1
|
Kang L, Fang E, Gu M, Guan Y, Wu D, Zhang X, Yu W, Wang J, Zeng Z, Xu S, He Y, Yuan WE. An injectable thermosensitive pluronic F127 loaded-nanohydroxyapatite / Polydopamine for promoting sciatic nerve repair after crush injury. Colloids Surf B Biointerfaces 2024; 245:114324. [PMID: 39454373 DOI: 10.1016/j.colsurfb.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Peripheral nerve injury (PNI) remains an urgent issue due to its huge financial burden and high rate of disability. Here, an injectable HAP/PDA thermosensitive pluronic F-127 (PF-127) hydrogel is proposed for peripheral nerve repair. We investigated the surface characteristics of HAP/PDA and evaluated biocompatibility, cellular proliferation, differentiation, and apoptosis in vitro. After injecting the hydrogel into the injured site of rats, we recorded the recovery of motor function and judged the degree of nerves through electrophysiological and morphological changes. The hydrogel was found to accelerate the nerve regeneration. Collectively, the HAP/PDA thermosensitive PF-127 hydrogel has potential in promoting sciatic nerve repair.
Collapse
Affiliation(s)
- Liyuan Kang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China; 905th Hospital of PLA Navy, Shanghai, 200052, China
| | - Enlai Fang
- 905th Hospital of PLA Navy, Shanghai, 200052, China
| | - Muge Gu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Yuanye Guan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Di Wu
- 905th Hospital of PLA Navy, Shanghai, 200052, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Jiayu Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Zhen Zeng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Shengjing Xu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Yanjie He
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China.
| |
Collapse
|
2
|
Weng Y, Yuan X, Fan S, Duan W, Tan Y, Zhou R, Wu J, Shen Y, Zhang Z, Xu H. 3D-Printed Biomimetic Hydroxyapatite Composite Scaffold Loaded with Curculigoside for Rat Cranial Defect Repair. ACS OMEGA 2024; 9:26097-26111. [PMID: 38911726 PMCID: PMC11190930 DOI: 10.1021/acsomega.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
The treatment of various large bone defects has remained a challenge for orthopedic surgeons for a long time. Recent research indicates that curculigoside (CUR) extracted from the curculigo plant exerts a positive influence on bone formation, contributing to fracture healing. In this study, we employed emulsification/solvent evaporation techniques to successfully fabricate poly(ε-caprolactone) nanoparticles loaded with curculigoside (CUR@PM). Subsequently, using three-dimensional (3D) printing technology, we successfully developed a bioinspired composite scaffold named HA/GEL/SA/CUR@PM (HGSC), chemically cross-linked with calcium chloride, to ensure scaffold stability. Further characterization of the scaffold's physical and chemical properties revealed uniform pore size, good hydrophilicity, and appropriate mechanical properties while achieving sustained drug release for up to 12 days. In vitro experiments demonstrated the nontoxicity, good biocompatibility, and cell proliferative properties of HGSC. Through alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, cell migration assays, tube formation assays, and detection of angiogenic and osteogenic gene proteins, we confirmed the HGSC composite scaffold's significant angiogenic and osteoinductive capabilities. Eight weeks postimplantation in rat cranial defects, Micro-computed tomography (CT) and histological observations revealed pronounced angiogenesis and new bone growth in areas treated with the HGSC composite scaffold. These findings underscore the scaffold's exceptional angiogenic and osteogenic properties, providing a solid theoretical basis for clinical bone repair and demonstrating its potential in promoting vascularization and bone regeneration.
Collapse
Affiliation(s)
- Yiping Weng
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Xiuchen Yuan
- Graduate
School of Bengbu Medical College, Bengbu 233030, China
| | - Shijie Fan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Weihao Duan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yadong Tan
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Ruikai Zhou
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Jingbin Wu
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Yifei Shen
- The
Affiliated Changzhou Second People’s Hospital of Nanjing Medical
University, Changzhou Medical Center, Nanjing
Medical University, Changzhou 213003, China
| | - Zhonghua Zhang
- Changzhou
Economic Development District Hengshanqiao People’s Hospital, Changzhou 213003, China
| | - Hua Xu
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
4
|
Yazdanian A, Jahandideh A, Hesaraki S. The effect of green synthesis of TiO 2 nanoparticles/collagen/HA scaffold in bone regeneration: As an animal study. Vet Med Sci 2023; 9:2342-2351. [PMID: 37485579 PMCID: PMC10508526 DOI: 10.1002/vms3.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND The bone defects cannot heal by themselves when their range exceeds the critical size defect (CSD). In clinical treatment, significant bone defects are often caused by trauma, developmental deformity, tumour resection and infection. OBJECTIVES The purpose of this study was to investigate the effect of green synthesis of TiO2 from propolis extract/collagen/HA (Hydroxyapatite) scaffolds on bone regeneration in rats. METHODS Water uptake, biodegradability, porosity and biodegradation of the scaffolds were evaluated after they were synthesised using freeze-dry method. Cell viability by MTT assay was then evaluated. During the 4, 8 and 12 weeks following the scaffold implantation, the bone regeneration was evaluated using macroscopic and microscopic tests to determine the effectiveness of green synthesis of TiO2 from propolis extract/collagen/HA scaffolds. RESULTS Compared to the HA/Coll scaffold, ProTiO2 /HA/Coll scaffold was reduced porosity, water absorption and degradability porosity. Based on in vitro tests, both synthetic scaffolds induced cell growth and were less toxic and stimulated cell growth. Based on histopathological testing, the ProTiO2 /HA/Coll scaffolds formed high levels of bone during 12 weeks in comparison with HA/Coll and control group. CONCLUSIONS ProTiO2 /HA/Coll composite can be used in regenerative medicine, bone fillers and scaffolds. As a result, this research suggests that ProTiO2 /HA/Coll composites could be promising candidates for bone regeneration.
Collapse
Affiliation(s)
- Alireza Yazdanian
- Department of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Alireza Jahandideh
- Faculty of Veterinary Medicine, Science and Research BranchDepartment of Clinical SciencesIslamic Azad UniversityTehranIran
| | - Saeed Hesaraki
- Faculty of Specialized Veterinary Science, Science and Research BranchDepartment of PathobiologyIslamic Azad UniversityTehranIran
| |
Collapse
|
5
|
Yao D, Zhao Z, Wu Z, Li M, Li J. Characterization of PA12/HA composite scaffolds based on selective laser sintering. J Mech Behav Biomed Mater 2023; 145:106000. [PMID: 37423007 DOI: 10.1016/j.jmbbm.2023.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Composite scaffolds have been extensively studied in bone tissue engineering, which can achieve excellent properties that cannot be obtained by a single material. In this study, the effect of hydroxyapatite (HA) on the reliability of polyamide 12 (PA12) scaffold for bone graft was explored in terms of mechanical and biological properties. Thermal properties testing showed that no physical or chemical reaction occurs in the prepared PA12/HA composite powders. Further, compression experiments showed that adding a small amount of HA promoted the mechanical properties of the scaffold, while excessive HA results in agglomeration and impairs the PA12/HA scaffold. For the scaffolds with the porosity of 65%, the 96% PA12/4% HA scaffold has a 7.3% higher yield strength and a 13.5% higher compressive modulus than the pure PA12 scaffold while the strength of the 88% PA12/12% HA scaffold decreases by 35.6%. Furthermore, contact angle and CCK-8 tests confirmed that 96% PA12/4% HA scaffold effectively improved the hydrophilicity and biocompatibility of the scaffold. Its OD value on the 7th day is 0.949, which is significantly higher than that of other groups. In summary, PA12/HA composites have good mechanical properties and biocompatibility, which can be used as an effective strategy in bone tissue engineering.
Collapse
Affiliation(s)
- Dingrou Yao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhige Wu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Mei Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
6
|
Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J Funct Biomater 2023; 14:290. [PMID: 37367254 DOI: 10.3390/jfb14060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated. This article aims to review the recent advancements in nanomaterials applied for periodontal tissue regeneration and to discuss future research directions in this field, especially focusing on research using nanomaterials to improve oral health. The biomimetic and physiochemical properties of nanomaterials such as metals and polymer composites are described in detail, including their effects on the regeneration of alveolar bone, periodontal ligament, cementum and gingiva. Finally, the biomedical safety issues of their application as regenerative materials are updated, with a discussion about their complications and future perspectives. Although the applications of bioactive nanomaterials in the oral cavity are still at an initial stage, and pose numerous challenges, recent research suggests that they are a promising alternative in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute, Faculty of Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Center for Dentofacial Development and Sleep Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol 2022; 224:533-543. [DOI: 10.1016/j.ijbiomac.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
9
|
Composite Coatings for Osteoblast Growth Attachment Fabricated by Matrix-Assisted Pulsed Laser Evaporation. Polymers (Basel) 2022; 14:polym14142934. [PMID: 35890714 PMCID: PMC9322700 DOI: 10.3390/polym14142934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The bioactive and biocompatible properties of hydroxyapatite (HAp) promote the osseointegration process. HAp is widely used in biomedical applications, especially in orthopedics, as well as a coating material for metallic implants. We obtained composite coatings based on HAp, chitosan (CS), and FGF2 by a matrix-assisted pulsed laser evaporation (MAPLE) technique. The coatings were physico-chemically investigated by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Infrared Microscopy (IRM), and Scanning Electron Microscopy (SEM). Further, biological investigations were performed. The MAPLE-composite coatings were tested in vitro on the MC3T3-E1 cell line in order to endorse cell attachment and growth without toxic effects and to promote pre-osteoblast differentiation towards the osteogenic lineage. These coatings can be considered suitable for bone tissue engineering applications that lack toxicity and promotes cell adhesion and proliferation while also sustaining the differentiation of pre-osteoblasts towards mature bone cells.
Collapse
|
10
|
Fang CH, Lin HY, Sun CK, Lin YW, Hung MC, Li CH, Lin IP, Chang HC, Sun JS, Chang JZC. Decoronation-induced infected alveolar socket defect rat model for ridge preservation. Sci Rep 2022; 12:9940. [PMID: 35705614 PMCID: PMC9200756 DOI: 10.1038/s41598-022-14064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Current rat alveolar ridge preservation models have not been well standardized. In this study, we proposed decoronation-induced infected alveolar socket model of rat. The bilateral maxillary first molars (M1) of twenty-four rats were decoronized or extracted. After 2, 6, 10, and 14 weeks, bone and soft tissue changes at M1 and periodontal conditions of maxillary second (M2) and third molars (M3) were evaluated by micro-computed tomography and histological analysis. Additional eighteen rats with standardized size defects were grafted with Bio-Oss Collagen to compare with unmanipulated contralateral side. Decoronation preserved greater bone and soft tissue dimensions at M1, provided larger three-dimensional (3D) bone contour volume, but also promoted periodontal breakdown of M2 Histological results showed intense inflammatory cell infiltrations and severe bone resorption within M1 socket and at mesial aspect of M2. The critical dimensions to accommodate largest standardized defect at M1 were 2.2-2.3 mm at vertical bone height and 2.8-3.2 mm at alveolar crestal width. Bio-Oss Collagen could not fully preserve buccal or palatal bone height but could be beneficial in preserving ridge width in large alveolar defects. Collectively, if periodontally-involved alveolar bone defect is preferred, we suggest extracting M1 roots 6 weeks after decoronation to allow periodontitis to occur at M2. If standardized critical dimension defect is preferred, we suggest extracting M1 roots 2 weeks after decoronation, and creating defect in the middle of M1 site with size no larger than 2.7 mm diameter to its full depth.
Collapse
Affiliation(s)
- Chih-Hsiang Fang
- Trauma and Emergency Center, China Medical University Hospital, No. 2, Xueshi Rd., North Dist., Taichung City, 404018, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Chung-Kai Sun
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 11221, Taiwan
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Min-Chih Hung
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Ching-Hung Li
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - I-Ping Lin
- Department of Dentistry, National Taiwan University Hospital, Hisnchu Branch, No. 25, Lane 442, Sec. 1 Jingguo Rd., Hsinchu City, 30059, Taiwan
| | - Hung-Chen Chang
- Gin Chen Dental Clinic, No. 31, Long Chiang Rd, Taipei, Taiwan
| | - Jui-Sheng Sun
- Trauma and Emergency Center, China Medical University Hospital, No. 2, Xueshi Rd., North Dist., Taichung City, 404018, Taiwan. .,School of Medicine, China Medical University-YingCai Campus, No. 91, Xueshi Rd., North Dist., Taichung City, 404333, Taiwan. .,Department of Orthopedic Surgery, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan. .,Department of Orthopedic Surgery, College of Medicine, China Medical University, No. 2, Yu-Der Rd, Taichung City, 40447, Taiwan.
| | - Jenny Zwei-Chieng Chang
- Department of Dentistry, College of Medicine, National Taiwan University Hospital, No. 1, Chang-Te Street, Taipei, 10048, Taiwan. .,School of Dentistry, College of Medicine, National Taiwan University, No 1, Chang-Te Street, Taipei, 10048, Taiwan.
| |
Collapse
|
11
|
Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci 2022; 304:102682. [PMID: 35489142 DOI: 10.1016/j.cis.2022.102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023]
Abstract
The rise in the use of biomaterials in bone regeneration in the last decade has exponentially multiplied the number of publications, methods, and approaches to improve and optimize their functionalities and applications. In particular, biomimetic strategies based on the self-assembly of molecules to design, create and characterize nanostructured materials have played a very relevant role. We address this idea on four different but related points: self-setting bone cements based on calcium phosphate, as stable tissue support and regeneration induction; metallic prosthesis coatings for cell adhesion optimization and prevention of inflammatory response exacerbation; bio-adhesive hybrid materials as multiple drug delivery localized platforms and finally bio-inks. The effect of the physical, chemical, and biological properties of the newest biomedical devices on their bone tissue regenerative capacity are summarized, described, and analyzed in detail. The roles of experimental conditions, characterization methods and synthesis routes are emphasized. Finally, the future opportunities and challenges of nanostructured biomaterials with their advantages and shortcomings are proposed in order to forecast the future directions of this field of research.
Collapse
|
12
|
Moosavifar M, Parsaei H, Hosseini S, Mirmontazeri SM, Ahadi R, Ahadian S, Engel FB, Roshanbinfar K. Biomimetic Organic-Inorganic Nanocomposite Scaffolds to Regenerate Cranial Bone Defects in a Rat Animal Model. ACS Biomater Sci Eng 2022; 8:1258-1270. [PMID: 35193354 DOI: 10.1021/acsbiomaterials.1c01331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While bone regenerates itself after an injury, a critical bone defect requires external interventions. Engineering approaches to restore bone provide a temporary scaffold to support the damage and provide beneficial biological cues for bone repair. Biomimetically generated scaffolds replicate the naturally occurring phenomena in bone regeneration. In this study, a gelatin-calcium phosphate nanocomposite was synthesized by an efficient and cost-effective double-diffusion biomimetic approach. Calcium and phosphate ions are impregnated in the gelatin, mimicking the natural bone mineralization process. Glutaraldehyde from 0.5 to 2 w/v% was used for gelatin cross-linking and mechanical properties of the scaffold, and its biological support for rat bone marrow mesenchymal stromal cells was analyzed. Analysis of scanning electron microscopy images of the nanocomposite scaffolds and Fourier transform infrared (FTIR) and X-ray diffraction (XRD) characterizations of these scaffolds confirmed precipitation of calcium phosphates in the gelatin. Moreover, lysozyme degradation assay showed that scaffold degradation reversely correlates with the concentration of the cross-linking agent. Increased glutaraldehyde concentrations enhanced the mechanical properties of the scaffolds, bringing them closer to those of cancellous bone. Rat bone marrow mesenchymal stromal cells maintained their viability on these scaffolds compared to standard cell culture plates. In addition, these cells showed differentiation into bone lineage as evaluated from alkaline phosphatase activity up to 21 days and Alizarin red staining of the cells over 28 days. Eventually, scaffolds were implanted in a cranial defect in a rat animal model with a 5 mm diameter. Bone regeneration was studied over 90 days. Analysis of histological sections of the injury and computer tomography images revealed that nanocomposite scaffolds cross-linked with 1% w/v glutaraldehyde provide the maximum bone regeneration after 90 days. Collectively, our data show that nanocomposite scaffolds developed here provide effective regeneration for extensive bone defects in vivo.
Collapse
Affiliation(s)
- MirJavad Moosavifar
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran 159163-4311
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 1449614535
| | - Houman Parsaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 1449614535
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 1449614535
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran 159163-4311
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 1449614535
| | - Seyed Mohammad Mirmontazeri
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 1449614535
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran 1449614535
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| |
Collapse
|
13
|
Yu F, Lian R, Liu L, Liu T, Bi C, Hong K, Zhang S, Ren J, Wang H, Ouyang N, Du LJ, Liu Y, Zhou L, Liu Y, Fang B, Li Y, Duan SZ, Xia L. Biomimetic Hydroxyapatite Nanorods Promote Bone Regeneration via Accelerating Osteogenesis of BMSCs through T Cell-Derived IL-22. ACS NANO 2022; 16:755-770. [PMID: 35005890 DOI: 10.1021/acsnano.1c08281] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Manipulations of morphological properties of nanobiomaterials have been demonstrated to modulate the outcome of osteoimmunomodulation and eventually osteogenesis through innate immune response. However, the functions and mechanisms of adaptive immune cells in the process of nanobiomaterials-mediated bone regeneration have remained unknown. Herein, we developed bone-mimicking hydroxyapatite (HAp) nanorods with different aspect ratios as model materials to investigate the impacts of the nanoshape features on osteogenesis and to explore the underlying mechanisms focusing on the functions of T cells and T cell-derived cytokines. HAp nanorods with different aspect ratios (HAp-0, HAp-30, and HAp-100) were implanted into mouse mandibular defect models. Micro-CT and hematoxylin and eosin staining demonstrated that HAp-100 had the best osteogenic effects. Flow cytometry analysis revealed that HAp-100 increased the percentage of T cells in injured mandibles. The osteogenic effects of HAp-100 were significantly blunted in injured mandibles of TCRβ-/- mice. The Luminex xMAP assay and ELISA showed that HAp-100 induced a marked increase of interleukin (IL)-22 in injured mandibles. In cultured T cells, HAp-100 manifested the best capacity to induce the production of IL-22. Conditioned media from HAp-100-primed T cells promoted osteogenesis and JAK1/STAT3 activation in bone marrow stromal cells, all of which were abolished by neutralizing antibodies against IL-22. In summary, bone-mimicking HAp nanorods with different aspect ratios could regulate osteogenesis through modulation of T cells and IL-22 in the bone regeneration process. These findings provided insights for mediation of the immune response of T cells by nanomaterials on osteogenesis and strategies for designing biomaterials with osteoimmunomodulative functions.
Collapse
Affiliation(s)
- Fei Yu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Ruixian Lian
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Chao Bi
- Department of Stomatology, First Affiliated Hospital, Anhui Medical University, Hefei 230061, China
| | - Kan Hong
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuiquan Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazi Ren
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningjuan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Lujun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200125, China
| |
Collapse
|
14
|
Tao R, Qu Z, Zhang K, Chen J, Wang X, Deng Y. Substance P modulates BMSCs migration for tissue repair through NK-1R/CXCR4/p-Akt signal activation. Mol Biol Rep 2022; 49:2227-2236. [PMID: 35034285 DOI: 10.1007/s11033-021-07044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The migration of bone marrow-derived mesenchymal stem cells (BMSCs) to the wound site played an important role in tissue repair. Substance P (SP) has been studied and reported to be involved in tissue repair by promoting the growth of endothelial cells and the migration of BMSCs. However, the complicated process and the molecular mechanisms were not fully understood. Thus, we aimed to investigate the effect of SP-induced BMSCs migration on tissue repair and its possible mechanism. METHODS AND RESULTS Western blot and q-PCR assay revealed that SP could induce the BMSCs migration through overexpression of CXCR4 and upregulation of Akt phosphorylation. And the upregulation was related to the activation of neurokinin-1 receptor (NK-1R). Besides, we found that the increased phosphorylation Akt caused by SP could be canceled by the inhibition of CXCR4 both in vitro and in vivo. Furthermore, a skin-injury animal model was established and used to observe the tissue repair process. Results showed that SP could accelerate wound closure, gain more granulation tissue accumulation, and more collagen deposition through the promotion of angiogenesis and induction of the BMSCs migration to the wound site. And these effects could be impaired by inhibition of CXCR4 and p-Akt. CONCLUSIONS Our results suggested that SP promoted tissue repair through BMSCs migration via upregulation of CXCR4 and p-Akt. The expression of CXCR4 and p-Akt were regulated by NK-1R activation. These findings add more evidence in understanding the mechanisms of SP-induced BMSCs migration and highlight the potential for clinical implementation of SP in tissue repair.
Collapse
Affiliation(s)
- Ran Tao
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Zhan Qu
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke Zhang
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jie Chen
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xinyu Wang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, 410008, Hunan Province, People's Republic of China
| | - Youming Deng
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. Int J Mol Sci 2022; 23:ijms23010558. [PMID: 35008984 PMCID: PMC8745742 DOI: 10.3390/ijms23010558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we fabricated gelatin/nano-hydroxyapatite/metformin scaffold (GHMS) and compared its effectiveness in bone regeneration with extraction-only, Sinbone, and Bio-Oss Collagen® groups in a critical size rat alveolar bone defect model. GHMS was synthesized by co-precipitating calcium hydroxide and orthophosphoric acid within gelatin solution, incorporating metformin, and cross-linked by microbial transglutaminase. The morphology, characterization, and biocompatibility of scaffold were examined. The in vitro effects of GHMS on osteogenic gene and protein expressions were evaluated. In vivo bone formation was assessed in a critical size rat alveolar bone defect model with micro-computed tomography and histological examination by comparing GHMS with extraction-only, Sinbone, and Bio-Oss Collagen®. The synthesized GHMS had a highly interconnected porous structure with a mean pore size of 81.85 ± 13.8 µm. GHMS exhibited good biocompatibility; promoted ALPL, RUNX2, SP7, BGLAP, SPARC and Col1a1 gene expressions; and upregulated the synthesis of osteogenic proteins, including osteonectin, osteocalcin, and collagen type I. In critical size rat alveolar bone defects, GHMS showed superior bone regeneration compared to extraction-only, Sinbone, and Bio-Oss Collagen® groups as manifested by greater alveolar ridge preservation, while more bone formation with a lower percentage of connective tissue and residual scaffold at the defect sites grafted with GHMS in histological staining. The GHMS presented in this study may be used as a potential bone substitute to regenerate alveolar bone. The good biocompatibility, relatively fast degradation, interconnected pores allowing vascularization, and higher bioactivity properties of the components of the GHMS (gelatin, nHA, and metformin) may contribute to direct osteogenesis.
Collapse
|
16
|
Song A, Jiang F, Wang Y, Wang M, Wu Y, Zheng Y, Song X, Zhang W, Zhou J. Semaphorin3A promotes osseointegration of titanium implants in osteoporotic rabbits. Clin Oral Investig 2022; 26:969-979. [PMID: 34363102 DOI: 10.1007/s00784-021-04081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE In the present study, we intend to assess the function of Sema3A in osteointegration of titanium implants both in vivo and in vitro. MATERIAL AND METHODS Briefly, Sema3A was transfected in HBMSCs cells to detect its effect on osteogenesis. Subsequently, an in vivo rabbit model was established. Eighteen female rabbits were randomly assigned into three groups (n=6), and rabbits in the two treatment groups (OVX groups) were subjected to bilateral ovariectomy, while those in the control group were treated with sham operation. Twelve weeks later, we first examined expression levels of Sema3A in rabbits of the three groups. Titanium implants were implanted in rabbit proximal tibia. Specifically, rabbits in sham group were implanted with Matrigel, while the remaining in the OVX experimental group (OVX+Sema3A group) and OVX group were implanted with Matrigel containing Sema3A adeno-associated virus or empty vector, respectively. RESULTS Histomorphometry results uncovered that rabbits in the OVX+Sema3A group had a significantly higher BIC compared with those of the OVX group on the 12th week of post-implantation. And compared with the OVX group, the maximum push-out force increased by 89.4%, and the stiffness increased by 39.4%, the toughness increased by 63.8% in the OVX+Sema3A group at 12 weeks. CONCLUSION Sema3A has a positive effect on promoting early osseointegration of titanium implants in osteoporotic rabbits. CLINICAL RELEVANCE Our research found that Sema3A can improve the osteogenic ability of bone marrow stem cells and promotes osseointegration during osteoporosis.
Collapse
Affiliation(s)
- An Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Feng Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ming Wang
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, No.179, Xiaolingwei Road, Xuanwu District, Nanjing, 210014, Jiangsu, China
| | - Yanhui Wu
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, No.179, Xiaolingwei Road, Xuanwu District, Nanjing, 210014, Jiangsu, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wei Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province and Stomatological Institute of Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, 210029, Jiangsu, People's Republic of China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, No.179, Xiaolingwei Road, Xuanwu District, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
17
|
Zhao Z, Li J, Wei Y, Yu T. Design and properties of graded polyamide12/hydroxyapatite scaffolds based on primitive lattices using selective laser sintering. J Mech Behav Biomed Mater 2021; 126:105052. [PMID: 34933156 DOI: 10.1016/j.jmbbm.2021.105052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
Scaffolds with favorable biological characteristics and controlled functional gradient architectures are preferable for the repair of damaged tissues in bone tissue engineering. In this study, the triply periodic minimal surfaces (TPMS) were introduced to design functional gradient porous scaffolds based on Primitive lattices which were then manufactured by selective laser sintering (SLS) using pure polyamide12 (PA12) material and PA12/hydroxyapatite (HA) composite material. The mechanical properties and permeability of the scaffolds were then evaluated by mechanical compression experiments and computational fluid dynamics (CFD) analysis. The radial-graded scaffold was found to have superior good mechanical properties and permeability and be favorable for the subsequent growth of bone tissue. Further, the optimal PA12/HA composition was determined by analyzing the effect of the addition of HA particles on the hydrophilicity and mechanical properties of the composite scaffold. Additionally, the cytotoxicity tests were performed to evaluate the effects of PA12/HA gradient scaffold on cell growth. The obtained results demonstrate that the radial gradient scaffold with 15% HA addition exhibits a feasible combination of comprehensive performance and biological activity, indicating a great application potential in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Yuan Wei
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Tianlin Yu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
18
|
仇 旭, 饶 晨, 李 婷, 周 蓉. [Research Progress in Biomimetic Synthesis of Nano-Hydroxyapatite in Bone Tissue Engineering]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:740-746. [PMID: 34622586 PMCID: PMC10408887 DOI: 10.12182/20210560201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 02/05/2023]
Abstract
Nano hydroxyapatite (nHAp), a main component of the inorganic composition of human bones and teeth, is widely used in bone tissue engineering, bone defect repair and replacement, for example, for its biocompatibility, bioactivity, bioaffinity and the ability to induce bone regeneration. Nano hydroxyapatite contains calcium and phosphorus, elements that can be replaced through the normal metabolic channels of the human body. Therefore, after implantation, it can be partially or completely absorbed and replaced by human tissues and can effectively assist bone regeneration, which makes it an ideal material for bone repair. However, traditional nHAp material is brittle and hard to be degraded in human body. In addition, nHAp has poor stability due to its high surface energy and tendency for agglomeration, which causes rapid attenuation of its mechanical strength and limits its clinical application. At present, the mechanical properties and biocompatibility of nHAp can be effectively improved by loading the related growth factors, proteins, peptides and other bioactive molecules, so as to better meet the biological requirements of bone repair materials. However, the traditional physicochemical modification methods are complicated and may interfere with the bioactivity of nHAp. It is simple to biomimetically synthesize nanomaterials by direct utilization of the molecular recognition and self-assemble capabilities of biomolecules or living microorganisms. Furthermore, the properties of the synthesized nanomaterials are stable, and the method has been extensively studied in recent years. Due to the unique crystaline structure and physicochemical properties of nHAp, results of a large number of studies have shown that its affinity with biological molecules can be used to produce bioactive nHAp by biomimetic synthesis methods. Biomimetically synthesized nHAp is expected to become the mainstream bone tissue engineering scaffold material. Analyzing and summarizing the biomimetic synthetic process and the characteristics of different nHAp materials will facilitate further development of bone defect repair materials with better mechanical and biological properties. Herein we reviewed methods of biomimetic synthesis of nHAp based on different biomolecular templates. Furthermore, we also discussed applications of biomimetic synthesized nHAp in bone tissue engineering, which can used as reference information for further research and development of new-generation bone repair biomaterials.
Collapse
Affiliation(s)
- 旭童 仇
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 晨煜 饶
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 婷 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 蓉卉 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. CRYSTALS 2021. [DOI: 10.3390/cryst11060674] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxyapatite is one of the most studied biomaterials in the medical and dental field, because of its biocompatibility; it is the main constituent of the mineral part of teeth and bones. In dental science, hydroxyapatite nanoparticles (HAnps) or nano-hydroxyapatite (nano-HA) have been studied, over the last decade, in terms of oral implantology and bone reconstruction, as well in restorative and preventive dentistry. Hydroxyapatite nanoparticles have significant remineralizing effects on initial enamel lesions, and they have also been used as an additive material in order to improve existing and widely used dental materials, mainly in preventive fields, but also in restorative and regenerative fields. This paper investigates the role of HAnps in dentistry, including recent advances in the field of its use, as well as their advantages of using it as a component in other dental materials, whether experimental or commercially available. Based on the literature, HAnps have outstanding physical, chemical, mechanical and biological properties that make them suitable for multiple interventions, in different domains of dental science. Further well-designed randomized controlled trials should be conducted in order to confirm all the achievements revealed by the in vitro or in vivo studies published until now.
Collapse
|
20
|
Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, Hu H, Cai Y, Lin S, Yu Z, Tan B, Guo W, Ling Z, Zou X. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater 2021; 6:1839-1851. [PMID: 33336115 PMCID: PMC7723774 DOI: 10.1016/j.bioactmat.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue regeneration based on the utilization of artificial soft materials is considered a promising treatment for bone-related diseases. Here, we report cranial bone regeneration promoted by hydrogels that contain parathyroid hormone (PTH) peptide PTH(1-34) and nano-hydroxyapatite (nHAP). A combination of the positively charged natural polymer chitosan (CS) and negatively charged sodium alginate led to the formation of hydrogels with porous structures, as shown by scanning electron microscopy. Rheological characterizations revealed that the mechanical properties of the hydrogels were almost maintained upon the addition of nHAP and PTH(1-34). In vitro experiments showed that the hydrogel containing nHAP and PTH(1-34) exhibited strong biocompatibility and facilitated osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) via the Notch signaling pathway, as shown by the upregulated expression of osteogenic-related proteins. We found that increasing the content of PTH(1-34) in the hydrogels resulted in enhanced osteogenic differentiation of BMSCs. Implantation of the complex hydrogel into a rat cranial defect model led to efficient bone regeneration compared to the rats treated with the hydrogel alone or with nHAP, indicating the simultaneous therapeutic effect of nHAP and PTH during the treatment process. Both the in vitro and in vivo results demonstrated that simultaneously incorporating nHAP and PTH into hydrogels shows promise for bone regeneration, suggesting a new strategy for tissue engineering and regeneration in the future.
Collapse
Affiliation(s)
- Zhiyuan Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Le Wang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Sun
- Department of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Delong Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha 410002, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bizhi Tan
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Guo
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Curcumin-Loaded Hydrophobic Surface-Modified Hydroxyapatite as an Antioxidant for Sarcopenia Prevention. Antioxidants (Basel) 2021; 10:antiox10040616. [PMID: 33923718 PMCID: PMC8073515 DOI: 10.3390/antiox10040616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and later-induced chronic inflammation have been reported to play an important role on the progression of sarcopenia. Current treatments for sarcopenia are mainly administered to patients whom sarcopenia already developed. However, there has been no promising results shown in therapy. Therefore, the development of therapeutic and preventive strategies against sarcopenia would be necessary. Curcumin is a traditional medicine that possesses anti-inflammatory and antioxidative properties. In the present study, hydroxyapatite was subjected to hydrophobic surface modifications for curcumin loading (Cur-SHAP). It was, subsequently, utilized for delivery to the patient's body via intramuscular injection in order to achieve constant release for more than 2 weeks, preventing the progression of the sarcopenia or even leading to recovery from the early stage of the illness. According to the results of WST-1, LIVE/DEAD, DCFDA, and gene expression assays, Cur-SHAP exhibited good biocompatibility and showed great antioxidant/anti-inflammatory effects through the endocytic pathway. The results of the animal studies showed that the muscle endurance, grip strength, and fat/lean mass ratio were all improved in Cur-SHAP-treated rats from LPS-induced sarcopenia. In summary, we successfully synthesized hydrophobic surface modification hydroxyapatite for curcumin loading (Cur-SHAP) and drug delivery via the IM route. The LPS-induced sarcopenia rats were able to recover from disease after the Cur-SHAP treatment.
Collapse
|
22
|
Fan Q, Zeng H, Fan W, Wu T, Sun J, Yan Q, Shi B. Ridge preservation of a novel extraction socket applying Bio-Oss® collagen: An experimental study in dogs. J Dent Sci 2021; 16:831-839. [PMID: 34141096 PMCID: PMC8189885 DOI: 10.1016/j.jds.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background Bio-Oss® collagen (BC) has been used in clinical applications for years but the ridge preservation property of BC remains controversial. There is no animal model accurately simulates the extraction socket in people. The aim of this study was to assess the ridge preservation of a novel extraction sockets with a thin buccal plate using BC. Materials and methods Two beagle dogs were used to assess the characterization of the novel extraction socket. The width and height of the socket were measured and biopsies of the socket were collected for histologic examination. Four beagle dogs were used to assess the ridge preservation property of BC. BC was placed in the socket and socket left untreated was set as control group (CT). Cone-beam computed tomography analysis, histological examination, and micro-CT analysis were used to evaluate the ridge preservation. Results The novel extraction socket had obvious larger volume with a markedly narrow buccal wall than mandible extraction sockets. At 12 weeks, the width of the crest of the alveolar ridge preservation ratios was 34% for the CT and 82% for the BC. BC group had larger socket volume compare to CT group. BC group had a significant higher bone density in the middle and apical areas of the alveolar bone. Socket placed with BC showed significantly less vertical bone loss compared with CT group. Conclusion Extraction site with a significantly larger dimension and a very thin buccal plate was established. Extraction sockets filled with BC exhibit excellent maintenance of alveolar bone volume.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Shi
- Corresponding author. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, People's Republic of China. Fax: +86 27 8787 3260.
| |
Collapse
|
23
|
Chen ZJ, Shi HH, Zheng L, Zhang H, Cha YY, Ruan HX, Zhang Y, Zhang XC. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int J Biol Macromol 2021; 182:286-297. [PMID: 33838188 DOI: 10.1016/j.ijbiomac.2021.03.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Composites materials comprised of biopolymeric aerogel matrices and inorganic nano-hydroxyapatite (n-HA) fillers have received considerable attention in bone engineering. Although with significant progress in aerogel-based biomaterials, the brittleness and low strengths limit the application. The improvements in toughness and mechanical strength of aerogel-based biomaterials are in great need. In this work, an alkali urea system was used to dissolve, regenerate and gelate cellulose and silk fibroin (SF) to prepare composite aerosol. A dual network structure was shaped in the composite aerosol materials interlaced by sheet-like SF and reticular cellulose wrapping n-HA on the surface. Through uniaxial compression, the density of the composite aerogel material was close to the one of natural bone, and mechanical strength and toughness were high. Our work indicates that the composite aerogel has the same mechanical strength range as cancellous bone when the ratio of cellulose, n-HA and SF being 8:1:1. In vitro cell culture showed HEK-293T cells cultured on composite aerogels had high ability of adhesion, proliferation and differentiation. Totally, the presented biodegradable composite aerogel has application potential in bone tissue engineering.
Collapse
Affiliation(s)
- Zong-Ju Chen
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Hong Shi
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Liang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Yu-Ying Cha
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Xian Ruan
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Yi Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Xiu-Cheng Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
24
|
Song T, Zhao F, Wang Y, Li D, Lei N, Li X, Xiao Y, Zhang X. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. J Mater Chem B 2021; 9:2469-2482. [PMID: 33646220 DOI: 10.1039/d0tb02648d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the nanostructure of bone, biomimetic nanocomposites comprising natural polymers and inorganic nanoparticles have gained much attention for bone regenerative applications. However, the mechanical and biological performances of nanocomposites are largely limited by the inhomogeneous distribution, uncontrolled size and irregular morphology of inorganic nanoparticles at present. In this work, an innovative in situ precipitation method has been developed to construct a biomimetic nanocomposite which consists of spherical hydroxyapatite (HA) nanoparticles and gelatin (Gel). The homogeneous dispersion of HA nanoparticles in nHA-Gel endowed it with a low swelling ratio, enhanced mechanical properties and slow degradation. Moreover, strontium (Sr) was incorporated into HA nanoparticles to further enhance the bioactivity of nanocomposites. In vitro experiments suggested that nHA-Gel and Sr-nHA-Gel facilitated cell spreading and promoted osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) as compared to pure Gel and mHA-Gel conventional composites developed by mechanical mixing. In vivo rat critical-sized calvarial defect repair further confirmed that nHA-Gel and Sr-nHA-Gel possessed relatively effective bone regenerative abilities among the four groups. Collectively, the biomimetic nanocomposites of nHA-Gel and Sr-nHA-Gel have good efficacy in inducing bone regeneration and would be a promising alternative to bone grafts for clinical applications.
Collapse
Affiliation(s)
- Tao Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Fengxin Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610064, Sichuan, China
| | - Ning Lei
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610064, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
25
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
26
|
Gherasim O, Grumezescu AM, Grumezescu V, Negut I, Dumitrescu MF, Stan MS, Nica IC, Holban AM, Socol G, Andronescu E. Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics (Basel) 2021; 10:160. [PMID: 33562515 PMCID: PMC7914914 DOI: 10.3390/antibiotics10020160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of opportunistic local infections and improper integration of metallic implants results in severe health conditions. Protective and tunable coatings represent an attractive and challenging selection for improving the metallic devices' biofunctional performances to restore or replace bone tissue. Composite materials based on hydroxyapatite (HAp), Kanamycin (KAN), and fibroblast growth factor 2 (FGF2) are herein proposed as multifunctional coatings for hard tissue implants. The superior cytocompatibility of the obtained composite coatings was evidenced by performing proliferation and morphological assays on osteoblast cell cultures. The addition of FGF2 proved beneficial concerning the metabolic activity, adhesion, and spreading of cells. The KAN-embedded coatings exhibited significant inhibitory effects against bacterial biofilm development for at least two days, the results being superior in the case of Gram-positive pathogens. HAp-based coatings embedded with KAN and FGF2 protein are proposed as multifunctional materials with superior osseointegration potential and the ability to reduce device-associated infections.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Marius Florin Dumitrescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| | - Miruna Silvia Stan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ionela Cristina Nica
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania; (I.C.N.); (A.M.H.)
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (I.N.); (G.S.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (M.F.D.); (M.S.S.); (E.A.)
| |
Collapse
|
27
|
Growth Factors in Oral Tissue Engineering: New Perspectives and Current Therapeutic Options. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8840598. [PMID: 33506039 PMCID: PMC7808803 DOI: 10.1155/2021/8840598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
The present investigation is aimed at systematically analyzing the recent literature about the innovative scaffold involved in the reconstructive surgeries by applying growth factors and tissue engineering. An extensive review of the contemporary literature was conducted according to the PRISMA guidelines by accessing the PubMed, Embase, and Scopus Elsevier databases. Authors performed the English language manuscript research published from 2003 to 2020. A total of 13 relevant studies were included in the present review. The present systematic review included only papers with significant results about correlation between scaffold, molecular features of growth factor, and reconstructive surgeries in oral maxillofacial district. The initial research with filters recorded about 1023 published papers. Beyond reading and considering of suitability, only 42 and then 36 full-text papers were recorded for the revision. All the researches recorded the possibility of using growth factors on rebuilding atrophic jaws. Different growth factors like morphogenetic factors, cytokines, and inflammatory ones and their application over different scaffold materials were recorded. Further investigations should be required in order to state scientific evidence about a clear advantage of applying tissue engineering for therapeutic purpose.
Collapse
|
28
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|
29
|
Lin YW, Fang CH, Meng FQ, Ke CJ, Lin FH. Hyaluronic Acid Loaded with Cerium Oxide Nanoparticles as Antioxidant in Hydrogen Peroxide Induced Chondrocytes Injury: An In Vitro Osteoarthritis Model. Molecules 2020; 25:molecules25194407. [PMID: 32992833 PMCID: PMC7582542 DOI: 10.3390/molecules25194407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease type and is accompanied by varying degrees of functional limitation. Both hyaluronic acid (HA) joint injections and pain relievers are efficient treatments for early-stage osteoarthritis. However, for the decomposition by hyaluronidase and free radicals in the knee joint, HA injection treatment has limited effect time. The cerium oxide nanoparticles (CeO2) is a long time free radical scavenger. CeO2 combined with HA expected, may extend the HA decomposition time and have a positive effect on osteoarthritis therapy. In this study, CeO2 was successfully synthesized using the hydrothermal method with a particle size of about 120 nm, which possessed excellent dispersibility in the culture medium. The in vitro OA model was established by cell treated with H2O2 for 30 min. Our study found that the inhibition of chondrocyte proliferation dose-dependently increased with H2O2 concentration but was significantly decreased by supplementation of cerium oxide nanoparticles. COL2a1 and ACAN gene expression in chondrocytes was significantly decreased after H2O2 treatment; however, the tendency was changed after cerium oxide nanoparticles treatment, which suggested that damaged chondrocytes were protected against oxidative stress. These findings suggest that cerium oxide nanoparticles are potential therapeutic applications in the early stage of OA.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
| | - Chih-Hsiang Fang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
| | - Fan-Qi Meng
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
| | - Cherng-Jyh Ke
- Biomaterials Translational Research Center, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404332, Taiwan
- Correspondence: (C.-J.K.); (F.-H.L.); Tel.: +886-2-2732-7474 (F.-H.L.)
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; (Y.-W.L.); (C.-H.F.); (F.-Q.M.)
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Correspondence: (C.-J.K.); (F.-H.L.); Tel.: +886-2-2732-7474 (F.-H.L.)
| |
Collapse
|
30
|
Emami A, Talaei-Khozani T, Tavanafar S, Zareifard N, Azarpira N, Vojdani Z. Synergic effects of decellularized bone matrix, hydroxyapatite, and extracellular vesicles on repairing of the rabbit mandibular bone defect model. J Transl Med 2020; 18:361. [PMID: 32962683 PMCID: PMC7510292 DOI: 10.1186/s12967-020-02525-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. METHODS The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. RESULTS The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB + HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB + HA and ECV-treated groups. CONCLUSIONS The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.
Collapse
Affiliation(s)
- Asrin Emami
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Tavanafar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zareifard
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplantation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Radwan-Pragłowska J, Janus Ł, Piątkowski M, Bogdał D, Matysek D. 3D Hierarchical, Nanostructured Chitosan/PLA/HA Scaffolds Doped with TiO 2/Au/Pt NPs with Tunable Properties for Guided Bone Tissue Engineering. Polymers (Basel) 2020; 12:E792. [PMID: 32252290 PMCID: PMC7240598 DOI: 10.3390/polym12040792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bone tissue is the second tissue to be replaced. Annually, over four million surgical treatments are performed. Tissue engineering constitutes an alternative to autologous grafts. Its application requires three-dimensional scaffolds, which mimic human body environment. Bone tissue has a highly organized structure and contains mostly inorganic components. The scaffolds of the latest generation should not only be biocompatible but also promote osteoconduction. Poly (lactic acid) nanofibers are commonly used for this purpose; however, they lack bioactivity and do not provide good cell adhesion. Chitosan is a commonly used biopolymer which positively affects osteoblasts' behavior. The aim of this article was to prepare novel hybrid 3D scaffolds containing nanohydroxyapatite capable of cell-response stimulation. The matrixes were successfully obtained by PLA electrospinning and microwave-assisted chitosan crosslinking, followed by doping with three types of metallic nanoparticles (Au, Pt, and TiO2). The products and semi-components were characterized over their physicochemical properties, such as chemical structure, crystallinity, and swelling degree. Nanoparticles' and ready biomaterials' morphologies were investigated by SEM and TEM methods. Finally, the scaffolds were studied over bioactivity on MG-63 and effect on current-stimulated biomineralization. Obtained results confirmed preparation of tunable biomimicking matrixes which may be used as a promising tool for bone-tissue engineering.
Collapse
Affiliation(s)
- Julia Radwan-Pragłowska
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31–155 Cracow, Poland; (J.R.-P.); (Ł.J.); (D.B.)
| | - Łukasz Janus
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31–155 Cracow, Poland; (J.R.-P.); (Ł.J.); (D.B.)
| | - Marek Piątkowski
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31–155 Cracow, Poland; (J.R.-P.); (Ł.J.); (D.B.)
| | - Dariusz Bogdał
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31–155 Cracow, Poland; (J.R.-P.); (Ł.J.); (D.B.)
| | - Dalibor Matysek
- Faculty of Mining and Geology, Technical University of Ostrava; 708 00 Ostrava, Czech Republic;
| |
Collapse
|
32
|
Verardi S, Lombardi T, Stacchi C. Clinical and Radiographic Evaluation of Nanohydroxyapatite Powder in Combination with Polylactic Acid/Polyglycolic Acid Copolymer as Bone Replacement Graft in the Surgical Treatment of Intrabony Periodontal Defects: A Retrospective Case Series Study. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E269. [PMID: 31936143 PMCID: PMC7014298 DOI: 10.3390/ma13020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023]
Abstract
The aim of this retrospective case series was to evaluate the clinical efficacy of nanohydroxyapatite powder (NHA) in combination with polylactic acid/polyglycolic acid copolymer (PLGA) as a bone replacement graft in the surgical treatment of intrabony periodontal defects. Medical charts were screened following inclusion and exclusion criteria. Periodontal parameters and periapical radiographs taken before surgery and at 12-month follow-up were collected. Intra-group comparisons were performed using a two-tailed Wilcoxon signed-rank test. Twenty-five patients (13 males, 12 females, mean age 55.1 ± 10.5 years) were included in the final analysis. Mean probing depth (PD) and clinical attachment level (CAL) at baseline were 8.32 ± 1.41 mm and 9.96 ± 1.69 mm, respectively. Twelve months after surgery, mean PD was 4.04 ± 0.84 mm and CAL was 6.24 ± 1.71 mm. Both PD and CAL variations gave statistically significant results (p < 0.00001). The mean radiographic defect depth was 5.54 ± 1.55 mm and 1.48 ± 1.38 mm at baseline and at 12-month follow-up, respectively (p < 0.0001). This case series, with the limitations inherent in the study design, showed that the combination of NHA and PLGA, used as bone replacement graft in intrabony periodontal defects, may give significant improvements of periodontal parameters at 12-month follow-up.
Collapse
Affiliation(s)
- Simone Verardi
- Department of Periodontics, University of Washington, Seattle, WA 98195, USA;
| | - Teresa Lombardi
- Department of Health Sciences, University of “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Claudio Stacchi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| |
Collapse
|