1
|
Adibifar A, Salimi M, Rostamkhani N, Karami Z, Agh-Atabay AH, Rostamizadeh K. Folic acid-conjugated bovine serum albumin-coated selenium-ZIF-8 core/shell nanoparticles for dual target-specific drug delivery in breast cancer. Drug Deliv Transl Res 2025; 15:1786-1799. [PMID: 39317912 DOI: 10.1007/s13346-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Methotrexate (MTX), a frequently used chemotherapeutic agent, has limited water solubility, leading to rapid clearance even in local injections. In the present study, we developed folic acid-conjugated BSA-stabilized selenium-ZIF-8 core/shell nanoparticles for targeted delivery of MTX to combat breast cancer. FT-IR, XRD, SEM, TEM, and elemental mapping analysis confirmed the successful formation of FA-BSA@MTX@Se@ZIF-8. The developed nano-DDS had a mean diameter, polydispersity index, and zeta potential of 254.8 nm, 0.17, and - 16.5 mV, respectively. The release behavior of MTX from the nanocarriers was pH-dependent, where the cumulative release percentage at pH 5.4 was higher than at pH 7.4. BSA significantly improved the blood compatibility of nanoparticles so that after modifying their surface with BSA, the percentage of hemolysis decreased from 12.67 to 5.12%. The loading of methotrexate in BSA@Se@ZIF-8 nanoparticles reduced its IC50 on 4T1 cells from 40.29 µg/mL to 16.54 µg/mL, and by conjugating folic acid on the surface, this value even decreased to 12.27 µg/mL. In vivo evaluation of the inhibitory effect in tumor-bearing mice showed that FA-BSA@MTX@Se@ZIF-8 caused a 2.8-fold reduction in tumor volume compared to the free MTX, which is due to the anticancer effect of selenium nanoparticles, the pH sensitivity of ZIF-8, and the presence of folic acid on the surface as a targeting agent. More importantly, histological studies and animal body weight monitoring confirmed that developed nano-DDS does not have significant organ toxicity. Taking together, the incorporation of chemotherapeutics in folic acid-conjugated BSA-stabilized selenium-ZIF-8 nanoparticles may hold a significant impact in the field of future tumor management.
Collapse
Affiliation(s)
- Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
2
|
Demishkevich EA, Stefanova SA, Zyubin AY, Rafalskiy VV, Zozulya AS, Evtifeev DO, Kundalevich AA, Tatarinova AA, Anoshin AA, Lyatun II, Samusev IG. Sers-based methodology for nanomolar methotrexate concentration detection for clinics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125801. [PMID: 40023615 DOI: 10.1016/j.saa.2025.125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025]
Abstract
The paper proposes a new rapid and reliable method for the detection of methotrexate (MTX) in human blood serum using truncated triangular silver nanoparticles (AgNP) deposited on quartz glass. The article describes the application of the SERS method and the synthesized surfaces for the detection of pure MTX, MTX molecules and its metabolites in patient serum. Using this approach, it was possible to detect methotrexate in controls up to 10-9 M concentration and in human plasma samples at clinical concentration up to 10-6 M. The developed methodology can be a fast and cheap alternative to traditional methods in clinics, such as high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
| | - Svetlana A Stefanova
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Andrey Y Zyubin
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Vladimir V Rafalskiy
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Aleksandr S Zozulya
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Denis O Evtifeev
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Anna A Kundalevich
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Alisa A Tatarinova
- Joint Institute for Nuclear Research, 6 Joliot-Curie str., Dubna, Russia 141980
| | - Aleksandr A Anoshin
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Ivan I Lyatun
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Ilia G Samusev
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| |
Collapse
|
3
|
Bhalodi K, Kothari C, Butani S. Next-generation cancer nanotherapeutics: Pluronic ® F127 based mixed micelles for enhanced drug delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3241-3270. [PMID: 39527309 DOI: 10.1007/s00210-024-03582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Cancer, projected to become the second leading cause of mortality globally, underscores the critical need for precise drug delivery systems. Nanotechnology, particularly micelles, has emerged as a promising avenue. These nano-sized colloidal dispersions (< 100 nm) utilize amphiphilic molecules featuring a hydrophilic tail and hydrophobic core, facilitating efficient drug encapsulation and delivery. Pluronic® F127, a triblock copolymer (PEO101-PPO56-PEO101), has emerged as a promising drug carrier due to its non-ionic, less-toxic nature, which prolongs drug circulation time and improves drug delivery across blood-brain and intestinal barriers. Mixed micelles, formed using Pluronic® F127 combined with other polymers, surfactants, and drugs, enhance drug solubility, stability, and targeted delivery. This review highlights the key features of mixed micelles, including enhanced pharmacokinetics and targeting abilities, folic acid (FA) conjugation strategies, superior cytotoxicity with reduced side effects, overcoming multidrug resistance, and versatility across various cancer types and compounds. Additionally, the potential for clinical translation of Pluronic® F127-based mixed micelle in cancer treatment is discussed, addressing current challenges and paving the way for optimized applications.
Collapse
Affiliation(s)
- Krishna Bhalodi
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Charmy Kothari
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| | - Shital Butani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| |
Collapse
|
4
|
Mendes RV, Ribeiro JM, Gouveia H, Rebelo de Almeida C, Castillo-Martin M, Brito MJ, Canas-Marques R, Batista E, Alves C, Sousa B, Gouveia P, Ferreira MG, Cardoso MJ, Cardoso F, Fior R. Zebrafish Avatar testing preclinical study predicts chemotherapy response in breast cancer. NPJ Precis Oncol 2025; 9:94. [PMID: 40169839 PMCID: PMC11961725 DOI: 10.1038/s41698-025-00882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
Chemotherapy remains the mainstay in most high-risk breast cancer (BC) settings, with several equivalent options of treatment. However, the efficacy of each treatment varies between patients and there is currently no test to determine which option will be the most effective for each individual patient. Here, we developed a fast in-vivo test for BC therapy screening: the zebrafish patient-derived-xenograft model (zAvatars), where in-vivo results can be obtained in just 10 days. To determine the predictive value of the BC zAvatars we performed a preclinical study, where zAvatars were treated with the same therapy as the donor-patient and their response to therapy was compared. Our data show a 100% concordance (18 out of 18) between the zAvatar-test and the corresponding patient's clinical response to treatment. Altogether, our results suggest that the zAvatar model constitutes a promising in-vivo assay to optimize cancer treatments in a truly personalized manner.
Collapse
Affiliation(s)
- Raquel V Mendes
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Joana M Ribeiro
- Gustave Roussy, Département de Médecine Oncologique, Villejuif, France
| | - Helena Gouveia
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | | | - Mireia Castillo-Martin
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Service of Pathology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Maria José Brito
- Service of Pathology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Rita Canas-Marques
- Service of Pathology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Eva Batista
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Celeste Alves
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Berta Sousa
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Pedro Gouveia
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284 INSERM U1081, Université Côte d'Azur, 06107, Nice, France
| | - Maria João Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
5
|
Hermawan A, Hanif N, Putri DDP, Fatimah N, Prasetio HH. Citrus flavonoids for overcoming breast cancer resistance to methotrexate: identification of potential targets of nobiletin and sinensetin. Discov Oncol 2025; 16:365. [PMID: 40111633 PMCID: PMC11926326 DOI: 10.1007/s12672-025-02116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Breast cancer is a potentially fatal illness that affects millions of women worldwide. Methotrexate (MTX) may be beneficial for treating breast cancer; however, high doses and prolonged use can cause drug resistance. Although certain citrus flavonoids-nobiletin, sinensetin, tangeretin, hesperidin, hesperetin, and naringenin-may overcome resistance to chemotherapy, no study has investigated MTX resistance. This study investigated the potential of natural chemicals, specifically nobiletin and sinensetin, to overcome MTX resistance in breast cancer cells using MTX-resistant MCF-7 (MCF-7/MTX) and MCF-7 cells. Protein targets of citrus flavonoids were identified from multiple databases and were collected using Venny 2.1. Microarray data of MCF-7 and MCF-7/MTX cells were acquired from the Gene Expression Omnibus. Subsequently, we constructed a protein-protein interaction network and selected the hub proteins. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, drug- and disease-gene enrichment analyses, genetic alteration examination, receiver operating characteristic curve analysis, mRNA levels analysis, prognostic value analysis, and molecular docking analysis were performed along with in vitro experiments. Cytotoxicity of citrus flavonoids (individually and combined) was assessed in MCF-7/MTX cells. Nobiletin and sinensetin significantly enhanced the cytotoxicity of MTX in MCF-7/MTX cells. BCL2L1, CDK1, EGFR, PTGS2, PLK1, MMP2, ACHE, ABCG2, and KIT genes were enriched in cholinesterase activity, cell cycle regulation, and the PI3K/Akt signaling pathway. Nobiletin and sinensetin impeded PLK1, CDK1, and ACHE activities based on molecular docking. Nobiletin and sinensetin in combination with MTX may overcome breast cancer cell resistance to MTX.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Naufa Hanif
- Doctoral Student, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Karasu A, Kuşcu Y, Kayikci C, Yildirim S, Kuşcu O, Kiliçlioğlu M. Effect of low- and high-dose methotrexate on wound healing in rats. Acta Cir Bras 2025; 40:e403225. [PMID: 40105606 PMCID: PMC11908735 DOI: 10.1590/acb403225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/29/2024] [Indexed: 03/20/2025] Open
Abstract
PURPOSE To investigate the effect of intraperitoneal treatment with low- and high-dose methotrexate (MTX) on wound healing in rats. METHODS The study sample consisted of 54 healthy rats. Under aseptic conditions, skin wounds were created with two circular full-thickness punch tools, 10 mm in diameter, one on the right and the other one on the left of the dorsal vertebral line. The rats were randomly assigned to one of three main treatment groups. On the 0th day (2 hours before wound creation), 7th day, and 14th day, the control group received 0.3-mL saline, the low-MTX group received 3 mg/kg MTX, and the high-MTX group received 30 mg/kg MTX, all administered intraperitoneally. The wounds were evaluated seven, 14, and 21 days after injury through morphometrical, biochemical, histopathological, and immunohistochemical analyses. RESULTS MTX dose-dependently decreased the degree of inflammation and angiogenesis, tissue hydroxyproline level, and HSP70 and tumor necrosis factor-α expression in the early phase of wound healing. It also suppressed epithelialization and collagen 1 expression throughout the wound-healing process. CONCLUSION The wounds treated with high-dose of MTX had statistically delayed wound closure on days 7, 14 and 21 compared to the saline group, while wounds treated with low-dose of MTX only had statistically delayed wound closure on day 14. In addition, weight loss was observed in rats treated with high-dose MTX, which was thought to reflect its toxicity. The dose-dependent adverse effect of MTX on wound healing may be due to its antiproliferative, antifibrotic, anti-inflammatory, and antiangiogenic effects.
Collapse
Affiliation(s)
- Abdullah Karasu
- Van Yuzuncu Yil University - Faculty of Veterinary Medicine - Department of Surgery - Van - Türkiye
| | - Yağmur Kuşcu
- Van Yuzuncu Yil University - Faculty of Veterinary Medicine - Department of Surgery - Van - Türkiye
| | - Caner Kayikci
- Van Yuzuncu Yil University - Faculty of Veterinary Medicine - Department of Surgery - Van - Türkiye
| | - Serkan Yildirim
- Ataturk University - Faculty of Veterinary Medicine - Department of Pathology - Erzurum - Türkiye
| | - Oğuzhan Kuşcu
- Van Yuzuncu Yil University - Faculty of Medicine - Department of Histology and Embryology - Van - Türkiye
| | - Metin Kiliçlioğlu
- Ataturk University - Faculty of Veterinary Medicine - Department of Pathology - Erzurum - Türkiye
| |
Collapse
|
7
|
Hacınecipoğlu F, Çelik G, Kartal SP. Anagen Effluvium in a Child Misusing Methotrexate: A Case Report With Dermoscopic Findings. Pediatr Dermatol 2025. [PMID: 40079185 DOI: 10.1111/pde.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Anagen effluvium is a rare adverse effect of methotrexate therapy, generally associated with high-dose regimens. We report a 12-year-old girl who developed abrupt hair loss 1 week after inadvertently taking methotrexate 15 mg daily for five consecutive days (total 75 mg), without other signs of systemic toxicity. Trichoscopic examination and trichogram findings confirmed methotrexate-induced anagen effluvium, and spontaneous hair regrowth occurred after 2 months. This case underlines the importance of careful methotrexate dose monitoring and awareness that methotrexate toxicity can be associated with anagen effluvium even in the absence of other signs of toxicity.
Collapse
Affiliation(s)
| | - Gökçen Çelik
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, Turkey
| | | |
Collapse
|
8
|
Nie J, Huang L, Shen Y, Pan H, Wang S, Zhao H, Gao P, Yang J, Huang X, Zeng S, Miao J. Methotrexate resistance and its regulatory mechanisms in pediatric tumors and beyond. Drug Resist Updat 2025; 81:101225. [PMID: 40088855 DOI: 10.1016/j.drup.2025.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Methotrexate (MTX) is a critical antimetabolite drug in treating various pediatric diseases, including acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma (NHL), brain tumors, osteosarcoma, inflammatory myofibroblastic tumor (IMT), juvenile scleroderma (JS), and juvenile idiopathic arthritis (JIA). MTX acts as a folate antagonist by inhibiting dihydrofolate reductase (DHFR), an enzyme essential for the synthesis of tetrahydrofolate. This disruption impairs DNA synthesis, repair, and cellular replication, particularly affecting rapidly dividing cells. Despite its efficacy, MTX resistance poses significant challenges, particularly in pediatric oncology, where it undermines the ability to achieve sustained therapeutic effects, resulting in reduced therapeutic efficacy and poor prognosis. The mechanisms of MTX resistance encompassed reduced enzyme activity pivotal for MTX metabolism, enhanced expression of efflux transporters, genetic variations, and alterations in signaling pathways. Multifaceted strategies have been explored to overcome MTX resistance. Combination therapies with ginger extract, gold nanoparticles, and arsenic trioxide (ATO) have been investigated to augment MTX's cytotoxic effects. Synergies with mTOR inhibitors and MDM2 inhibitors have demonstrated enhanced outcomes in ALL. In JIA, targeting ATP-binding cassette (ABC) transporters and modulating transforming growth factor‑β (TGF-β) signaling pathways have emerged as promising approaches. For osteosarcoma, emphasis on autophagy pathways and non-coding RNAs influencing chemotherapy sensitivity could enhance MTX effectiveness. This review delineates MTX's therapeutic roles, elucidates its resistance mechanisms, and discusses current and potential strategies for managing MTX resistance to bolster treatment effectiveness in pediatric tumors and other diseases. This knowledge base could underpin further research and development of personalized treatments to optimize MTX's clinical benefits.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yan Shen
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongai Pan
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siwan Wang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Huawei Zhao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Gao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jufei Yang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Xiaojun Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Su Zeng
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Atia HA, Elariny HA, Abdallah MH, Khalifa AM, Estfanous RS, Abd Elmaaboud MA, Kabel AM. Repositioning Perindopril for Mitigation of Methotrexate-Induced Hepatotoxicity in Rats. Pharmaceuticals (Basel) 2025; 18:358. [PMID: 40143135 PMCID: PMC11945847 DOI: 10.3390/ph18030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Methotrexate is a folate antagonist that has proven efficacy as an anticancer and immunomodulatory agent. However, the possible incidence of overt hepatotoxicity represents a challenge for its clinical use. Up till now, no single remedy has been considered an effective solution to this important adverse effect. Perindopril is an angiotensin-converting enzyme inhibitor that is widely used for the treatment of hypertension. Due to the involvement of the renin-angiotensin system in the pathogenesis of methotrexate-elicited hepatotoxicity, investigating the efficacy of perindopril in this condition may be of particular interest. The current work aimed at an evaluation of the potential effects of perindopril in a rat model of methotrexate-induced hepatotoxicity and tried to precisely determine the molecular mechanisms that may represent the basis of these effects. Methods: In a model of methotrexate-elicited hepatotoxicity in male Wistar rats, the effects of different doses of perindopril were evaluated at the level of the biochemical measurements and the morphological examination. Results: Oral administration of perindopril to methotrexate-injected rats exhibited a dose-dependent significant improvement in daily food intake; the restoration of the functions of hepatocytes; the potentiation of antioxidant defense mechanisms; the abrogation of the different signaling pathways involved in liver inflammation, apoptosis, and fibrosis; and an enhancement in AMPK/mTOR-driven autophagy when compared to animals that received only a methotrexate injection. These events were reflected in the morphological appearance of the different studied groups. Conclusions: This study presents perindopril as a promising remedy for mitigation of the hepatotoxic effects that occur as a consequence of treatment with methotrexate.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amany M. Khalifa
- Department of Pathology, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Remon S. Estfanous
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Kraaijvanger R, Janssen Bonás M, Paspali I, Grutters JC, Veltkamp M, de Kleijn DP, van Moorsel CH. Targeted proteomics in extracellular vesicles identifies biomarkers predictive for therapeutic response in sarcoidosis. ERJ Open Res 2025; 11:00672-2024. [PMID: 40040892 PMCID: PMC11874217 DOI: 10.1183/23120541.00672-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/19/2024] [Indexed: 03/06/2025] Open
Abstract
Background ∼30% of patients with sarcoidosis, a systemic granulomatous disease of unknown cause, need treatment to alleviate symptoms or prevent organ damage. Prednisone and methotrexate (MTX) are the most commonly used drugs; however, success of treatment varies from patient to patient. In this study, we search for biomarkers and pathways that predict response to treatment with prednisone or MTX in extracellular vesicles (EVs). Methods A targeted proteomics approach (OLINK Bioscience) was used in which 92 proteins were measured in two baseline EV fractions in 32 patients treated for pulmonary sarcoidosis (eight responders and eight non-responders each for prednisone and MTX). The top three proteins were replicated in 62 prednisone- and 76 MTX-treated patients. Results We identified 11 differentially expressed proteins (DEPs) between responders and non-responders to prednisone treatment, and 16 DEPs for patients treated with MTX. Reactome pathway analysis showed DEPs in prednisone to be involved in nuclear factor kappa B and interleukin signalling pathways. The DEPs in MTX were involved in transduction of GPI-anchored proteins and MAPK signalling pathway. CHI3L1 for prednisone and CPA1 for MTX were replicated as significant predictors of response. Conclusion This study is the first to show that in pulmonary sarcoidosis the response to treatment with prednisone or MTX can be predicted at baseline by different EV proteins active in different pathways. Using these markers and associated pathways to identify patients with a high probability of response to therapy will aid personalised treatment choice and improve treatment outcome.
Collapse
Affiliation(s)
- Raisa Kraaijvanger
- ILD Center of Excellence, member of European Reference Network-Lung, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Montse Janssen Bonás
- ILD Center of Excellence, member of European Reference Network-Lung, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Ioanna Paspali
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center, Utrecht, The Netherlands
| | - Jan C. Grutters
- ILD Center of Excellence, member of European Reference Network-Lung, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Marcel Veltkamp
- ILD Center of Excellence, member of European Reference Network-Lung, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center, Utrecht, The Netherlands
| | - Coline H.M. van Moorsel
- ILD Center of Excellence, member of European Reference Network-Lung, St Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
11
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
12
|
Yi RC, Akbik M, Smith LR, Klionsky Y, Feldman SR. Therapeutic Advancements in Psoriasis and Psoriatic Arthritis. J Clin Med 2025; 14:1312. [PMID: 40004842 PMCID: PMC11855982 DOI: 10.3390/jcm14041312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Within the past few years, many new therapies have emerged for psoriasis and psoriatic arthritis (PsA). Current topical therapies-including corticosteroids, vitamin D analogs, tapinarof, and roflumilast-remain the mainstay for mild disease, while oral systemic and biologic options are for moderate to severe cases. Biologics-such as Tumor necrosis factor-alpha (TNF-alpha), Interleukin 12/23 (IL-12/23), Interleukin-17 (IL-17), and Interleukin-23 (IL-23)-have revolutionized care by providing highly effective and safer alternatives. Oral small molecules, including Janus kinase (JAK) and tyrosine kinase 2 (TYK2) inhibitors, further expand the therapeutic options. Objectives: The goal for this review article was to examine current and latest treatments for psoriasis and PsA and discuss whether these emerging therapeutic options address the unmet needs of current treatments. Methods: The search for this review article included PubMed, Google Scholar, and ClinicalTrials.gov for relevant articles and current clinical trials using keywords. Results: A wide range of novel psoriatic and PsA therapies are currently undergoing clinical trials. These include selective JAK inhibitors, TYK2 inhibitors, retinoic acid-related orphan receptor (RORγT) inhibitors, oral IL-23 receptor inhibitors, oral IL-17A inhibitors, nanobody products, sphingosine-1-phosphate (S1P1R) antagonists, A3 adenosine receptor (A3AR) agonists, heat shock protein (HSP) 90 inhibitors, and rho-associated protein kinases (ROCK-2) inhibitors. Conclusions: These different mechanisms of action not only expand treatment options but may offer potential solutions for patients who do not achieve adequate response with existing therapies. However, the safety and contraindications of these newer agents remain an important consideration to ensure appropriate patient selection and minimize potential risks. Certain mechanisms may pose increased risks for infection, cardiovascular manifestations, malignancy, or other immune-related adverse events, necessitating careful monitoring and individualized treatment decisions. Ongoing clinical research aims to address unmet needs for patients who do not respond to previous agents to achieve sustained remission, monitor long-term safety outcomes, and assess patient preferences for delivery, including a preference for oral delivery. Oral IL-23 inhibitors hold potential due to their robust safety profiles. In contrast, oral IL-17 inhibitors and TYK-2 inhibitors are effective but may present side effects that could impact their acceptability. It is essential to balance efficacy, safety, and patient preferences to guide the selection of appropriate therapies.
Collapse
Affiliation(s)
- Robin C. Yi
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.R.S.); (S.R.F.)
| | - Maya Akbik
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Logan R. Smith
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.R.S.); (S.R.F.)
| | - Yael Klionsky
- Department of Internal Medicine, Division of Rheumatology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Steven R. Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.R.S.); (S.R.F.)
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
13
|
Camargo CP, Guido MC, Tavares ER, Carvalho PO, Gemperli R, Maranhão RC. Methotrexate-Loaded solid lipid nanoparticles enhance the viability of cutaneous flaps: potential for surgical wound healing. J Drug Target 2025; 33:259-267. [PMID: 39445642 DOI: 10.1080/1061186x.2024.2409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Skin flaps are employed to cover cutaneous denuded surfaces, but ensuing flap necrosis often occurs. Previously, rats with myocardial infarction treated with lipid-core nanoparticles (LDE) loaded with methotrexate (MTX) improved myocardial irrigation and reduced necrosis. Here, the aim was to investigate the efficacy of LDE-MTX to preserve the viability of cutaneous flaps and its implications for surgical wound healing. Twenty-eight male rats were divided into 4 groups: (1) LDE, injected intraperitoneally with LDE only; (2) MTX (1 mg/Kg commercial MTX): (3) LDE-MTX (1 mg/Kg MTX associated with LDE), and controls without treatment. LDE, MTX or LDE-MTX were repeated after 2 days. Then, flap surgery (9x3cm) was performed on the dorsal region. Injections were continued every other day until day 7 when animals were euthanized. LDE-MTX treatment improved the total viable area of the flaps with a fourfold increase in blood flow and reduced inflammatory cell number (p < 0.001), accompanied by decreased protein expression of pro-inflammatory factors. SOD-1 was higher in LDE-MTX-treated rats (p < 0.05). In conclusion, LDE-MTX treatment achieved total viability of cutaneous flaps, with increased irrigation and diminished local inflammation. LDE-MTX may offer efficient and cost-effective prevention of cutaneous flaps and treatment for wounds from surgical procedures to be tested in future clinical studies.
Collapse
Affiliation(s)
- Cristina Pires Camargo
- Laboratory of Microsurgery and Plastic Surgery, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Carolina Guido
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elaine Rufo Tavares
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Priscila Oliveira Carvalho
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rolf Gemperli
- Laboratory of Microsurgery and Plastic Surgery, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raul Cavalcante Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Attarbashee RK, Hamodat HF, Mammdoh JK, Ridha-Salman H. The Possible effect of Bosentan on the methotrexate-induced salivary gland changes in male rats: histological and Immunohistochemical study. Toxicol Res (Camb) 2025; 14:tfaf007. [PMID: 39830884 PMCID: PMC11739806 DOI: 10.1093/toxres/tfaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Methotrexate (MTX) is an antimetabolite drug utilized for managing a variety of cancers and autoinflammatory conditions. MTX may trigger detrimental effects in mout, h tissues, including salivary gland impairment. Bosentan (BOS), a drug that blocks endothelin receptors, has strengthened antioxidant, anti-inflammatory, and anti-apoptotic properties. The study aimed to estimate the protective effect of BOS on MTX-exacerbated salivary changes in Wistar Albino rats. Thirty male rats were arbitrarily sorted into three groups of ten animals each. The control group received a normal saline for 18 days. The MTX (induction) group received MTX (25 mg/kg) intraperitoneally on the 7th day of the experiment once daily for 6 consecutive days. The MTX + BOS group received BOS (50 mg/kg) orally once a day for 18 days: 6 days before induction, 6 days 2-h after induction, and 6 days post-induction. Animals were euthanized on day 19, and salivary gland tissues were dissected for biochemical, histopathological, and immunohistochemical analyses. BOS dramatically improved MTX-aggravated biochemical and histopathological abnormalities, as evidenced by diminished Bax, caspase 3, TNF-α, IL-1β, MDA, and MPO levels, increased SOD, GSH, and GPX levels, and reduced degenerative changes in the granular convolute tubule, mucous acini, and striate duct. BOS further substantially upregulated MTX-induced decline of the Ki-67 and Bcl-2, as indicated by immunohistochemistry scoring methods. The anti-oxidative, ant-inflammatory, and antiapoptotic properties of BOS are a promising strategy for ameliorating the toxic effect of MTX on submandibular glandular tissues.
Collapse
Affiliation(s)
- Rana Khairi Attarbashee
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Majmoaa Thqafiya St., Mosul 41002, +964, Iraq
| | - Heba Faiz Hamodat
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Majmoaa Thqafiya St., Mosul 41002, +964, Iraq
| | - Jawnaa Khalid Mammdoh
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Majmoaa Thqafiya St., Mosul 41002, +964, Iraq
| | - Hayder Ridha-Salman
- College of Pharmacy, Al-Mustaqbal University, Babylon Province, Najaf Road, Hillah 51001, +964, Iraq
| |
Collapse
|
15
|
Ghosh M, Gupta PK, Jena S, Rana S. The interaction of methotrexate with the human C5a and its potential therapeutic implications. Comput Biol Chem 2025; 114:108283. [PMID: 39579472 DOI: 10.1016/j.compbiolchem.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Methotrexate (MTX) is an antimetabolite drug that mimics folate and inhibits dihydrofolic acid reductase, resulting in the impairment of malignant growth in actively proliferating tissues. MTX is approved by the FDA for primarily treating non-Hodgkin lymphoma, lymphoblastic leukemia, and osteosarcoma. In addition, MTX is also prescribed as a preferred anti-rheumatic medication for the management of rheumatoid arthritis, including psoriasis, indicating that MTX has a multipronged mechanism of action. MTX is also known to exert anti-inflammatory effects, and interestingly, the role of C5a, a pro-inflammatory glycoprotein of the complement system, is well established in several chronic inflammatory diseases, including rheumatoid arthritis and psoriasis, through the recruitment of C5a receptors (C5aR1/C5aR2) expressed in both immune and non-immune cells. Notably, through drug repurposing studies, we have earlier shown that non-steroidal anti-inflammatory drugs (NSAIDS) can potentially neutralize the function of C5a. Though MTX binds to serum albumin and can affect the immune system, whether its interaction with C5a could be therapeutically beneficial due to the downregulation of both extracellular and intracellular signaling of C5a is not yet established in the literature. In the current study, we have hypothesized and provided preliminary evidence through computational studies that MTX can strongly bind to the hotspot regions on C5a involved in the interactions with its receptors, which is likely to alter the downstream signaling of C5a and contribute to the overall therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Shobhan Jena
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
16
|
Zhou C, Hao W, Yao J, Zhu T, Sun M, Lu Y, Wang L, Zhou X, Loh JLC. Anti-inflammatory supramolecular hydrogel loaded chicoric acid based on graphene oxide modified hyaluronic acid and polyethylene glycol for rheumatoid arthritis treatment. Int J Biol Macromol 2025; 287:138610. [PMID: 39662575 DOI: 10.1016/j.ijbiomac.2024.138610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Chicoric acid (CA) as one of Chinese medicines had anti-inflammatory, less gastrointestinal irritation, less drug-resistance and low cost properties compared with chemical synthesized drug and biologics for rheumatoid arthritis (RA) treatment. To make CA preciously and effectly RA therapy, we firstly developed a supramolecular hydrogel (GHCAP) comprising β-cyclodextrin and graphene oxide (GO) modified hyaluronic acid (CD-HA-GO) as the "host" polymer and adamantane-modified four-arm polyethylene glycol (PEG-AD) as the "guest" polymer, and then the CA was loaded into the supramolecular hydrogel (DGHCAP). The results showed that DGHCAP exhibited injectable, high modulus, high CA loading rate (43.38 %) and slow CA releasing ratio (releasing 80 % in 80 h) compared with those of the supramolecular hydrogel without GO (DHCAP). Moreover, the DGHCAP demonstrated excellent compatibility and effect anti-inflammatory (down regulated proinflammatory cytokines such as IL-1β, IL-6, TNF-α and iNOs) in both in vitro and in vivo assays. The supramolecular hydrogels loaded Chinese medicine could provide another method to treat RA in clinical.
Collapse
Affiliation(s)
- Chao Zhou
- School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Weina Hao
- School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jiapei Yao
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Tianjun Zhu
- School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mengdi Sun
- School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yaojun Lu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China; Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China.
| | | |
Collapse
|
17
|
Aydin I, Erisgin Z, Cinar E, Barak MZ, Tekelioglu Y, Usta M, Mutlu HS, Turkoglu I. Should combined MTX and CoQ10 use be reconsidered in terms of steatosis? A biochemical, flow cytometry, histopathological experimental study. Drug Chem Toxicol 2024:1-14. [PMID: 39734089 DOI: 10.1080/01480545.2024.2442660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
In the present study, the effects of coenzyme Q10 (CoQ10), which is widely used in daily life, on the methotrexate (MTX)-induced hepatotoxicity, which is widely used today in malignancies and autoimmune diseases, were examined. Twenty-four female Wistar albino rats were divided into four groups. The group 1 (n = 6) was given 1 mL corn oil by oral gavage (p.o.) during seven days. Group 2 was given 20 mg/kg intraperitoneal (i.p.) MTX only on the first day of the experiment. Group 3 was given 20 mg/kg (i.p.) MTX on the first day of the experiment and 100 mg/kg CoQ10 dissolved in 1 mL corn oil were given by oral gavage during seven days, and group 4 was given 100 mg/kg CoQ10 dissolved in 1 mL corn oil by oral gavage during seven days. At the end of experiment, all animals were euthanized under anesthesia. In the liver tissue, histopathologic analysis on the hematoxylin and eosin (H&E), Masson trichrome, and periodic acid Schiff (PAS) stained sections, apoptotic analysis (% Annexin V positivity) by flow cytometry, and biochemical analysis for oxidative stress markers (GSH, CAT, and TBARS) was performed. According to histopathological analysis, apoptosis, concession, fibrosis, and inflammatory cell infiltration increased in the MTX group and those results significantly decreased in the MTX + CoQ10 groups. As an interesting result, fatty degeneration and TBARS elevation were observed in the MTX + CoQ10 group. As a result, although CoQ10 has protective effects on MTX-induced hepatotoxicity, fatty degeneration due to the combined usage of MTX and CoQ10 should be investigated with further studies.
Collapse
Affiliation(s)
- Ismail Aydin
- Department of General Surgery, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Zuleyha Erisgin
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Esma Cinar
- Department of Pathology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - M Zuhal Barak
- Department of Business, Adana Science and Technic University, Adana, Turkiye
| | - Yavuz Tekelioglu
- Department of Histology and Embryology, Faculty of Medicine, Black Sea Technical University, Trabzon, Turkiye
| | - Murat Usta
- Department of Medical Biochemistry, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Hasan Serdar Mutlu
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| | - Ismail Turkoglu
- Department of Histology and Embryology, Faculty of Medicine, Giresun University, Giresun, Turkiye
| |
Collapse
|
18
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
19
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7965-7986. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Theodoropoulou MA, Mantzourani C, Kokotos G. Histone Deacetylase (HDAC) Inhibitors as a Novel Therapeutic Option Against Fibrotic and Inflammatory Diseases. Biomolecules 2024; 14:1605. [PMID: 39766311 PMCID: PMC11674560 DOI: 10.3390/biom14121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play an essential role in the onset and progression of cancer. As a consequence, a variety of HDAC inhibitors (HDACis) have been developed as potent anticancer agents, several of which have been approved by the FDA for cancer treatment. However, recent accumulated research results have suggested that HDACs are also involved in several other pathophysiological conditions, such as fibrotic, inflammatory, neurodegenerative, and autoimmune diseases. Very recently, the HDAC inhibitor givinostat has been approved by the FDA for an indication beyond cancer: the treatment of Duchenne muscular dystrophy. In recent years, more and more HDACis have been developed as tools to understand the role that HDACs play in various disorders and as a novel therapeutic approach to fight various diseases other than cancer. In the present perspective article, we discuss the development and study of HDACis as anti-fibrotic and anti-inflammatory agents, covering the period from 2020-2024. We envision that the discovery of selective inhibitors targeting specific HDAC isozymes will allow the elucidation of the role of HDACs in various pathological processes and will lead to the development of promising treatments for such diseases.
Collapse
Affiliation(s)
- Maria A. Theodoropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
21
|
Muruganandam A, Migliorini F, Jeyaraman N, Vaishya R, Balaji S, Ramasubramanian S, Maffulli N, Jeyaraman M. Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts. Med Sci (Basel) 2024; 12:72. [PMID: 39728421 PMCID: PMC11677576 DOI: 10.3390/medsci12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases. This article provides an in-depth exploration of the intricate involvement of the GMB in the context of RA. The oral-GMB axis highlights the complex role of bacteria in RA pathogenesis by producing antibodies to citrullinated proteins (ACPAs) through molecular mimicry. Dysbiosis affects Tregs, cytokine levels, and RA disease activity, suggesting that regulating cytokines could be a strategy for managing inflammation in RA. The GMB also has significant implications for drug responses and toxicity, giving rise to the field of pharmacomicrobiomics. The composition of the microbiota can impact the efficacy and toxicity of drugs, while the microbiota's metabolites can influence drug response. Recent research has identified specific bacteria, metabolites, and immune responses associated with RA, offering potential targets for personalised management. However, several challenges, including the variation in microbial composition, establishing causality, accounting for confounding factors, and translating findings into clinical practice, need to be addressed. Microbiome-targeted therapy is still in its early stages and requires further research and standardisation for effective implementation.
Collapse
Affiliation(s)
- Anandanarayan Muruganandam
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
| | - Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, New Delhi 110076, India;
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185 Roma, Italy;
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| |
Collapse
|
22
|
Majidzadeh H, Araj-Khodaei M, Aghanejad A, Ghaffari M, Jafari A, Jenanifard F, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. PAMAM dendrimers based co-delivery of methotrexate and berberine for targeting of Hela cancer cells. Toxicol Rep 2024; 13:101765. [PMID: 39484635 PMCID: PMC11525225 DOI: 10.1016/j.toxrep.2024.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Polyamidoamine dendrimer (PAMAM) is a class of synthetic macromolecular polymers for targeted drug delivery. PAMAM dendrimers are characterized by a pure defined structure, adjustable nanoscale dimensions, mono-dispersity, and versatile surface modification. The objective of this study was to study the covalent coupling of methotrexate (MTX) to PAMAM dendrimer, which was loaded with the natural product anticancer agent, berberine (BER) for the targeting of HeLa cells. The successful preparation of MTX-conjugated PAMAM loaded with BER (MTX-PAMAM-BER) was confirmed by Fourier transform infrared spectroscopy and particle size was evaluated using dynamic light scattering. The biological assays, MTT, flow cytometry, ROS levels evaluation and DAPI staining were used to assess the cytotoxicity effect of the prepared nanosystem. The findings indicated that MTX-PAMAM-BER exhibited greater suppression of tumor cell growth in comparison to BER, MTX, PAMAM-BER, and MTX-PAMAM. Besides, the noteworthy ROS level has been seen in the treated cells with MTX-PAMAM-BER. Finally, it should be stated that the fabricated MTX-PAMAM-BER co-delivery nanosystem could be a promising agent for cancer therapy and targeting.
Collapse
Affiliation(s)
- Hossein Majidzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Jafari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Jenanifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
23
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04634-2. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
24
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
26
|
Lei H, Liu F, Jia M, Ni H, Han Y, Chen J, Wang H, Gu H, Chen Y, Lin Y, Wang P, Yang Z, Cai Y. An overview of the direct interaction of synthesized silver nanostructures and enzymes. Int J Biol Macromol 2024; 279:135154. [PMID: 39214212 DOI: 10.1016/j.ijbiomac.2024.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Silver nanoparticles (AgNPs) have drawn a lot of attention from a variety of fields, particularly the biological and biomedical sciences. As a result, it is acknowledged that AgNPs' direct interactions with macromolecules such as DNA, proteins, and enzymes are essential for both therapeutic and nanotoxicological applications. Enzymes as important catalysts may interact with AgNP surfaces in a variety of ways. Therefore, mechanistic investigation into the molecular effects of AgNPs on enzyme conformation and function is necessary for a comprehensive assessment of their interactions. In this overview, we aimed to overview the various strategies for producing AgNPs. We then discussed the enzyme activity inhibition (EAI) mechanism by nanostructured particles, followed by an in-depth survey of the interaction of AgNPs with different enzymes. Furthermore, various parameters influencing the interaction of NPs and enzymes, as well as the antibacterial and anticancer effects of AgNPs in the context of the enzyme inhibitors, were discussed. In summary, useful information regarding the biological safety and possible therapeutic applications of AgNPs-enzyme conjugates may be obtained from this review.
Collapse
Affiliation(s)
- Haoqiang Lei
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Fengjie Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Meng Jia
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huanhuan Ni
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Yanfeng Han
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Junyuan Chen
- Huangpu People's Hospital of Zhongshan, Zhongshan 528429, China
| | - Huan Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yiqi Chen
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yixuan Lin
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Zhu L, Du J, Dai Y, Shen Y, Li H, Zhang Q, Zhao Q, Zhang Q, Ye X, Qin L, Zhang Q. Morinda officinalis iridoid glycosides alleviate methotrexate-induced liver injury in CIA rats by increasing liver autophagy and improving lipid metabolism homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118486. [PMID: 38914148 DOI: 10.1016/j.jep.2024.118486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morinda officinalis How. is a commonly used traditional Chinese herb with the pharmacological properties of tonifying liver and kidney, and enhancing bone and muscle. Iridoid glycosides are the predominant components of this plant, including monotropein, asperuloside, deacetylasperuloside and deacetylasperulosidic acid with their contents reaching more than 2%. Methotrexate (MTX) is the drug of choice for the treatment of rheumatoid arthritis (RA), but liver injury induced by MTX limits its wider use for RA. Morindaofficinalis iridoid glycoside (MOIG) is reported as having anti-RA and hepatoprotective effects, but the exact efficacy on MTX-induced liver injury and the underlying molecular mechanism remain unclear. AIM To elucidate the mitigating effect of MOIG against liver injury in RA rats treated with MTX, and explore the possible mechanism. MATERIALS AND METHODS The effect and mechanism of MOIG were investigated in Wistar rats with collagen-induced arthritis (CIA) which were then treated with MTX, and MTX-induced hepatocyte injury in vitro. Network pharmacological and transcriptomic analyses were conducted to predict the possible mechanisms of MOIG in mitigating MTX-induced liver injury, and lipidomic analysis was performed to further verify the regulatory effects of MOIG on lipid metabolism. BRL-3A hepatocytes were used to evaluate the regulatory effects of MOIG against MTX-associated liver injury. RESULTS MOIG treatment enhanced the anti-RA effect of MTX, and mitigated oxidative damage, inflammation and apoptosis of liver tissues in CIA rats treated with MTX. Network pharmacological and transcriptomic analyses demonstrated that MOIG attenuated liver injury by regulating autophagy and lipid metabolism. The result of lipidomic analysis showed that MOIG reversed the disturbance of lipid metabolism of the liver tissue in CIA rats after MTX treatment. In addition, MOIG also inhibited the apoptosis, reduced the levels of lactate dehydrogenase (LDH), aspartate aminotransferase (ALT) and alanine aminotransferase (AST), regulated oxidative stress, and increased the formation of autophagosome and translocation of LC3 in the nucleus and expression of autophagy regulatory genes Beclin-1, ATG5, LC3Ⅱ, ATG7 and ATG12 in hepatocytes subjected to MTX damage. CONCLUSION Our findings demonstrated that MOIG could ameliorate MTX-induced liver injury in the treatment of RA through increasing hepatocyte autophagy and improving lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Lulin Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Jinman Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanyuan Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Heming Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xinyuan Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
28
|
Timmermans EPM, Blankevoort J, Grinwis GCM, Mesu SJ, Gehring R, Delhanty PJD, Maas PEM, Strous GJ, Mol JA. In Vivo Effects of a GHR Synthesis Inhibitor During Prolonged Treatment in Dogs. Pharmaceuticals (Basel) 2024; 17:1381. [PMID: 39459020 PMCID: PMC11510805 DOI: 10.3390/ph17101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The activation of the growth hormone receptor (GHR) is a major determinant of body growth. Defective GHR signaling, as seen in human Laron dwarfism, resulted in low plasma IGF-1 concentrations and limited growth, but also marked absence in the development of breast cancer and type 2 diabetes. In vitro, we identified a small molecule (C#1) that inhibits the translation of GHR mRNA to receptor protein. Methods: Before its application in humans as a potential anticancer drug, C#1 was tested in animals to evaluate whether it could be administered to achieve a plasma concentration in vivo that inhibits cell proliferation in vitro without causing unwanted toxicity. To evaluate the efficacy and toxicity of C#1, a group of six intact female Beagle dogs was treated daily each morning for 90 days with an oral solution of C#1 in Soiae oleum emulgatum at a dose of 0.1 mg/kg body weight. During treatment, dogs were closely monitored clinically, and blood samples were taken to measure plasma C#1 concentrations, complete blood counts (CBC), clinical chemistry, and endocrinology. At the end of the treatment, dogs were euthanized for gross and histopathological analysis. An additional group of six female Beagle dogs was included for statistical reasons and only evaluated for efficacy during treatment for 30 days. Results: Daily administration of C#1 resulted in a constant mean plasma concentration of approximately 50 nmol/L. In both groups, two out of six dogs developed decreased appetite and food refusal after 4-5 weeks, and occasionally diarrhea. No significant effects in CBC or routine clinical chemistry were seen. Plasma IGF-1 concentrations, used as biomarkers for defective GHR signaling, significantly decreased by 31% over time. As plasma growth hormone (GH) concentrations decreased by 51% as well, no proof of GHR dysfunction could be established. The measured 43% decrease in plasma acylated/non-acylated ghrelin ratios will also lower plasma GH concentrations by reducing activation of the GH secretagogue receptor (GHSR). C#1 did not directly inhibit the GHSR in vivo, as shown in vitro. There were no significant effects on glucose, lipid, or folate/homocysteine metabolism. Conclusions: It is concluded that with daily dosing of 0.1 mg C#1/kg body weight, the induction of toxic effects prevented further increases in dosage. Due to the concomitant decrease in both IGF-1 and GH, in vivo inhibition of GHR could not be confirmed. Since the concept of specific inhibition of GHR synthesis by small molecules remains a promising strategy, searching for compounds similar to C#1 with lower toxicity should be worthwhile.
Collapse
Affiliation(s)
- Elpetra P. M. Timmermans
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| | - Joëlle Blankevoort
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Pathology Division, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Sietske J. Mesu
- Department Population Health Sciences, Institute for Risk assessment Sciences (IRAS), 3584 CM Utrecht, The Netherlands; (S.J.M.); (R.G.)
| | - Ronette Gehring
- Department Population Health Sciences, Institute for Risk assessment Sciences (IRAS), 3584 CM Utrecht, The Netherlands; (S.J.M.); (R.G.)
| | - Patric J. D. Delhanty
- Department Internal Medicine, Endocrinology, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands;
| | - Peter E. M. Maas
- Specs Compound Handling B.V., 2712 PB Zoetermeer, The Netherlands;
| | - Ger J. Strous
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands;
| | - Jan A. Mol
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| |
Collapse
|
29
|
Mangoni AA, Wiese MD, Woodman RJ, Sotgia S, Zinellu A, Carru C, Hulin JA, Shanahan EM, Tommasi S. Methotrexate, blood pressure and arterial function in rheumatoid arthritis: study protocol. Future Cardiol 2024; 20:671-683. [PMID: 39387403 PMCID: PMC11552479 DOI: 10.1080/14796678.2024.2411167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
This article discusses the rationale and design of the study "Methotrexate, blood pressure, and arterial function in rheumatoid arthritis". The recognition that immune activation and excess inflammation favor atherosclerosis has stimulated a significant body of research not only to identify new drugs targeting these pathways but also to repurpose (reposition) existing immunomodulatory medications as atheroprotective agents. Observational studies in patients with rheumatoid arthritis have reported that treatment with methotrexate, a traditional disease-modifying antirheumatic drug, is associated with a significantly lower risk of cardiovascular morbidity and mortality when compared with other disease-modifying antirheumatic drugs. One potential mechanism accounting for the reduced cardiovascular risk associated with methotrexate is the lowering effect on arterial blood pressure. However, such effect has only been observed in cross-sectional and observational studies. Given the established role of hypertension as a leading cardiovascular risk factor, these observations justify an intervention comparison study, the focus of this article, investigating the temporal effects of methotrexate on blood pressure and various surrogate markers of atherosclerosis in patients with rheumatoid arthritis. The results of this study might lead to the repurposing of methotrexate for cardiovascular prevention in patients with and without autoimmune disorders.Clinical Trial Registration: NCT03254589 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Arduino A Mangoni
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, Australia
- Department of Clinical Pharmacology, Finders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, Australia
| | - Richard J Woodman
- Centre for Epidemiology & Biostatistics, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Medical Oncology Unit, University Hospital (AOUSS), Sassari, Italy
| | - Julie-Ann Hulin
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, Australia
| | - E Michael Shanahan
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, Australia
- Department of Rheumatology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Sara Tommasi
- College of Medicine & Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, Australia
- Department of Clinical Pharmacology, Finders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
30
|
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2-Secondary Immunodeficiencies. Healthcare (Basel) 2024; 12:1977. [PMID: 39408157 PMCID: PMC11477378 DOI: 10.3390/healthcare12191977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are among the most common chronic diseases, generating high social and economic costs. Secondary immunodeficiencies occur more often than primary ones and may result from the co-occurrence of specific diseases, treatment, nutrient deficiencies and non-nutritive bio-active compounds that result from the industrial nutrient practices. OBJECTIVES The aim of this article is to present selected secondary immunodeficiencies and their impact on the cardiovascular system. RESULTS The treatment of a patient with cardiovascular disease should include an assess-ment for immunodeficiencies, because the immune and cardiovascular systems are closely linked. CONCLUSIONS Immune system dysfunctions can significantly affect the course of cardiovascular diseases and their treatment. For this reason, comprehensive care for a patient with cardiovascular disease requires taking into account potential immunodeficiencies, which can have a significant impact on the patient's health.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| | - Agata Doligalska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Dariusz Łaszczych
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Marcin Dolina
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland; (A.D.); (M.D.); (M.C.); (D.Ł.); (M.D.); (B.S.); (O.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Torun, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
31
|
Salimi M, Adibifar A, Rostamkhani N, Karami Z, Agh-Atabay AH, Abdi Z, Rostamizadeh K. Bovine serum albumin-coated ZIF-8 nanoparticles to enhance antitumor and antimetastatic activity of methotrexate: in vitro and in vivo study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2294-2314. [PMID: 39037940 DOI: 10.1080/09205063.2024.2379652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
In this study, a bovine serum albumin-decorated zeolitic imidazolate framework (ZIF-8@BSA) was used to enhance the anticancer and antimetastatic properties of methotrexate. SEM, DLS, FT-IR, and XRD confirmed the physicochemical suitability of the developed nanoparticles. According to the SEM analysis, the mean size of ZIF-8 nanoparticles was 68.5 ± 13.31 nm. The loading capacity and encapsulation efficiency of MTX@ZIF-8@BSA were 28.77 ± 2.54% and 96.3 ± 0.67%, respectively. According to the in vitro hemolysis test, MTX@ZIF-8@BSA showed excellent blood compatibility. MTX@ZIF-8@BSA exhibited pH sensitivity, releasing more MTX at pH 5.4 (1.73 times) than at pH 7.4. The IC50 value of MTX@ZIF-8@BSA on 4T1 cells was 32.7 ± 7.3 µg/mL after 48 h of treatment, outperforming compared to free MTX with an IC50 value of 53.3 ± 3.7 µg/mL. Treatment with MTX@ZIF-8@BSA resulted in superior tumor growth suppression in tumor-bearing mice than free MTX. Furthermore, based on histopathology tests, MTX@ZIF-8@BSA reduced the metastasis in lung and liver tissues. While there was not any noticeable toxicity in the vital organs of MTX@ZIF-8@BSA-receiving mice, free methotrexate resulted in severe toxicity in the kidneys and liver. According to the preliminary in vitro and in vivo findings, MTX@ZIF-8@BSA presents an attractive drug delivery system candidate for breast cancer due to its enhanced antitumor efficacy and lower toxicity.
Collapse
Affiliation(s)
- Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Zahra Abdi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of WA, Seattle, WA, USA
| |
Collapse
|
32
|
Aggarwal K, Singh B, Goel A, Agrawal DK, Bansal S, Kanagala SG, Anamika F, Gupta A, Jain R. Complex dichotomous links of nonalcoholic fatty liver disease and inflammatory bowel disease: exploring risks, mechanisms, and management modalities. Intest Res 2024; 22:414-427. [PMID: 38835139 PMCID: PMC11534450 DOI: 10.5217/ir.2024.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be linked to inflammatory bowel disease (IBD) due to established risk factors such as obesity, age, and type 2 diabetes in numerous studies. However, alternative research suggests that factors related to IBD, such as disease activity, duration, and drug-induced toxicity, can contribute to NAFLD. Recent research findings suggest IBD relapses are correlated with dysbiosis, mucosal damage, and an increase in cytokines. In contrast, remission periods are characterized by reduced metabolic risk factors. There is a dichotomy evident in the associations between NAFLD and IBD during relapses and remissions. This warrants a nuanced understanding of the diverse influences on disease manifestation and progression. It is possible to provide a holistic approach to care for patients with IBD by emphasizing the interdependence between metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Kanishk Aggarwal
- Department of Medicine, Dayanand Medical College, Ludhiana, India
| | - Bhupinder Singh
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | - Abhishek Goel
- Department of Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, USA
| | | | - Sourav Bansal
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | | | - Fnu Anamika
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | | | - Rohit Jain
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
33
|
Yin S, Xu P, Jiang Y, Yang X, Lin Y, Zheng M, Hu J, Zhao Q. Predicting the potential associations between circRNA and drug sensitivity using a multisource feature-based approach. J Cell Mol Med 2024; 28:e18591. [PMID: 39347936 PMCID: PMC11441279 DOI: 10.1111/jcmm.18591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
The unique non-coding RNA molecule known as circular RNA (circRNA) is distinguished from conventional linear RNA by having a longer half-life, greater degree of conservation and inherent solidity. Extensive research has demonstrated the profound impact of circRNA expression on cellular drug sensitivity and therapeutic efficacy. There is an immediate need for the creation of efficient computational techniques to anticipate the potential correlations between circRNA and drug sensitivity, as classical biological research approaches are time-consuming and costly. In this work, we introduce a novel deep learning model called SNMGCDA, which aims to forecast the relationships between circRNA and drug sensitivity. SNMGCDA incorporates a diverse range of similarity networks, enabling the derivation of feature vectors for circRNAs and drugs using three distinct calculation methods. First, we utilize a sparse autoencoder for the extraction of drug characteristics. Subsequently, the application of non-negative matrix factorization (NMF) enables the identification of relationships between circRNAs and drugs based on their shared features. Additionally, the multi-head graph attention network is employed to capture the characteristics of circRNAs. After acquiring the characteristics from these three separate components, we combine them to form a unified and inclusive feature vector for each cluster of circRNA and drug. Finally, the relevant feature vectors and labels are inputted into a multilayer perceptron (MLP) to make predictions. The outcomes of the experiment, obtained through 5-fold cross-validation (5-fold CV) and 10-fold cross-validation (10-fold CV), demonstrate SNMGCDA outperforms five other state-of-art methods in terms of performance. Additionally, the majority of case studies have predominantly confirmed newly discovered correlations by SNMGCDA, thereby emphasizing its reliability in predicting potential relationships between circRNAs and drugs.
Collapse
Affiliation(s)
- Shuaidong Yin
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Peng Xu
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Yefeng Jiang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Xin Yang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Ye Lin
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Manyu Zheng
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jinpeng Hu
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
34
|
Ding L, Park DH, Gao B, Wu L, Li M, Abedelhakim H, Zhang M. Low dose methotrexate impaired T cell transmigration through down-regulating CXCR4 expression in rheumatoid arthritis (RA). Arthritis Res Ther 2024; 26:173. [PMID: 39350214 PMCID: PMC11440717 DOI: 10.1186/s13075-024-03403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND CXC chemokine CXCL12 is involved in the pathological development of rheumatoid arthritis (RA) through abnormal migration of peripheral immune cells in the joint. Although low dose methotrexate (MTX) is clinically used to treat RA patients, CXCL12 signaling responses to MTX-mediated treatments is still not well understood. METHODS In this study, we examined the expression of CXCR4 (cognatic receptor for CXCL12) in peripheral T cells from RA patients and arthritis mice models received from low dose MTX therapies. The effects of low dose MTX on CXCR4 were further determined via both in vitro CD3+ T cells and Cxcr4 conditional knockout (CKO) arthritis mice models. RESULTS Our clinical data shows that low dose MTX treatment was clinically associated with down-regulated expression of chemokine receptor CXCR4 on patient peripheral T cells. In vitro, low dose MTX significantly decreased cell transmigration through down-regulated CXCR4's expression in CD3+ T cells. Consistently, CD3+ T cells treated with low dose MTX demonstrated an increased genomic hypermethylation across the promoter region of Cxcr4 gene. Furthermore, our preclinical studies showed that low dose MTX-mediated downregulation of CXCR4 significantly improved the pathological development in mouse arthritis models. Conditional disruption of the Cxcr4 gene in peripheral immune cells potentially alleviated inflammation of joints and lung tissue in the arthritis mice, though genetic modification itself overall did not change their clinical scores of arthritis, except for a significant improvement on day 45 in CXCR4 CKO arthritis mice models during the recovery phase. CONCLUSION Our findings suggest that the effect of low dose MTX treatment could serve to eliminate inflammation in RA patients through impairment of immune cell transmigration mediated by CXCR4.
Collapse
MESH Headings
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Animals
- Methotrexate/pharmacology
- Down-Regulation/drug effects
- Humans
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Mice
- Mice, Knockout
- Antirheumatic Agents/pharmacology
- Male
- Female
- Middle Aged
- Cell Movement/drug effects
- Mice, Inbred C57BL
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
Collapse
Affiliation(s)
- Lei Ding
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Daniel H Park
- Pediatric Emergency Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bo Gao
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan, 644000, China
| | - Lingyuan Wu
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Meizhang Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66103, USA
| | - Haitham Abedelhakim
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd. 4019 Wahl Hall East, MS 3040, Kansas City, KS, 66103, USA.
| | - Ming Zhang
- Institute of Neuroscience, Kunming Medical University, 931 Basic Medical Blvd. 1168 Chunrong West Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
35
|
Hamishegi FS, Singh R, Baruah D, Chamberlin J, Hamouda M, Akkaya S, Kabakus I. Drug-induced Acute Lung Injury: A Comprehensive Radiologic Review. J Thorac Imaging 2024:00005382-990000000-00159. [PMID: 39330765 DOI: 10.1097/rti.0000000000000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Drug-induced acute lung injury is a significant yet often underrecognized clinical challenge, associated with a wide range of therapeutic agents, including chemotherapy drugs, antibiotics, anti-inflammatory drugs, and immunotherapies. This comprehensive review examines the pathophysiology, clinical manifestations, and radiologic findings of drug-induced acute lung injury across different drug categories. Common imaging findings are highlighted to aid radiologists and clinicians in early recognition and diagnosis. The review emphasizes the importance of immediate cessation of the offending drug and supportive care, which may include corticosteroids. Understanding these patterns is crucial for prompt diagnosis and management, potentially improving patient outcomes.
Collapse
Affiliation(s)
| | - Ria Singh
- Osteopathic Medical School, Kansas City University, Kansas, MO
| | - Dhiraj Baruah
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Jordan Chamberlin
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Mohamed Hamouda
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Selcuk Akkaya
- Department of Radiology and Radiological Science, Karadeniz Technical University, Trabzon, Turkey
| | - Ismail Kabakus
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
36
|
Jesuthasan A, Baheerathan A, Auger S, Dorsey R, Coker R, Selvapatt N, Viegas S. Methotrexate for the neurologist. Pract Neurol 2024; 24:369-375. [PMID: 38821881 DOI: 10.1136/pn-2024-004156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/02/2024]
Abstract
The use of methotrexate in clinical practice has expanded significantly in recent years, as an effective chemotherapeutic agent as well as disease-modifying treatment for conditions such as rheumatoid arthritis, psoriasis and Crohn's disease. It is also used as a steroid-sparing agent for a range of inflammatory diseases of the central and peripheral nervous systems. Clinical neurologists must, therefore, know how to start and uptitrate methotrexate, its monitoring requirements and its potential toxicities. This review aims first to explore the evidence base for using methotrexate in various neurological diseases and second to discuss important practicalities around its use, ensuring its safe application and appropriate monitoring.
Collapse
Affiliation(s)
| | | | - Stephen Auger
- Department of Neurology, Charing Cross Hospital, London, UK
| | - Rachel Dorsey
- Department of Neurology, Charing Cross Hospital, London, UK
| | - Robina Coker
- Department of Respiratory Medicine, Hammersmith Hospital, London, UK
| | | | - Stuart Viegas
- Department of Neurology, Charing Cross Hospital, London, UK
| |
Collapse
|
37
|
Olivo LB, de Oliveira Henz P, Wermann S, Dias BB, Porto GO, Pinhatti AV, Martins MD, Gregianin LJ, Costa TD, de Araújo BV. Anticipating Leucovorin Rescue Therapy in Patients with Osteosarcoma through Methotrexate Population Pharmacokinetic Model. Pharmaceutics 2024; 16:1180. [PMID: 39339216 PMCID: PMC11434990 DOI: 10.3390/pharmaceutics16091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Methotrexate (MTX), which presents high inter-individual variability, is part of the Brazilian Osteosarcoma Treatment Group (BOTG) protocol. This work aimed to develop a MTX population pharmacokinetic model (POPPK) for Brazilian children with osteosarcoma (OS) following the BOTG protocol to guide rescue therapy and avoid toxicity. The model was developed in NONMEM 7.4 (Icon®) using retrospective sparse data from MTX therapeutic drug monitoring of children attending a southern Brazilian public reference hospital. Data were described by a two-compartment model using 216 MTX cycles from 32 patients (5-18 y.o.) with OS who received 12 g/m2 dose/cycle. To explain inter-individual and inter-occasion variability in clearance and peripheral volume, covariates from demographic and biochemical data were evaluated. Serum creatinine was a significant covariate of MTX clearance (14.8 L/h), and the body surface area (BSA) was significant for central compartment volume (82.5 L). Inter-compartmental clearance and volume of peripheral compartment were 0.178 L/h and 5.72 L, respectively. The model adequately describes MTX exposure in Brazilian children with OS. Successful simulations were performed to predict MTX concentrations in pediatric patients above five years old with acute kidney injury and anticipate rescue therapy adjustments.
Collapse
Affiliation(s)
- Laura Ben Olivo
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
| | - Pricilla de Oliveira Henz
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
| | - Sophia Wermann
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
| | - Bruna Bernar Dias
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
| | - Gabriel Osorio Porto
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
| | - Amanda Valle Pinhatti
- Medical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | | | - Lauro José Gregianin
- Pediatric Oncology Service, Hospital de Clínicas de Porto Alegre, Department of Pediatrics, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Teresa Dalla Costa
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
| | - Bibiana Verlindo de Araújo
- Pharmacokinetics and PK/PD Modeling Laboratory, Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave., Santana, Porto Alegre 90610-000, RS, Brazil
- Medical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| |
Collapse
|
38
|
An J, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother 2024; 178:117258. [PMID: 39111083 DOI: 10.1016/j.biopha.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024] Open
Abstract
Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.
Collapse
Affiliation(s)
- Junling An
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Zequn Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Jinrui Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China.
| | - Lingyang Zhang
- Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, People's Republic of China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
39
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
40
|
Akbulut S, Kucukakcali Z, Sahin TT, Colak C, Yilmaz S. Role of Epigenetic Factors in Determining the Biological Behavior and Prognosis of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:1925. [PMID: 39272711 PMCID: PMC11394249 DOI: 10.3390/diagnostics14171925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The current study's objective is to evaluate the molecular genetic mechanisms influencing the biological behavior of hepatocellular carcinoma (HCC) by analyzing the transcriptomic and epigenetic signatures of the tumors. METHODS Transcriptomic data were downloaded from the NCBI GEO database. We investigated the expression differences between the GSE46444 (48 cirrhotic tissues versus 88 HCC tissues) and GSE63898 (168 cirrhotic tissues versus 228 HCC tissues) data sets using GEO2R. Differentially expressed genes were evaluated using GO and KEGG metabolic pathway analysis websites. Whole genome bisulfite sequencing (WGBS) and Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) data sets (26 HCC tissues versus 26 adjacent non-tumoral tissues) were also downloaded from the NCBI SRA database. These data sets were analyzed using Bismark and QSEA, respectively. The methylation differences between the groups were assessed using functional enrichment analysis. RESULTS In the GSE46444 data set, 80 genes were upregulated, and 315 genes were downregulated in the tumor tissue (HCC tissue) compared to the non-tumor cirrhotic tissue. In the GSE63898 data set, 1261 genes were upregulated, and 458 genes were downregulated in the cirrhotic tissue compared to the tumor tissues. WGBS revealed that 20 protein-coding loci were hypermethylated. while the hypomethylated regions were non-protein-coding. The methylated residues of the tumor tissue, non-tumorous cirrhotic tissue, and healthy tissue were comparable. MeDIP-Seq, conducted on tumoral and non-tumoral tissues, identified hypermethylated or hypomethylated areas as protein-coding regions. The functional enrichment analysis indicated that these genes were related to pathways including peroxisome, focal adhesion, mTOR, RAP1, Phospholipase D, Ras, and PI3K/AKT signal transduction. CONCLUSIONS The investigation of transcriptomic and epigenetic mechanisms identified several genes significant in the biological behavior of HCC. These genes present potential targets for the development of targeted therapy.
Collapse
Affiliation(s)
- Sami Akbulut
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Tevfik Tolga Sahin
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
41
|
Tang W, Hou H, Wang H, Gao X, Zhao F, Di Y, Ji S, Ling P, Wang F, Sun F, Tan H. Methotrexate-Loaded Chitosan Oligosaccharide-ES2 for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44409-44427. [PMID: 39162197 DOI: 10.1021/acsami.4c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cancer presents a significant health threat, necessitating the development of more precise, efficient, and less damaging treatment approaches. To address this challenge, we employed the 1-ethyl-(3-dimethyl aminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) catalytic system and utilized quaternized chitosan oligosaccharide (HTCOSC) as a drug carrier to construct a nanoparticle delivery system termed HTCOSC-cRGD-ES2-MTX (CREM). This system specifically targets integrin αvβ3 on tumor cell surfaces and enables simultaneous loading of the antiangiogenic agent ES2 (IVRRADRAAVP) and the chemotherapy drug methotrexate (MTX). Due to its amphiphilic properties, CREM self-assembles into nanoparticles in aqueous solution, exhibiting an average diameter of 179.47 nm. Comparative studies demonstrated that CREM, in contrast to free ES2 and MTX-free nanoparticles (CRE), significantly suppressed the proliferation of EAhy926 endothelial cells and B16 melanoma cells in vitro, resulting in inhibition rates of 71.18 and 82.25%, respectively. Furthermore, CREM exhibited a hemolysis rate below 2%, indicating excellent in vitro antiangiogenic and antitumor activity as well as favorable blood compatibility. Additionally, both CRE and CREM demonstrated favorable tumor targeting capabilities through the specific binding action of cyclic RGD (cRGD) to integrin αvβ3. Further in vivo investigations revealed that CREM induced apoptosis in tumor cells via the mitochondrial apoptotic pathway and reduced the expression of angiogenic factors such as vascular endothelial growth factor (VEGF), thereby inhibiting tumor angiogenesis. This potent antitumor effect was evident through a tumor suppression rate of 80.19%. Importantly, histopathological staining (HE staining) demonstrated the absence of significant toxic side effects of CREM on various organs compared to MTX. In conclusion, the CREM nano drug delivery system synergistically enhances the therapeutic efficacy of antiangiogenic drugs and chemotherapeutic agents, thus offering a novel targeted approach for cancer treatment.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Hanlin Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Yuhan Di
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Shengli Ji
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- ReaLi Tide Biological Technology (Weihai) Co., Ltd, Weihai 264207, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Costanzo G, Ledda AG, Sambugaro G. State of the art: the treatment of systemic lupus erythematosus. Curr Opin Allergy Clin Immunol 2024; 24:266-273. [PMID: 38788118 DOI: 10.1097/aci.0000000000000996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with dysregulated cells in the immune system. The disease affects organs like kidneys, nervous system, joints, and skin. To manage SLE effectively, novel treatments targeting immune system components have been developed. This review investigates the therapeutic potential of existing targeted therapies and explores future innovative approaches for well tolerated, personalized treatment. RECENT FINDINGS SLE treatment involves cytokine targets and specific immunologic pathways, with even small molecules involved. SUMMARY The advanced therapeutic options in SLE management give clinicians more tools to control disease activity according to personalized medicine.
Collapse
Affiliation(s)
- Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
43
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
44
|
Khavkin AI, Permyakova AA, Tsepilova MO, Kaplina AV, Sitkin SI, Surkov AN, Getmanov SD. Modern View on Very Early Onset and Early Onset Inflammatory Bowel Diseases in Children. CURRENT PEDIATRICS 2024; 23:145-151. [DOI: 10.15690/vsp.v23i3.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nowadays, an urgent problem of pediatric gastroenterology is the study of inflammatory bowel diseases with very early onset (VEO-IBD), which have unique genetic, clinical, immunological, morphological, and laboratory sings. Early VEO-IBD is usually considered as monogenic disease, especially in combination with congenital immune defects, which leads to difficulties in diagnosis and management this pathology. Despite this, systematization of information about this group of nosological forms of IBD is practically not carried out. This article presents a review of the available information on etiological factors, course variants, and therapeutic options for VEO-IBD.
Collapse
Affiliation(s)
| | | | | | | | - Stanislav I. Sitkin
- Almazov National Medical Research Centre; North-Western State Medical University named after I.I. Mechnikov
| | - Andrey N. Surkov
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | | |
Collapse
|
45
|
Yavuz Türel G, Aslan Koşar P. Protective efficacy of ramelteon on methotrexate-induced DNA damage. Drug Chem Toxicol 2024:1-7. [PMID: 38984403 DOI: 10.1080/01480545.2024.2375300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Ramelteon (RMLT) is a melatonin receptor agonist that it has antioxidative and anti-inflammatory effects associated with DNA damage through different mechanisms of action. In this regard, we investigated the potential usefulness of RMLT as a protective agent against methotrexate (MTX)-induced DNA damage. Four groups were constituted from 32 Wistar albino rats: Negative control, RMLT, MTX, and MTX + RMLT. Twenty mg/kg MTX (i.p., single dose) and RMLT 10 mg/kg (oral, 7 days) was administered. Comet assay was used and the parameter %TailDNA was used to detect DNA damage. %TailDNA was 4.90 ± 0.19 in the control group, 7.85 ± 0.33 in the MTX group, 5.49 ± 0.24 in the RMLT group, and 5.86 ± 0.23 in the MTX + RMLT group. While there was a significant increase in DNA damage in the MTX-treated group compared to the control group, there was a significant reduction in DNA damage in the MTX + RMLT group, compared to the MTX group (p < 0.001). In conclusion, it was observed that combined treatment with RMLT significantly reduced MTX-induced DNA damage.
Collapse
Affiliation(s)
- Gülçin Yavuz Türel
- Faculty of Medicine, Department of Medical Biology, Süleyman Demirel University, Isparta, Turkey
| | - Pınar Aslan Koşar
- Faculty of Medicine, Department of Medical Biology, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
46
|
Gamal RM, Hazem SH, Hamed MF, Abdelaziz RR. PI3K inhibitor "alpelisib" alleviates methotrexate induced liver injury in mice and potentiates its cytotoxic effect against MDA-MB-231 triple negative breast cancer cell line. Toxicol Appl Pharmacol 2024; 488:116979. [PMID: 38797265 DOI: 10.1016/j.taap.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Hepatotoxicity is the main off-target effect of methotrexate (MTX) limiting its effective clinical use. Besides, MDA-MB231 breast cancer cells show chemoresistance, partly via PI3K/AKT pathway. Therefore, we investigated the ameliorative potentials of the PI3K inhibitor, alpelisib (ALP) on MTX-induced hepatotoxicity (in vivo) and the restraining potentials of ALP on MDA-MB231 chemoresistance to MTX (in vitro). Twenty-eight male BALB/c mice were divided into 4 groups. In treatment groups, mice were administered ALP (2.5 and 5 mg/kg) for 5 days and MTX (20 mg/kg) from day 2 till day 5. The results showed that ALP restored hepatic architecture, reduced immune cell infiltration (F4/80, Ly6G and MPO) and repressed the rise in liver enzymes (AST and ALT) induced by MTX. Additionally, ALP rectified the MTX-induced disruption of cellular oxidant status by boosting antioxidant defense systems (HO-1 and GSH) and repressing lipid peroxidation (MDA and 4-HNE). Finally, ALP curbed MTX-induced hepatocyte apoptosis (NF-κB and BAX) and shifted the cytokine milieu away from inflammation (IL-17, IL-22, IL-6 and IL- 10). The results of the in vitro experiments revealed that ALP alone and in combination with MTX, synergistically, reduced cancer cell viability (MTT assay), migration (wound healing assay) and their capacity to establish colonies (colony formation assay) as compared to MTX alone. RT-PCR revealed the antiproliferative (Bcl-2) and proapoptotic (BAX) potentials of ALP and ALP/MTX combination especially after 24 h. In conclusion, targeting PI3K/AKT pathway is a promising strategy in triple negative breast cancer patients by ameliorating hepatotoxicity and restraining chemoresistance to chemotherapy.
Collapse
Affiliation(s)
- Rana M Gamal
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Rania R Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
47
|
Imran M, Ali S, Ibrahim AA, Amjad A, Tanveer A, Khalil S, Ali M, Abuelazm M. Effect of methotrexate hold on COVID-19 vaccine response in the patients with autoimmune inflammatory disorders: a systematic review and meta-analysis. Clin Rheumatol 2024; 43:2203-2214. [PMID: 38802670 DOI: 10.1007/s10067-024-07013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Immunosuppressants, such as methotrexate (MTX), can suppress the COVID-19 vaccine response in patients with autoimmune diseases. Thus, this study aims to evaluate the effects of MTX hold following COVID-19 vaccination on vaccine efficacy response. A systematic review and meta-analysis of relevant studies retrieved from Web of Science, SCOPUS, PubMed, and CENTRAL from inception until Oct 1, 2023, was conducted. Covidence was used to screen the eligible articles, and all relevant outcomes data were synthesized using risk ratios (RRs) or standardized mean differences (SMDs) with 95% confidence intervals (CIs) in meta-analysis models within RevMan 5.4. PROSPERO ID: CRD42024511628. Four studies with a total of 762 patients with autoimmune inflammatory disorders were included. Holding MTX following the COVID-19 vaccination for approximately 2 weeks was associated with significantly higher antibody titer (SMD: 0.70, 95% CI [0.54, 0.87], P < 0.00001). However, the flare rate was significantly higher in the MTX hold group based on CDAI > 10 or DAS28-CRP > 1.2 either after 1st dose (RR: 2.49 with 95% CI [1.39, 4.47], P = 0.002) or 2nd dose (RR: 2.16 with 95% CI [1.37, 3.41], P = 0.0009) and self-reported disease flare (RR: 1.71 with 95% CI [1.35, 2.17], P < 0.00001). Holding MTX for 2 weeks after the COVID-19 vaccination resulted in significantly higher antibody titer but also had a higher disease flare rate, necessitating cautious clinical monitoring during this period. There is still a need to investigate safer MTX hold duration, considering patients' vulnerability to COVID-19, disease status, and demographics while adopting this strategy.
Collapse
Affiliation(s)
- Muhammad Imran
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan.
| | - Shujaat Ali
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | | | - Areeb Amjad
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | - Aiman Tanveer
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | - Saba Khalil
- Faculty of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Mansab Ali
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
48
|
Haghsay Khashechi E, Afaghmehr A, Heydari N, Barfar A, Shokri J. Laser-mediated Solutions: Breaking Barriers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:142. [PMID: 38898170 DOI: 10.1208/s12249-024-02849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Skin diseases pose challenges in treatment due to the skin's complex structure and protective functions. Topical drug delivery has emerged as a preferred method for treating these conditions, offering localized therapy with minimal systemic side effects. However, the skin's barrier properties frequently limit topical treatments' efficacy by preventing drug penetration into deeper skin layers. In recent years, laser-assisted drug delivery (LADD) has gained attention as a promising strategy to overcome these limitations. LADD involves using lasers to create microchannels in the skin, facilitating the deposition of drugs and enhancing their penetration into the target tissue. Several lasers, such as fractional CO2, have been tested to see how well they work at delivering drugs. Despite the promising outcomes demonstrated in preclinical and clinical studies, several challenges persist in implementing LADD, including limited penetration depth, potential tissue damage, and the cost of LADD systems. Furthermore, selecting appropriate laser parameters and drug formulations is crucial to ensuring optimal therapeutic outcomes. Nevertheless, LADD holds significant potential for improving treatment efficacy for various skin conditions, including skin cancers, scars, and dermatological disorders. Future research efforts should focus on optimizing LADD techniques, addressing safety concerns, and exploring novel drug formulations to maximize the therapeutic benefits of this innovative approach. With continued advancements in laser technology and pharmaceutical science, LADD has the potential to revolutionize the field of dermatology and enhance patient care.
Collapse
Affiliation(s)
| | | | - Niloofar Heydari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ashkan Barfar
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
- Department of pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Shokri
- Department of pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Alfieri A, Dewi ST, Siswati AS, Pudjiati SR, Soebono H. Erythema nodosum leprosum necroticans: a case report of an atypical severe type 2 leprosy reaction and literature review. LE INFEZIONI IN MEDICINA 2024; 32:248-253. [PMID: 38827837 PMCID: PMC11142419 DOI: 10.53854/liim-3202-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Until now, leprosy remains a problem and challenge in the world because it can cause disability and morbidity in affected individuals, including problems due to the emergence of type 2 lepra reaction or erythema nodosum leprosum (ENL). The clinical picture of ENL can appear in an atypical and severe form, called ENL necroticans (ENN), which becomes a problem in diagnosis and therapy. We report a 17-year-old female with lepromatous leprosy and ENN who received therapy in the form of a combination of steroids and methotrexate. Four months after consuming this therapy, the ulcers on the patient's body improved, leaving atrophic and hypertrophic scars. ENN's unusual clinical presentation poses diagnostic difficulties in that its appearance does not follow the typical patterns, making it challenging to identify correctly. Furthermore, managing cases of ENN may necessitate supplementary treatment beyond steroids alone.
Collapse
Affiliation(s)
- Alessandro Alfieri
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Shinta Trilaksmi Dewi
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Agnes Sri Siswati
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Satiti Retno Pudjiati
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Hardyanto Soebono
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada/Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
50
|
Abdel-Reheim MA, Ali GF, Hassanein EHM, Mohamed WR. Role of Nrf2/HO-1, PPAR-γ, and cytoglobin signals in the pathogenesis of methotrexate-induced testicular intoxication in rats and the protective effect of diacerein. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4235-4246. [PMID: 38060042 DOI: 10.1007/s00210-023-02876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Methotrexate (MTX) is an inhibitor of folic acid reductase used in managing a variety of malignancies. Testicular injury by MTX is one of its serious adverse effects. The current investigation aims to assess the protective effects of diacerein (DIA) on testicular injury by MTX and clarify the possible underlying mechanisms. Testicular injury in rats was induced by a single injection of 20 mg/kg body weight of MTX. DIA was given in 25 mg/kg body weight/day and 50 mg/kg body weight/day doses for 10 days. Compared to the MTX group, DIA attenuated testicular intoxication as evidenced by improvement of testicular histopathological abnormalities and increased serum testosterone and luteinizing hormone. DIA attenuated testicular oxidative stress changes by lowering testicular MDA and boosting GSH content and SOD activity. Moreover, administration of DIA attenuated MTX-induced testicular inflammation, as proved by decreased TNF-α and IL-6. At the molecular level, DIA induced significant upregulation in Nrf2, HO-1, PPAR-γ, and cytoglobin protein expression. The present results proved that DIA, in a dose-dependent manner, exhibited notable amelioration of testicular toxicity induced by MTX through augmentation of anti-inflammatory and antioxidant effects combined by upregulating Nrf2/HO-1, PPAR-γ, and cytoglobin signaling.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|