homeostasis. This study aimed to develop bioactive barium titanate-chitosan-graphene oxide piezoelectric nanoparticles (BCG-NPs) to improve biocompatibility and stimulate bone repair. Butterfly loops, hysteresis loops, and in vitro microcurrent studies on BCG-NPs confirmed their good piezoelectric properties. BCG-NPs exhibited enhanced alkaline phosphatase activity, mineralized nodule formation, and expression of osteogenic-associated proteins and genes in human umbilical cord Wharton's jelly-derived mesenchymal stem cells by creating microelectric environments in response to noninvasive ultrasound stimulation. Further, BCG-NPs upregulated intracellular calcium ions via electrical stimulation. They acted synergistically with piezo-type mechanosensitive ion channel component 1 and calcium-permeable cation channel transient receptor potential vanilloid 4 to activate osteogenic differentiation. In conclusion, ultrasound-assisted BCG-NPs created a microelectric environment that putatively promoted bone repair in a noninvasive manner.
Collapse
Affiliation(s)
- Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Zhe Xie
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Yuchen Yang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Siyuan Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Miaomiao Li
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Zhengnong Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Nuo Sun
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1 Shanghai Road, Nanjing 210029, China
| |
Collapse
|
15
|
Liu H, Li T, Ma B, Wang Y, Sun J. Hyaluronan and Proteoglycan Link Protein 1 Activates the BMP4/Smad1/5/8 Signaling Pathway to Promote Osteogenic Differentiation: an Implication in Fracture Healing. Mol Biotechnol 2023; 65:1653-1663. [PMID: 36737556 DOI: 10.1007/s12033-023-00677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Osteoblast regeneration, characterized by osteoblast differentiation, is the basis of fracture healing and accelerates fracture repair. It has been reported that hyaluronan and proteoglycan link protein 1 (HAPLN1) is overexpressed during osteoblast differentiation and regulates cartilage regeneration, but its function in fracture healing remains unclear. To elucidate this issue, we collected clinical blood samples of fracture healing, established a femoral fracture rat model, and induced an osteoblast differentiation cell model. We found that HAPLN1 was overexpressed in the serum of patients with fracture healing and the bone tissues of rats with fracture healing. Furthermore, the expression of HAPLN1 was increased time dependently during the osteogenic differentiation of MC3T3-E1 cells. HAPLN1 silencing prevented osteoblast differentiation and mineralization in MC3T3-E1 cells as evidenced by decreased osteoblast differentiation-related factors, suppressed alkaline phosphatase activities, and reduced alizarin red positive staining. Mechanically, the bone morphogenic protein 4 (BMP4)/Smad1/5/8 pathway, a facilitator of osteoblastic differentiation, was found to be inhibited by HAPLN1 knockdown, and inhibition of BMP4/Smad1/5/8 signaling enhanced the effects caused by HAPLN1 silencing. These findings demonstrated that HAPLN1 might promote fracture healing by facilitating osteogenic differentiation through the BMP4/Smad1/5/8 pathway, indicating that targeting HAPLN1 may be a feasible therapeutic candidate for fracture repair.
Collapse
Affiliation(s)
- Hu Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ben Ma
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Sun
- Department of Pediatric Orthopedics, Anhui Province Children's Hospital Affiliated to Anhui Medical University, No. 39, Wangjiang East Road, Hefei, Anhui, China.
| |
Collapse
|
16
|
Mirzoev TM. The emerging role of Piezo1 channels in skeletal muscle physiology. Biophys Rev 2023; 15:1171-1184. [PMID: 37975010 PMCID: PMC10643716 DOI: 10.1007/s12551-023-01154-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Piezo1 channels are mechanically activated (MA) cation channels that are involved in sensing of various mechanical perturbations, such as membrane stretch and shear stress, and play a crucial role in cell mechanotransduction. In response to mechanical stimuli, these channels open up and allow cations to travel into the cell and induce biochemical reactions that can change the cell's metabolism and function. Skeletal muscle cells/fibers inherently depend upon mechanical cues in the form of fluid shear stress and contractions (physical exercise). For example, an exposure of skeletal muscles to chronic mechanical loading leads to increased anabolism and fiber hypertrophy, while prolonged mechanical unloading results in muscle atrophy. MA Piezo1 channels have recently emerged as key mechanosensors that are capable of linking mechanical signals and intramuscular signaling in skeletal muscle cells/fibers. This review will summarize the emerging role of Piezo1 channels in the development and regeneration of skeletal muscle tissue as well as in the regulation of skeletal muscle atrophy. In addition, an overview of potential Piezo1-related signaling pathways underlying anabolic and catabolic processes will be provided. A better understanding of Piezo1's role in skeletal muscle mechanotransduction may represent an important basis for the development of therapeutic strategies for maintaining muscle functions under disuse conditions and in some disease states.
Collapse
Affiliation(s)
- Timur M. Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| |
Collapse
|
17
|
Cai G, Lu Y, Zhong W, Wang T, Li Y, Ruan X, Chen H, Sun L, Guan Z, Li G, Zhang H, Sun W, Chen M, Zhang W, Wang H. Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. Cell Prolif 2023; 56:e13440. [PMID: 36880296 PMCID: PMC10472522 DOI: 10.1111/cpr.13440] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Macrophages are multifunctional immune system cells that are essential for the mechanical stimulation-induced control of metabolism. Piezo1 is a non-selective calcium channel expressed in multifarious tissues to convey mechanical signals. Here, a cellular model of tension was used to study the effect of mechanical stretch on the phenotypic transformation of macrophages and its mechanism. An indirect co-culture system was used to explore the effect of macrophage activation on bone marrow mesenchymal stem cells (BMSCs), and a treadmill running model was used to validate the mechanism in vivo for in vitro studies. p53 was acetylated and deacetylated by macrophages as a result of mechanical strain being detected by Piezo1. This process is able to polarize macrophages towards M2 and secretes transforming growth factor-beta (TGF-β1), which subsequently stimulates BMSCs migration, proliferation and osteogenic differentiation. Knockdown of Piezo1 inhibits the conversion of macrophages to the reparative phenotype, thereby affecting bone remodelling. Blockade of TGF-β I, II receptors and Piezo1 significantly reduced exercise-increased bone mass in mice. In conclusion, we showed that mechanical tension causes calcium influx, p53 deacetylation, macrophage polarization towards M2 and TGF-β1 release through Piezo1. These events support BMSC osteogenesis.
Collapse
Affiliation(s)
- Guanhui Cai
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Yahui Lu
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Weijie Zhong
- Department of StomatologyDushu Lake Hospital Affiliated to Soochow UniversitySoochowChina
- Department of StomatologyMedical Center of Soochow UniversitySoochowChina
| | - Ting Wang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Yingyi Li
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaolei Ruan
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongyu Chen
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Lian Sun
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhaolan Guan
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Gen Li
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Hengwei Zhang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Wen Sun
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Minglong Chen
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei‐Bing Zhang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Department of StomatologyDushu Lake Hospital Affiliated to Soochow UniversitySoochowChina
- Department of StomatologyMedical Center of Soochow UniversitySoochowChina
| | - Hua Wang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of OrthodonticsJiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| |
Collapse
|
18
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1's cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
19
|
Ehlers VL, Sadler KE, Stucky CL. Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain 2023; 164:1874-1886. [PMID: 36897169 PMCID: PMC10363186 DOI: 10.1097/j.pain.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2023]
Abstract
ABSTRACT Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | |
Collapse
|
20
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
21
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
22
|
Chen Y, Braun BJ, Menger MM, Ronniger M, Falldorf K, Histing T, Nussler AK, Ehnert S. Intermittent Exposure to a 16 Hz Extremely Low Frequency Pulsed Electromagnetic Field Promotes Osteogenesis In Vitro through Activating Piezo 1-Induced Ca 2+ Influx in Osteoprogenitor Cells. J Funct Biomater 2023; 14:jfb14030165. [PMID: 36976089 PMCID: PMC10055851 DOI: 10.3390/jfb14030165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Exposure to extremely low frequency pulsed electromagnetic fields (ELF-PEMF) is supposed to simulate local EMF generated during mechanical stimulation of bone and may therefore be used to improve bone regeneration. This study aimed at optimizing the exposure strategy and investigating the underlying mechanisms of a 16 Hz ELF-PEMF, previously reported to boost osteoblast function. Comparing influences of daily continuous (30 min every 24 h) and intermittent (10 min every 8 h) exposure to the 16 Hz ELF-PEMF on osteoprogenitor cells revealed that the intermittent exposure strategy enhanced the 16 Hz ELF-PEMF effects regarding cell numbers and osteogenic function. Gene expression of piezo 1 and related Ca2+ influx were significantly increased in SCP-1 cells with the daily intermittent exposure. Pharmacological inhibition of piezo 1 with Dooku 1 largely abolished the positive effect of the 16 Hz ELF-PEMF exposure on osteogenic maturation of SCP-1 cells. In summary, the intermittent exposure strategy enhanced the positive effects of 16 Hz continuous ELF-PEMF exposure in terms of cell viability and osteogenesis. This effect was shown to be mediated by an increased expression of piezo 1 and related Ca2+ influx. Thus, the intermittent exposure strategy is a promising way to further optimize the therapeutic effects of the 16 Hz ELF-PEMF regarding fracture healing or osteoporosis.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Benedikt J Braun
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Maximilian M Menger
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Michael Ronniger
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany
| | - Karsten Falldorf
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany
| | - Tina Histing
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Andreas K Nussler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| |
Collapse
|
23
|
The Impact of Plasma Membrane Ion Channels on Bone Remodeling in Response to Mechanical Stress, Oxidative Imbalance, and Acidosis. Antioxidants (Basel) 2023; 12:antiox12030689. [PMID: 36978936 PMCID: PMC10045377 DOI: 10.3390/antiox12030689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical–physical features of the matrix, while others may come from the ‘outer’ environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.
Collapse
|
24
|
Xiao X, Zou S, Chen J. Cyclic tensile force modifies calvarial osteoblast function via the interplay between ERK1/2 and STAT3. BMC Mol Cell Biol 2023; 24:9. [PMID: 36890454 PMCID: PMC9996996 DOI: 10.1186/s12860-023-00471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Mechanical therapies, such as distraction osteogenesis, are widely used in dental clinics. During this process, the mechanisms by which tensile force triggers bone formation remain of interest. Herein, we investigated the influence of cyclic tensile stress on osteoblasts and identified the involvement of ERK1/2 and STAT3. MATERIALS AND METHODS Rat clavarial osteoblasts were subjected to tensile loading (10% elongation, 0.5 Hz) for different time periods. RNA and protein levels of osteogenic markers were determined using qPCR and western blot after inhibition of ERK1/2 and STAT3. ALP activity and ARS staining revealed osteoblast mineralization capacity. The interaction between ERK1/2 and STAT3 was investigated by immunofluorescence, western blot, and Co-IP. RESULTS The results showed that tensile loading significantly promoted osteogenesis-related genes, proteins and mineralized nodules. In loading-induced osteoblasts, inhibition of ERK1/2 or STAT3 decreased osteogenesis-related biomarkers significantly. Moreover, ERK1/2 inhibition suppressed STAT3 phosphorylation, and STAT3 inhibition disrupted the nuclear translocation of pERK1/2 induced by tensile loading. In the non-loading environment, inhibition of ERK1/2 hindered osteoblast differentiation and mineralization, while STAT3 phosphorylation was elevated after ERK1/2 inhibition. STAT3 inhibition also increased ERK1/2 phosphorylation, but did not significantly affect osteogenesis-related factors. CONCLUSION Taken together, these data suggested that ERK1/2 and STAT3 interacted in osteoblasts. ERK1/2-STAT3 were sequentially activated by tensile force loading, and both affected osteogenesis during the process.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Nagai S, Kitamura K, Kimura M, Yamamoto H, Katakura A, Shibukawa Y. Functional Expression of Mechanosensitive Piezo1/TRPV4 Channels in Mouse Osteoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2023; 64:1-11. [PMID: 36792153 DOI: 10.2209/tdcpublication.2022-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Mechanical stress is an important regulatory factor in bone homeostasis. Mechanical stimulation of osteoblasts has been shown to elicit an increase in the concentration of intracellular free Ca2+ ([Ca2+]i). The pattern of functional expression of mechanosensitive ion channels remains unclear, however. Therefore, the purpose of this study was to investigate the pharmacological characteristics of [Ca2+]i in response to direct mechanical stimulation in osteoblasts. The morphological expression of mechanosensitive ion channels was also examined. Mouse osteoblast-like cells (MC3T3-E1 cells) were loaded with fura-2-acetoxymethyl ester, after which [Ca2+]i was measured. Increased levels of [Ca2+]i were observed in MC3T3-E1 cells in response to direct mechanical stimulation by means of a glass micropipette, but no desensitization. Application of a hypotonic solution also induced an increase in [Ca2+]i but was accompanied by a desensitizing effect. Extracellular Gd3+, GsMTx4, or RN-1734 reversibly inhibited this mechanical stimulation-induced increase in [Ca2+]i, whereas no inhibitory effect was observed with HC030031 or clemizole. When osteoblasts were stimulated with Yoda1, an increase was observed in [Ca2+]i together with a significant desensitizing effect. Immunoreactivity against Piezo1 and TRPV4 channel antibodies was detected in MC3T3-E1 cells. These results suggest that osteoblasts express Piezo1 and TRPV4 channels, which are involved in mechanosensitive processes during mechanical stress.
Collapse
Affiliation(s)
- Sayoko Nagai
- Department of Physiology, Tokyo Dental College.,Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | | |
Collapse
|
26
|
Gsmtx4 Alleviated Osteoarthritis through Piezo1/Calcineurin/NFAT1 Signaling Axis under Excessive Mechanical Strain. Int J Mol Sci 2023; 24:ijms24044022. [PMID: 36835440 PMCID: PMC9961447 DOI: 10.3390/ijms24044022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Excessive mechanical strain is the prominent risk factor for osteoarthritis (OA), causing cartilage destruction and degeneration. However, the underlying molecular mechanism contributing to mechanical signaling transduction remains unclear in OA. Piezo type mechanosensitive ion channel component 1 (Piezo1) is a calcium-permeable mechanosensitive ion channel and provides mechanosensitivity to cells, but its role in OA development has not been determined. Herein, we found up-regulated expression of Piezo1 in OA cartilage, and that its activation contributes to chondrocyte apoptosis. The knockdown of Piezo1 could protect chondrocytes from apoptosis and maintain the catabolic and anabolic balance under mechanical strain. In vivo, Gsmtx4, a Piezo1 inhibitor, markedly ameliorated the progression of OA, inhibited the chondrocyte apoptosis, and accelerated the production of the cartilage matrix. Mechanistically, we observed the elevated activity of calcineurin (CaN) and the nuclear transfection of nuclear factor of activated T cells 1 (NFAT1) under mechanical strain in chondrocytes. Inhibitors of CaN or NFAT1 rescued the pathologic changes induced by mechanical strain in chondrocytes. Overall, our findings revealed that Piezo1 was the essential molecule response to mechanical signals and regulated apoptosis and cartilage matrix metabolism via the CaN/NFAT1 signaling axis in chondrocytes, and that Gsmtx4 could be an attractive therapeutic drug for OA treatment.
Collapse
|
27
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
28
|
Wang J, Sun YX, Li J. The role of mechanosensor Piezo1 in bone homeostasis and mechanobiology. Dev Biol 2023; 493:80-88. [PMID: 36368521 DOI: 10.1016/j.ydbio.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Bones and articular cartilage are important load-bearing tissues. The fluid flow inside the bone cells and cell interaction with the extracellular matrix serve as the mechanical cues for bones and joints. Piezo1 is an ion channel found on the cell surface of many cell types, including osteocytes and chondrocytes. It is activated in response to mechanical stimulation, which subsequently mediates a variety of signaling pathways in osteoblasts, osteocytes, and chondrocytes. Piezo1 activation in osteoblastic cells positively regulates osteogenesis, while its activation in joints mediates cartilage degradation. This review focuses on the most recent research on Piezo1 in bone development and regeneration.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Shenyang City, Liaoning Province, 110000, China.
| | - Yong-Xin Sun
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, NO.155 Nanjing North Street, Shenyang City, Liaoning Province, 110000, China.
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Yang X, Zeng H, Wang L, Luo S, Zhou Y. Activation of Piezo1 downregulates renin in juxtaglomerular cells and contributes to blood pressure homeostasis. Cell Biosci 2022; 12:197. [PMID: 36471394 PMCID: PMC9720979 DOI: 10.1186/s13578-022-00931-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The synthesis and secretion of renin in juxtaglomerular (JG) cells are closely regulated by the blood pressure. To date, however, the molecular identity through which JG cells respond to the blood pressure remains unclear. RESULTS Here we discovered that Piezo1, a mechanosensitive ion channel, was colocalized with renin in mouse kidney as well as As4.1 cells, a commonly used JG cell line. Activation of Piezo1 by its agonist Yoda1 induced an intracellular calcium increase and downregulated the expression of renin in these cells, while knockout of Piezo1 in JG cells abolished the effect of Yoda1. Meanwhile, mechanical stress using microfluidics also induced an intracellular calcium increase in wildtype but not Piezo1 knockout JG cells. Mechanistically, we demonstrated that activation of Piezo1 upregulated the Ptgs2 expression via the calcineurin-NFAT pathway and increased the production of Ptgs2 downstream molecule PGE2 in JG cells. Surprisingly, we discovered that increased PGE2 could decreased the renin expression through the PGE2 receptor EP1 and EP3, which inhibited the cAMP production in JG cells. In mice, we found that activation of Piezo1 significantly downregulated the renin expression and blood pressure in wildtype but not adeno-associated virus (AAV)-mediated kidney specific Piezo1 knockdown mice. CONCLUSIONS In summary, these results revealed that activation of Piezo1 could downregulate the renin expression in JG cells and mice, subsequently a reduction of blood pressure, highlighting its therapeutic potential as a drug target of the renin-angiotensin system.
Collapse
Affiliation(s)
- Xiaoqiang Yang
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China ,grid.412536.70000 0004 1791 7851Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Honghui Zeng
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China ,grid.412536.70000 0004 1791 7851Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Le Wang
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China ,grid.412536.70000 0004 1791 7851Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Siweier Luo
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China ,grid.412536.70000 0004 1791 7851Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Yiming Zhou
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China ,grid.412536.70000 0004 1791 7851Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| |
Collapse
|
31
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
32
|
High expression of Piezo1 induces senescence in chondrocytes through calcium ions accumulation. Biochem Biophys Res Commun 2022; 607:138-145. [DOI: 10.1016/j.bbrc.2022.03.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022]
|
33
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Sun Y, Wan B, Wang R, Zhang B, Luo P, Wang D, Nie JJ, Chen D, Wu X. Mechanical Stimulation on Mesenchymal Stem Cells and Surrounding Microenvironments in Bone Regeneration: Regulations and Applications. Front Cell Dev Biol 2022; 10:808303. [PMID: 35127684 PMCID: PMC8815029 DOI: 10.3389/fcell.2022.808303] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023] Open
Abstract
Treatment of bone defects remains a challenge in the clinic. Artificial bone grafts are the most promising alternative to autologous bone grafting. However, one of the limiting factors of artificial bone grafts is the limited means of regulating stem cell differentiation during bone regeneration. As a weight-bearing organ, bone is in a continuous mechanical environment. External mechanical force, a type of biophysical stimulation, plays an essential role in bone regeneration. It is generally accepted that osteocytes are mechanosensitive cells in bone. However, recent studies have shown that mesenchymal stem cells (MSCs) can also respond to mechanical signals. This article reviews the mechanotransduction mechanisms of MSCs, the regulation of mechanical stimulation on microenvironments surrounding MSCs by modulating the immune response, angiogenesis and osteogenesis, and the application of mechanical stimulation of MSCs in bone regeneration. The review provides a deep and extensive understanding of mechanical stimulation mechanisms, and prospects feasible designs of biomaterials for bone regeneration and the potential clinical applications of mechanical stimulation.
Collapse
Affiliation(s)
- Yuyang Sun
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Bowen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Diaodiao Wang
- Department of Joint Surgery, Peking University Ninth School of Clinical Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Jing-Jun Nie, ; Dafu Chen,
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Jing-Jun Nie, ; Dafu Chen,
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
35
|
Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci 2022; 18:923-941. [PMID: 35173527 PMCID: PMC8771847 DOI: 10.7150/ijbs.63819] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease. Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis. Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.
Collapse
Affiliation(s)
- Shafiu A. Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Clinical Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - FengXu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| | - YongMei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| |
Collapse
|
36
|
Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D'Andrea P, Lorenzon P, Bernareggi A. "Time window" effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 2021; 233:e13702. [PMID: 34097801 PMCID: PMC9286833 DOI: 10.1111/apha.13702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Aim Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. Methods Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. Results Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. Conclusion Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.
Collapse
Affiliation(s)
| | - Arthur Giniatullin
- Department of Physiology Kazan State Medical University Kazan Russia
- Laboratory of Biophysics of Synaptic Processes Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of RAS” Kazan Russia
| | | | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Marina Sciancalepore
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
- Institute of Fundamental Medicine and Biology Federal University Kazan Russia
| | - Paola D'Andrea
- Department of Life Sciences University of Trieste Trieste Italy
| | - Paola Lorenzon
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Annalisa Bernareggi
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| |
Collapse
|
37
|
Fu Y, Wan P, Zhang J, Li X, Xing J, Zou Y, Wang K, Peng H, Zhu Q, Cao L, Zhai X. Targeting Mechanosensitive Piezo1 Alleviated Renal Fibrosis Through p38MAPK-YAP Pathway. Front Cell Dev Biol 2021; 9:741060. [PMID: 34805150 PMCID: PMC8602364 DOI: 10.3389/fcell.2021.741060] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is the most common pathological manifestation of a wide variety of chronic kidney disease. Increased extracellular matrix (ECM) secretion and enhanced microenvironment stiffening aggravate the progression of renal fibrosis. However, the related mechanisms remain unclear. Here, we evaluated the mechanism by which ECM stiffness aggravates renal fibrosis. In the present study, renal mesangial cells (MCs) were cultured on polyacrylamide hydrogels with different stiffness accurately detected by atomic force microscope (AFM), simulating the in vivo growth microenvironment of MCs in normal kidney and renal fibrosis. A series of in vitro knockdown and activation experiments were performed to establish the signaling pathway responsible for mechanics-induced MCs activation. In addition, an animal model of renal fibrosis was established in mice induced by unilateral ureteral obstruction (UUO). Lentiviral particles containing short hairpin RNA (sh RNA) targeting Piezo1 were used to explore the effect of Piezo1 knockdown on matrix stiffness-induced MCs activation and UUO-induced renal fibrosis. An in vitro experiment demonstrated that elevated ECM stiffness triggered the activation of Piezo1, which increased YAP nuclear translocation through the p38MAPK, and consequently led to increased ECM secretion. Furthermore, these consequences have been verified in the animal model of renal fibrosis induced by UUO and Piezo1 knockdown could alleviate UUO-induced fibrosis and improve renal function in vivo. Collectively, our results for the first time demonstrate enhanced matrix stiffness aggravates the progression of renal fibrosis through the Piezo1-p38MAPK-YAP pathway. Targeting mechanosensitive Piezo1 might be a potential therapeutic strategy for delaying the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Pengzhi Wan
- Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xue Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Kaiyue Wang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Hui Peng
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qizhuo Zhu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Liu Cao
- Department of Basic Medical College, China Medical University, Shenyang, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Institute of Nephropathology, China Medical University, Shenyang, China
| |
Collapse
|
38
|
The mechanosensory and mechanotransductive processes mediated by ion channels and the impact on bone metabolism: A systematic review. Arch Biochem Biophys 2021; 711:109020. [PMID: 34461086 DOI: 10.1016/j.abb.2021.109020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Mechanical environments were associated with alterations in bone metabolism. Ion channels present on bone cells are indispensable for bone metabolism and can be directly or indirectly activated by mechanical stimulation. This review aimed to discuss the literature reporting the mechanical regulatory effects of ion channels on bone cells and bone tissue. An electronic search was conducted in PubMed, Embase and Web of Science. Studies about mechanically induced alteration of bone cells and bone tissue by ion channels were included. Ion channels including TRP family channels, Ca2+ release-activated Ca2+ channels (CRACs), Piezo1/2 channels, purinergic receptors, NMDA receptors, voltage-sensitive calcium channels (VSCCs), TREK2 potassium channels, calcium- and voltage-dependent big conductance potassium (BKCa) channels, small conductance, calcium-activated potassium (SKCa) channels and epithelial sodium channels (ENaCs) present on bone cells and bone tissue participate in the mechanical regulation of bone development in addition to contributing to direct or indirect mechanotransduction such as altered membrane potential and ionic flux. Physiological (beneficial) mechanical stimulation could induce the anabolism of bone cells and bone tissue through ion channels, but abnormal (harmful) mechanical stimulation could also induce the catabolism of bone cells and bone tissue through ion channels. Functional expression of ion channels is vital for the mechanotransduction of bone cells. Mechanical activation (opening) of ion channels triggers ion influx and induces the activation of intracellular modulators that can influence bone metabolism. Therefore, mechanosensitive ion channels provide new insights into therapeutic targets for the treatment of bone-related diseases such as osteopenia and aseptic implant loosening.
Collapse
|
39
|
Role of K + and Ca 2+-Permeable Channels in Osteoblast Functions. Int J Mol Sci 2021; 22:ijms221910459. [PMID: 34638799 PMCID: PMC8509041 DOI: 10.3390/ijms221910459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Bone-forming cells or osteoblasts play an important role in bone modeling and remodeling processes. Osteoblast differentiation or osteoblastogenesis is orchestrated by multiple intracellular signaling pathways (e.g., bone morphogenetic proteins (BMP) and Wnt signaling pathways) and is modulated by the extracellular environment (e.g., parathyroid hormone (PTH), vitamin D, transforming growth factor β (TGF-β), and integrins). The regulation of bone homeostasis depends on the proper differentiation and function of osteoblast lineage cells from osteogenic precursors to osteocytes. Intracellular Ca2+ signaling relies on the control of numerous processes in osteoblast lineage cells, including cell growth, differentiation, migration, and gene expression. In addition, hyperpolarization via the activation of K+ channels indirectly promotes Ca2+ signaling in osteoblast lineage cells. An improved understanding of the fundamental physiological and pathophysiological processes in bone homeostasis requires detailed investigations of osteoblast lineage cells. This review summarizes the current knowledge on the functional impacts of K+ channels and Ca2+-permeable channels, which critically regulate Ca2+ signaling in osteoblast lineage cells to maintain bone homeostasis.
Collapse
|
40
|
A novel one-step mechanically strengthened hyaluronic acid hydrogel assisted by a small molecular agent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Xie M, Fritch M, He Y, Fu H, Hong Y, Lin H. Dynamic loading enhances chondrogenesis of human chondrocytes within a biodegradable resilient hydrogel. Biomater Sci 2021; 9:5011-5024. [PMID: 34109952 DOI: 10.1039/d1bm00413a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyaline cartilage in the knee joint is a soft tissue that is both stiff and elastic, which raises unique challenges in developing scaffolds for the repair of cartilage injury. In this study, we mixed poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PEG-PDLLA-DA) with polycaprolactone-poly(ethylene glycol)-polycaprolactone (PEG-PCL-DA) with the aim to create a cartilage-like hydrogel. Results indicated that the hydrogel made from PEG-PDLLA-DA/PEG-PCL-DA (50/50) was biodegradable and resilient, able to bear compressive loads with strains up to 50%. Human chondrocytes maintained high viability after being seeded in the hydrogel and underwent robust chondrogenesis upon stimulation. The application of dynamic compressive loading further promoted the generation of cartilage matrix and increased the compressive moduli of engineered cartilage tissues. Then engineered cartilage tissues, with or without being stimulated by dynamic loading, were implanted subcutaneously in mice, and results showed that the cartilage matrices and chondrocyte phenotypes were well preserved. Lastly, we conducted the mechanistic study to understand how dynamic loading influenced chondrogenesis. Specifically, the levels p-Erk and p38 kinases were found to remarkably increase on day 1 upon dynamic compressive loading, decrease on day 3, and then slightly elevate on day 7. In comparison, the expression of YAP and RhoA peaked on day 3 after mechanical loading. Levels of PIEZO1 and TRPV4 protein increased with the extension of dynamic loading culture time. Taken together, this newly developed resilient hydrogel represents a robust scaffold for cartilage regeneration. Moreover, based on the time their levels reach the peak, three groups of proteins are identified in mediating chondrocyte response to dynamic loading, which has not been previously reported.
Collapse
Affiliation(s)
- Mingsheng Xie
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA. and Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Madalyn Fritch
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA.
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA.
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA. and Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15219, USA and McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
42
|
Zhou T, Wang Z, Guo M, Zhang K, Geng L, Mao A, Yang Y, Yu F. Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels. Food Funct 2021; 11:10137-10148. [PMID: 33155599 DOI: 10.1039/d0fo02356f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Puerarin (Pue) is an isoflavone derived from the root of Pueraria lobata, which has been widely used as food and a herb for treating cardiovascular and cerebrovascular diseases. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable channel with multiple modes of activation, plays an important role in vascular endothelial function and vasodilation. However, no reports have shown the effects of Pue on TRPV4 channels and mouse small mesenteric arteries. In the present study, we performed a molecular docking assay by using Discovery Studio 3.5 software to predict the binding of Pue to TRPV4 protein. The activation of TRPV4 by Pue was determined by intracellular Ca2+ concentration ([Ca2+]i), live-cell fluorescent Ca2+ imaging and patch clamp assays. Molecular docking results indicated a high possibility of Pue-TPRV4 binding. [Ca2+]i and Ca2+ imaging assays showed that Pue activated TRPV4 channels and increased [Ca2+]i in TRPV4-overexpressing HEK293 (TRPV4-HEK293) cells and primary mouse mesenteric artery endothelial cells (MAECs). Patch clamp assay demonstrated that Pue stimulated the TRPV4-mediated cation currents. Additionally, Pue relaxed mouse mesenteric arteries involving the TRPV4-small-conductance Ca2+-activated K+ channel (SKCa)/intermediate-conductance Ca2+-activated K+ channel (IKCa) pathway, and reduced systolic blood pressure (SBP) in high-salt-induced hypertensive mice. Our study found for the first time that Pue acts as a TRPV4 agonist, induces endothelium-dependent vasodilation in mouse mesenteric arteries, and attenuates blood pressure in high-salt-induced hypertensive mice, highlighting the beneficial effect of Pue in treating endothelial dysfunction-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, Liang S, Khan Z, Chen Z, Qian A, Hu L. Piezo Channels: Awesome Mechanosensitive Structures in Cellular Mechanotransduction and Their Role in Bone. Int J Mol Sci 2021; 22:ijms22126429. [PMID: 34208464 PMCID: PMC8234635 DOI: 10.3390/ijms22126429] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. Emerged as key molecular detectors of mechanical forces, Piezo channels' functions in bone have attracted more and more attention. Here, we summarize the current knowledge of Piezo channels and review the research advances of Piezo channels' function in bone by highlighting Piezo1's role in bone cells, including osteocyte, bone marrow mesenchymal stem cell (BM-MSC), osteoblast, osteoclast, and chondrocyte. Moreover, the role of Piezo channels in bone diseases is summarized.
Collapse
Affiliation(s)
- Xia Xu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kang Ru
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunxian Jia
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Wu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zarnaz Khan
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| | - Lifang Hu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| |
Collapse
|
44
|
Mao L, Guo J, Hu L, Li L, Xu J, Zou J. The effects of biophysical stimulation on osteogenic differentiation and the mechanisms from ncRNAs. Cell Biochem Funct 2021; 39:727-739. [PMID: 34041775 DOI: 10.1002/cbf.3650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Ample proof showed that non-coding RNAs (ncRNAs) play a crucial role in proliferation and differentiation of osteoblasts and bone marrow stromal cells (BMSCs). Varied forms of biophysical stimuli like mechanical strain, fluid shear stress (FSS), microgravity and vibration are verified to regulate ncRNAs expression in osteogenic differentiation and influence the expression of target genes associated with osteogenic differentiation and ultimately regulate bone formation. The consequences of biophysical stimulation on osteogenic differentiation validate the prospect of exercise for the prevention and treatment of osteoporosis. In this review, we tend to summarize the studies on regulation of osteogenic differentiation by ncRNAs beneath biophysical stimulation and facilitate to reveal the regulatory mechanism of biophysical stimulation on ncRNAs, and provide an update for the prevention of bone metabolism diseases by exercise.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Linghui Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lexuan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
45
|
He J, Fang B, Shan S, Xie Y, Wang C, Zhang Y, Zhang X, Li Q. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1. Cell Death Dis 2021; 12:226. [PMID: 33649312 PMCID: PMC7921104 DOI: 10.1038/s41419-021-03481-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
Hypertrophic scar (HS) formation is a skin fibroproliferative disease that occurs following a cutaneous injury, leading to functional and cosmetic impairment. To date, few therapeutic treatments exhibit satisfactory outcomes. The mechanical force has been shown to be a key regulator of HS formation, but the underlying mechanism is not completely understood. The Piezo1 channel has been identified as a novel mechanically activated cation channel (MAC) and is reportedly capable of regulating force-mediated cellular biological behaviors. However, the mechanotransduction role of Piezo1 in HS formation has not been investigated. In this work, we found that Piezo1 was overexpressed in myofibroblasts of human and rat HS tissues. In vitro, cyclic mechanical stretch (CMS) increased Piezo1 expression and Piezo1-mediated calcium influx in human dermal fibroblasts (HDFs). In addition, Piezo1 activity promoted HDFs proliferation, motility, and differentiation in response to CMS. More importantly, intradermal injection of GsMTx4, a Piezo1-blocking peptide, protected rats from stretch-induced HS formation. Together, Piezo1 was shown to participate in HS formation and could be a novel target for the development of promising therapies for HS formation.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), 200092, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), 200092, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
46
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
47
|
Vellino S, Oddou C, Rivier P, Boyault C, Hiriart-Bryant E, Kraut A, Martin R, Coute Y, Knölker HJ, Valverde MA, Albigès-Rizo C, Destaing O. Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. J Cell Biol 2021; 220:211651. [PMID: 33399853 PMCID: PMC7788461 DOI: 10.1083/jcb.201910079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/23/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. β1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with β1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.
Collapse
Affiliation(s)
- Sanela Vellino
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Christiane Oddou
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Paul Rivier
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Cyril Boyault
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Edwige Hiriart-Bryant
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Alexandra Kraut
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yohann Coute
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | | | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Corinne Albigès-Rizo
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Olivier Destaing
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France,Correspondence to Olivier Destaing:
| |
Collapse
|
48
|
He Y, Makarczyk MJ, Lin H. Role of mitochondria in mediating chondrocyte response to mechanical stimuli. Life Sci 2020; 263:118602. [PMID: 33086121 PMCID: PMC7736591 DOI: 10.1016/j.lfs.2020.118602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
As the most common form of arthritis, osteoarthritis (OA) has become a major cause of severe joint pain, physical disability, and quality of life impairment in the affected population. To date, precise pathogenesis of OA has not been fully clarified, which leads to significant obstacles in developing efficacious treatments such as failures in finding disease-modifying OA drugs (DMOADs) in the last decades. Given that diarthrodial joints primarily display the weight-bearing and movement-supporting function, it is not surprising that mechanical stress represents one of the major risk factors for OA. However, the inner connection between mechanical stress and OA onset/progression has yet to be explored. Mitochondrion, a widespread organelle involved in complex biological regulation processes such as adenosine triphosphate (ATP) synthesis and cellular metabolism, is believed to have a controlling role in the survival and function implement of chondrocytes, the singular cell type within cartilage. Mitochondrial dysfunction has also been observed in osteoarthritic chondrocytes. In this review, we systemically summarize mitochondrial alterations in chondrocytes during OA progression and discuss our recent progress in understanding the potential role of mitochondria in mediating mechanical stress-associated osteoarthritic alterations of chondrocytes. In particular, we propose the potential signaling pathways that may regulate this process, which provide new views and therapeutic targets for the prevention and treatment of mechanical stress-associated OA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Meagan J Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
49
|
Liu H, Bian W, Yang D, Yang M, Luo H. Inhibiting the Piezo1 channel protects microglia from acute hyperglycaemia damage through the JNK1 and mTOR signalling pathways. Life Sci 2020; 264:118667. [PMID: 33127514 DOI: 10.1016/j.lfs.2020.118667] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
AIM Diabetes is a high-risk factor for neurocognitive dysfunction. Diabetic acute hyperglycaemia accompanied by high osmotic pressure can induce immune cell dysfunction, but its mechanism of action in brain microglia remains unclear. This study aimed to evaluate the role of the mechanically sensitive ion channel Piezo1 in the dysfunction of microglia in acute hyperglycaemia. MATERIALS AND METHODS To construct an in vitro acute hyperglycaemia model using the BV2 microglial cell line, Piezo1 in microglia was inhibited by GsMTx4 and siRNA, and the changes in microglial function were further evaluated. KEY FINDINGS High concentrations of glucose upregulated the expression of Piezo1, led to weakened cell proliferation and migration, and reduced the immune response to inflammatory stimulating factors (Aβ and LPS). Additionally, LPS upregulated Piezo1 in BV2 microglial cultures in vitro. The activation of Piezo1 channels increased the intracellular Ca2+ concentration and reduced the phosphorylation of JNK1 and mTOR. Inhibiting Piezo1 did not affect cell viability at average glucose concentrations but improved acute HCG-induced cell damage and increased the phosphorylation of JNK1 and mTOR, suggesting that the latter modification may be a potential downstream mechanism of Piezo1. SIGNIFICANCE Piezo1 is necessary for microglial damage in acute hyperglycaemia and may become a promising target to treat hyperglycaemic brain injury.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Graduate School of School of Medicine, Nanchang University, China
| | - Wengong Bian
- Department of Anesthesiology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Graduate School of School of Medicine, Nanchang University, China
| | - Dongxia Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Graduate School of School of Medicine, Nanchang University, China
| | - Mingmin Yang
- Department of Anesthesiology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Heguo Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China.
| |
Collapse
|
50
|
Williams KM, Leser JM, Gould NR, Joca HC, Lyons JS, Khairallah RJ, Ward CW, Stains JP. TRPV4 calcium influx controls sclerostin protein loss independent of purinergic calcium oscillations. Bone 2020; 136:115356. [PMID: 32272228 PMCID: PMC7605285 DOI: 10.1016/j.bone.2020.115356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/09/2023]
Abstract
Skeletal remodeling is driven in part by the osteocyte's ability to respond to its mechanical environment by regulating the abundance of sclerostin, a negative regulator of bone mass. We have recently shown that the osteocyte responds to fluid shear stress via the microtubule network-dependent activation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species and subsequent opening of TRPV4 cation channels, leading to calcium influx, activation of CaMKII, and rapid sclerostin protein downregulation. In addition to the initial calcium influx, purinergic receptor signaling and calcium oscillations occur in response to mechanical load and prior to rapid sclerostin protein loss. However, the independent contributions of TRPV4-mediated calcium influx and purinergic calcium oscillations to the rapid sclerostin protein downregulation remain unclear. Here, we showed that NOX2 and TRPV4-dependent calcium influx is required for calcium oscillations, and that TRPV4 activation is both necessary and sufficient for sclerostin degradation. In contrast, calcium oscillations are neither necessary nor sufficient to acutely decrease sclerostin protein abundance. However, blocking oscillations with apyrase prevented fluid shear stress induced changes in osterix (Sp7), osteoprotegerin (Tnfrsf11b), and sclerostin (Sost) gene expression. In total, these data provide key mechanistic insights into the way bone cells translate mechanical cues to target a key effector of bone formation, sclerostin.
Collapse
Affiliation(s)
- Katrina M Williams
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Humberto C Joca
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James S Lyons
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Nursing, Baltimore, MD 21201, USA.
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|