1
|
Liu Y, Yang Z, Feng L, Xia Y, Wei G, Lu W. Advance in Nanomedicine for Improving Mucosal Penetration and Effective Therapy of Cervical Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303772. [PMID: 37340569 DOI: 10.1002/smll.202303772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Insufficient intratumor drug distribution and serious adverse effects are often associated with systemic chemotherapy for cervical cancer. Considering the location of cervical cancer, access to the cervix through the vagina may provide an alternative administration route for high drug amounts at the tumor site, minimal systemic exposure as well as convenience of non-invasive self-medication. Enormous progress has been made in nanomedicine to improve mucosal penetration and enhance the effectiveness of therapy for cervical cancer. This review article first introduce the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers. Based on introduction to the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers, both "first mucus-adhering then mucosal penetration" and "first mucus-penetrating then mucosal penetration" strategies are discussed with respect to mechanism, application condition, and examples. Finally, existing challenges and future directions are envisioned in the rational design, facile synthesis, and comprehensive utilization of nanomedicine for local therapy of cervical cancer. This review is expected to provide useful reference information for future research on nanomedicine for intravaginally administered formulations for topical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Ziyi Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Linglin Feng
- Shanghai Institute of Planned Parenthood Research, Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China
| | - Yu Xia
- Yangtze River Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| |
Collapse
|
2
|
Huang R, Liu Z, Sun T, Zhu L. Cervicovaginal microbiome, high-risk HPV infection and cervical cancer: Mechanisms and therapeutic potential. Microbiol Res 2024; 287:127857. [PMID: 39121703 DOI: 10.1016/j.micres.2024.127857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The microbiota in the female genital tract is an intricate assembly of diverse aerobic, anaerobic, and microaerophilic microorganisms, which share the space within the reproductive tract and engage in complex interactions. Microbiome dysbiosis may disrupt the symbiotic relationship between the host and microorganisms and play a pivotal role in the pathogenesis of various diseases, including its involvement in the establishment of human papillomavirus (HPV)-associated cervical cancer (CC). Interventions to restore microbiota homeostasis (e.g., probiotics) and bacterial-vector HPV therapeutic vaccines have been reported to be potentially effective in clearing HPV infection and ameliorating cytological abnormalities. In this review, we place emphasis on elucidating the alterations within the cervical-vaginal microbiota as well as the intratumoral microbiota in the context of high-risk HPV (HR-HPV) infection and its subsequent progression to cervical intraepithelial neoplasia/CC. Furthermore, we explore the mechanisms by which these microbial communities exert potential pathogenic or protective effects, including modulating genital inflammation and immune responses, affecting HR-HPV oncogene expression and oncoprotein production, regulating oxidative stress and deoxyribonucleic acid (DNA) damage, and inducing metabolic rewiring. Lastly, we summarize the latest evidence in human trials regarding the efficacy of probiotics, prebiotics and probiotic-vector HPV therapeutic vaccines. This review aims to foster a deeper understanding of the role of the microbiota in HR-HPV infection-related cervix cancer development, and further provide a theoretical basis for the development of preventive and therapeutic strategies based on microbial modulation.
Collapse
Affiliation(s)
- Roujie Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zimo Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianshu Sun
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, China.
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China; The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
3
|
Hidjo M, Mukhedkar D, Masimirembwa C, Lei J, Arroyo Mühr LS. Cervical cancer microbiome analysis: comparing HPV 16 and 18 with other HPV types. Sci Rep 2024; 14:22014. [PMID: 39317706 PMCID: PMC11422507 DOI: 10.1038/s41598-024-73317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Differences in the cervicovaginal microbiome may influence the persistence of HPV and therefore, the progression to cervical cancer. We aimed to analyze and compare the metatranscriptome of cervical cancers positive for HPV 16 and 18 with those positive for other HPV types to understand the microbiome's influence on oncogenicity. RNA sequencing data from a total of 222 invasive cervical cancer cases (HPV16/18 positive (n=42) and HPV "Other types" (n=180)) were subjected to taxonomy classification (Kraken 2) including bacteria, virus and fungi to the level of species. With a median depth of 288,080.5 reads per sample, up to 107 species (38 bacterial, 16 viral and 53 fungal) were identified. Diversity analyses revealed no significant differences in viral or fungal species between HPV16/18 and other HPV types. Bacterial alpha diversity was significantly higher in the "Other HPV types" group for the Observed index (p=0.0074) (but not for Shannon). Cumulative species curves revealed greater species diversity in the "Other HPV types" group compared to "HPV16/18 but no significant differences in species abundance were found between HPV groups. The study did not detect strong significant microbiome differences between HPV 16/18 and other HPV types in cervical cancers. Further research is necessary to explore potential factors influencing the oncogenicity of different HPV types and their interaction with the cervical microbiome.
Collapse
Affiliation(s)
- Maire Hidjo
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology, 911 Boronia Township, Beatrice, Harare, Zimbabwe
- University of Witwatersrand Sydney Brenner Institute for Molecular Biosciences, Johannesburg, 2193, South Africa
| | - Dhananjay Mukhedkar
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141 86, Stockholm, Sweden
- Hopsworks AB, Åsögatan 119, Plan 2, 116 24, Stockholm, Sweden
| | - Collen Masimirembwa
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology, 911 Boronia Township, Beatrice, Harare, Zimbabwe
- University of Witwatersrand Sydney Brenner Institute for Molecular Biosciences, Johannesburg, 2193, South Africa
| | - Jiayao Lei
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141 86, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Solna, Sweden
| | - Laila Sara Arroyo Mühr
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141 86, Stockholm, Sweden.
| |
Collapse
|
4
|
Supriya Y, Sivamalar S, Nallusamy D, Sureka V, Arunagirinathan N, Saravanan S, Balakrishnan P, Viswanathan D, Rajakumar G. Application of probiotics in cervical cancer infections to enhance the immune response. Microb Pathog 2024; 193:106764. [PMID: 38944216 DOI: 10.1016/j.micpath.2024.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is the fourth most common cancer among female patients. The primary cause of all types of cervical cancer is human papillomavirus (HPV), which was projected to account for 5,70,000 reported cases in 2018. Two HPV strains (16 and 18) account for 70 % of cervical abnormalities and precancerous cervical cancers. CC is one of the main causes of the 17 % cancer-related death rate among Indian women between the ages of 30 and 69 is CC. The side effects of the currently approved treatments for cervical cancer could endanger the lives of women affected by the illness. Thus, probiotics may be extremely important in the management of CC. Numerous studies on probiotics and their potential for use in cancer diagnosis, prevention, and treatment have been conducted. This review describes the enhancement of the immune system, promotion of a balanced vaginal microbiome, and decreased risk of secondary infections, which have anti-inflammatory effects on the body. Probiotics have the potential to reduce inflammation, thereby adversely affecting cancer cell growth and metastasis. During the course of antibiotic therapy, they support a balanced vaginal microbiome. Oncogenic virus inactivation is possible with probiotic strains. In postmenopausal women, the use of vaginal probiotics helps lessen menopausal symptoms caused by Genitourinary Syndrome of Menopause (GSM). The antitumor effects of other medications can be enhanced by them as potential agents, because they can both promote the growth of beneficial bacteria and reduce the quantity of potentially harmful bacteria. The development of tumors and the proliferation of cancer cells may be indirectly affected by the restoration of the microbial balance. Probiotics may be able to prevent and treat cervical cancer, as they seem to have anticancer properties. To identify probiotics with anticancer qualities that can supplement and possibly even replace traditional cancer treatments, further investigation is required, including carefully planned clinical trials.
Collapse
Affiliation(s)
- Yatakona Supriya
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Sathasivam Sivamalar
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India.
| | - Duraisamy Nallusamy
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Varalakshmi Sureka
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Narasingam Arunagirinathan
- Department of Research, Meenakshi Academy of Higher Education and Research, Chennai, 600078, Tamilnadu, India
| | - Shanmugam Saravanan
- Centre for Infectious Diseases, Saveetha Medical College & Hospitals [SMCH], Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Thandalam, Chennai, India
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Medical College & Hospitals [SMCH], Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Thandalam, Chennai, India
| | - Dhivya Viswanathan
- Centre for Nanobiosciences, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamilnadu, India
| | - Govindasamy Rajakumar
- Centre for Nanobiosciences, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamilnadu, India.
| |
Collapse
|
5
|
Boniewska-Bernacka E, Pańczyszyn A, Głąb G, Goc A. Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions. Int J Mol Sci 2024; 25:8158. [PMID: 39125728 PMCID: PMC11311766 DOI: 10.3390/ijms25158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Persistent high-risk human papillomaviruses (HR HPVs) infection leads to the development of squamous intraepithelial lesions in cervical cells that may lead to cancer. The telomere length, telomerase activity, and species composition of the vaginal microbiome may influence the dynamic of changes and the process of carcinogenesis. In the present study, we analyze relative telomere length (RTL), relative hTERT expression (gene for the telomerase component-reverse transcriptase) in cervical smear cells and vaginal microbiomes. Total RNA and DNA were isolated from tissue samples of 109 patients from the following groups: control, carrier, low-grade or high-grade squamous intraepithelial lesion (L SIL and H SIL, respectively), and cancer. The quantitative PCR method was used to measure telomere length and telomerase expression. Vaginal microbiome bacteria were divided into community state types using morphotype criteria. Significant differences between histopathology groups were confirmed for both relative telomere length and relative hTERT expression (p < 0.001 and p = 0.001, respectively). A significant difference in RTL was identified between carriers and H SIL (p adj < 0.001) groups, as well as between carriers and L SIL groups (p adj = 0.048). In both cases, RTL was lower among carriers. The highest relative hTERT expression level was recorded in the H SIL group, and the highest relative hTERT expression level was recorded between carriers and the H SIL group (p adj < 0.001). A correlation between genotype and biocenosis was identified for genotype 16+A (p < 0.001). The results suggest that identification of HPV infection, telomere length assessment, and hTERT expression measurement together may be more predictive than each of these analyses performed separately.
Collapse
Affiliation(s)
- Ewa Boniewska-Bernacka
- Department of Biology and Genetics, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (A.P.); (A.G.)
| | - Anna Pańczyszyn
- Department of Biology and Genetics, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (A.P.); (A.G.)
| | - Grzegorz Głąb
- Department of Pathomorphology, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Anna Goc
- Department of Biology and Genetics, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (A.P.); (A.G.)
| |
Collapse
|
6
|
Berman HL, Goltsman DSA, Anderson M, Relman DA, Callahan BJ. Gardnerella diversity and ecology in pregnancy and preterm birth. mSystems 2024; 9:e0133923. [PMID: 38752784 PMCID: PMC11338264 DOI: 10.1128/msystems.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
The vaginal microbiome has been linked to negative health outcomes including preterm birth. Specific taxa, including Gardnerella spp., have been identified as risk factors for these conditions. Historically, microbiome analysis methods have treated all Gardnerella spp. as one species, but the broad diversity of Gardnerella has become more apparent. We explore the diversity of Gardnerella clades and genomic species in the vaginal microbiome of pregnant women and their associations with microbiome composition and preterm birth. Relative abundance of Gardnerella clades and genomic species and other taxa was quantified in shotgun metagenomic sequencing data from three distinct cohorts of pregnant women. We also assessed the diversity and abundance of Gardnerella variants in 16S rRNA gene amplicon sequencing data from seven previously conducted studies in differing populations. Individual microbiomes often contained multiple Gardnerella variants, and the number of clades was associated with increased microbial load, or the ratio of non-human reads to human reads. Taxon co-occurrence patterns were largely consistent across Gardnerella clades and among cohorts. Some variants previously described as rare were prevalent in other cohorts, highlighting the importance of surveying a diverse set of populations to fully capture the diversity of Gardnerella. The diversity of Gardnerella both across populations and within individual vaginal microbiomes has long been unappreciated, as has been the intra-species diversity of many other members of the vaginal microbiome. The broad genomic diversity of Gardnerella has led to its reclassification as multiple species; here we demonstrate the diversity of Gardnerella found within and between vaginal microbiomes.IMPORTANCEThe present study shows that single microbiomes can contain all currently known species of Gardnerella and that multiple similar species can exist within the same environment. Furthermore, surveys of demographically distinct populations suggest that some species appear more commonly in certain populations. Further studies in broad and diverse populations will be necessary to fully understand the ecological roles of each Gardnerella sp., how they can co-exist, and their distinct impacts on microbial communities, preterm birth, and other health outcomes.
Collapse
Affiliation(s)
- Hanna L. Berman
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - Daniela S. Aliaga Goltsman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
| | - Megan Anderson
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
| | - David A. Relman
- Department of
Microbiology and Immunology, Stanford University School of
Medicine, Stanford,
California, USA
- Department of
Medicine, Stanford University School of
Medicine, Stanford,
California, USA
- Infectious Diseases
Section, Veterans Affairs Palo Alto Health Care
System, Palo Alto,
California, USA
| | - Benjamin J. Callahan
- Department of
Population Health and Pathobiology, North Carolina State
University, Raleigh,
North Carolina, USA
- Bioinformatics
Research Center, North Carolina State
University, Raleigh,
North Carolina, USA
| |
Collapse
|
7
|
Wang L, Sun B, Xu J, Cao D, Chen Y, Xu Y, Wu D. Emerging trends and hotspots in cervical intraepithelial neoplasia research from 2013 to 2023: A bibliometric analysis. Heliyon 2024; 10:e32114. [PMID: 38882369 PMCID: PMC11177135 DOI: 10.1016/j.heliyon.2024.e32114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Background Cervical intraepithelial neoplasia (CIN) encompasses a range of cervical lesions that are closely linked to cervical invasive carcinoma. Early detection and timely treatment of CIN are crucial for preventing the progression of the disease. However, no bibliometric analysis has been conducted in this area. This research aimed to employ bibliometric analysis to summarize the current research hotspots and estimate future research trends in the CIN field. Methods Publications related to CIN (2013-2023) were retrieved from the Science-Citation-Index-Expanded-of-Web-of-Science-Core-Collection. CiteSpace, VOSviewer, and the bibliometric-Online-Analysis-Platform-of-Literature-Metrology were employed to analyze the yearly research output, collaborating institutions or countries, leading researchers, principal journals, co-referenced sources, and emerging keywords. Results In total, 4677 articles on CIN that were published from 2013 to 2023 and met our criteria were extracted. Major publishing platforms were predominantly USA until 2017 when China emerged as the leading source of publications about CIN. The USA was the leading nation in international collaborations. The National-Cancer-Institute (NCI) was the institution with the most publications. Schiffman Mark produced the highest number of articles, with a total of 92. Ten major clusters were identified through co-cited keyword clustering, including prevalence, human papillomavirus, DNA methylation, p16, methylation, conization, HPV genotyping tests (VALGENT), deep learning, vaginal microbiome, and immunohistochemistry. Keyword burst analysis showed that photodynamic therapy and deep learning emerged as prominent research focal points with significant impact in resent three years. Conclusion Global publications on CIN research showed a relatively stable trend over the past eleven years. Current research hotspots are deep learning and photodynamic therapy. This research offered organized data and insightful guidance for future studies, which may help better prevent, screen, and treat CIN.
Collapse
Affiliation(s)
- Liya Wang
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China
| | - Bingying Sun
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China
| | - Ji Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Dan Cao
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China
| | - Yi Chen
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China
| | - Ying Xu
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China
| | - Dan Wu
- The Center for Cervical Disease, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, 200030, China
| |
Collapse
|
8
|
Javadi K, Ferdosi-Shahandashti E, Rajabnia M, Khaledi M. Vaginal microbiota and gynecological cancers: a complex and evolving relationship. Infect Agent Cancer 2024; 19:27. [PMID: 38877504 PMCID: PMC11179293 DOI: 10.1186/s13027-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The vagina hosts a community of microorganisms known as the vaginal microbiota. This community is relatively stable and straightforward, with Lactobacillus species being the most dominant members. The vaginal microbiota has various functions that are essential for maintaining human health and balance. For example, it can metabolise dietary nutrients, produce growth factors, communicate with other bacteria, modulate the immune system, and prevent the invasion of harmful pathogens. When the vaginal microbiota is disrupted, it can lead to diseases and infections. The observed disturbance is distinguished by a reduction in the prevalence of Lactobacillus and a concurrent rise in the number of other bacterial species that exhibit a higher tolerance to low oxygen levels. Gynecologic cancers are a group of cancers that affect the female reproductive organs and tissues, such as the ovaries, uterus, cervix, vagina, vulva, and endometrium. These cancers are a major global health problem for women. Understanding the complex interactions between the host and the vaginal microorganisms may provide new insights into the prevention and treatment of gynecologic cancers. This could improve the quality of life and health outcomes for women.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Spurgeon ME, Townsend EC, Blaine-Sauer S, McGregor SM, Horswill M, den Boon JA, Ahlquist P, Kalan L, Lambert PF. Key aspects of papillomavirus infection influence the host cervicovaginal microbiome in a preclinical murine papillomavirus (MmuPV1) infection model. mBio 2024; 15:e0093324. [PMID: 38742830 PMCID: PMC11237646 DOI: 10.1128/mbio.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States and are a major etiological agent of cancers in the anogenital tract and oral cavity. Growing evidence suggests changes in the host microbiome are associated with the natural history and ultimate outcome of HPV infection. We sought to define changes in the host cervicovaginal microbiome during papillomavirus infection, persistence, and pathogenesis using the murine papillomavirus (MmuPV1) cervicovaginal infection model. Cervicovaginal lavages were performed over a time course of MmuPV1 infection in immunocompetent female FVB/N mice and extracted DNA was analyzed by qPCR to track MmuPV1 viral copy number. 16S ribosomal RNA (rRNA) gene sequencing was used to determine the composition and diversity of microbial communities throughout this time course. We also sought to determine whether specific microbial communities exist across the spectrum of MmuPV1-induced neoplastic disease. We, therefore, performed laser-capture microdissection to isolate regions of disease representing all stages of neoplastic disease progression (normal, low- and high-grade dysplasia, and cancer) from female reproductive tract tissue sections from MmuPV1-infected mice and performed 16S rRNA sequencing. Consistent with other studies, we found that the natural murine cervicovaginal microbiome is highly variable across different experiments. Despite these differences in initial microbiome composition between experiments, we observed that MmuPV1 persistence, viral load, and severity of disease influenced the composition of the cervicovaginal microbiome. These studies demonstrate that papillomavirus infection can alter the cervicovaginal microbiome.IMPORTANCEHuman papillomaviruses (HPVs) are the most common sexually transmitted infection in the United States. A subset of HPVs that infect the anogenital tract (cervix, vagina, anus) and oral cavity cause at least 5% of cancers worldwide. Recent evidence indicates that the community of microbial organisms present in the human cervix and vagina, known as the cervicovaginal microbiome, plays a role in HPV-induced cervical cancer. However, the mechanisms underlying this interplay are not well-defined. In this study, we infected the female reproductive tract of mice with a murine papillomavirus (MmuPV1) and found that key aspects of papillomavirus infection and disease influence the host cervicovaginal microbiome. This is the first study to define changes in the host microbiome associated with MmuPV1 infection in a preclinical animal model of HPV-induced cervical cancer. These results pave the way for using MmuPV1 infection models to further investigate the interactions between papillomaviruses and the host microbiome.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth C. Townsend
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Horswill
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Johan A. den Boon
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- John W. and Jeanne M. Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Lindsay Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Hu M, Yang W, Yan R, Chi J, Xia Q, Yang Y, Wang Y, Sun L, Li P. Co-evolution of vaginal microbiome and cervical cancer. J Transl Med 2024; 22:559. [PMID: 38863033 PMCID: PMC11167889 DOI: 10.1186/s12967-024-05265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Exploration of adaptive evolutionary changes at the genetic level in vaginal microbial communities during different stages of cervical cancer remains limited. This study aimed to elucidate the mutational profile of the vaginal microbiota throughout the progression of cervical disease and subsequently establish diagnostic models. METHODS This study utilized a metagenomic dataset consisting of 151 subjects classified into four categories: invasive cervical cancer (CC) (n = 42), cervical intraepithelial neoplasia (CIN) (n = 43), HPV-infected (HPVi) patients without cervical lesions (n = 34), and healthy controls (n = 32). The analysis focused on changes in microbiome abundance and extracted information on genetic variation. Consequently, comprehensive multimodal microbial signatures associated with CC, encompassing taxonomic alterations, mutation signatures, and enriched metabolic functional pathways, were identified. Diagnostic models for predicting CC were established considering gene characteristics based on single nucleotide variants (SNVs). RESULTS In this study, we screened and analyzed the abundances of 18 key microbial strains during CC progression. Additionally, 71,6358 non-redundant mutations were identified, predominantly consisting of SNVs that were further annotated into 25,773 genes. Altered abundances of SNVs and mutation types were observed across the four groups. Specifically, there were 9847 SNVs in the HPV-infected group and 14,892 in the CC group. Furthermore, two distinct mutation signatures corresponding to the benign and malignant groups were identified. The enriched metabolic pathways showed limited similarity with only two overlapping pathways among the four groups. HPVi patients exhibited active nucleotide biosynthesis, whereas patients with CC demonstrated a significantly higher abundance of signaling and cellular-associated protein families. In contrast, healthy controls showed a distinct enrichment in sugar metabolism. Moreover, biomarkers based on microbial SNV abundance displayed stronger diagnostic capability (cc.AUC = 0.87) than the species-level biomarkers (cc.AUC = 0.78). Ultimately, the integration of multimodal biomarkers demonstrated optimal performance for accurately identifying different cervical statuses (cc.AUC = 0.86), with an acceptable performance (AUC = 0.79) in the external testing set. CONCLUSIONS The vaginal microbiome exhibits specific SNV evolution in conjunction with the progression of CC, and serves as a specific biomarker for distinguishing between different statuses of cervical disease.
Collapse
Affiliation(s)
- Menglu Hu
- School of Medicine, Southeast University, Nanjing, China
| | - Wentao Yang
- School of Medicine, Southeast University, Nanjing, China
| | - Ruiyi Yan
- Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100730, China
| | - Jiayu Chi
- School of Medicine, Southeast University, Nanjing, China
| | - Qi Xia
- School of Medicine, Southeast University, Nanjing, China
| | - Yilin Yang
- School of Medicine, Southeast University, Nanjing, China
| | - Yinhan Wang
- Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100730, China.
| | - Lejia Sun
- Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100730, China.
- The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Ping Li
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
11
|
Molina MA, Leenders WPJ, Huynen MA, Melchers WJG, Andralojc KM. Temporal composition of the cervicovaginal microbiome associates with hrHPV infection outcomes in a longitudinal study. BMC Infect Dis 2024; 24:552. [PMID: 38831406 PMCID: PMC11145797 DOI: 10.1186/s12879-024-09455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Persistent infections with high-risk human papillomavirus (hrHPV) can cause cervical squamous intraepithelial lesions (SIL) that may progress to cancer. The cervicovaginal microbiome (CVM) correlates with SIL, but the temporal composition of the CVM after hrHPV infections has not been fully clarified. METHODS To determine the association between the CVM composition and infection outcome, we applied high-resolution microbiome profiling using the circular probe-based RNA sequencing technology on a longitudinal cohort of cervical smears obtained from 141 hrHPV DNA-positive women with normal cytology at first visit, of whom 51 were diagnosed by cytology with SIL six months later. RESULTS Here we show that women with a microbial community characterized by low diversity and high Lactobacillus crispatus abundance at both visits exhibit low risk to SIL development, while women with a microbial community characterized by high diversity and Lactobacillus depletion at first visit have a higher risk of developing SIL. At the level of individual species, we observed that a high abundance for Gardnerella vaginalis and Atopobium vaginae at both visits associate with SIL outcomes. These species together with Dialister micraerophilus showed a moderate discriminatory power for hrHPV infection progression. CONCLUSIONS Our results suggest that the CVM can potentially be used as a biomarker for cervical disease and SIL development after hrHPV infection diagnosis with implications on cervical cancer prevention strategies and treatment of SIL.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
12
|
Chen XX, Nie C, Rao DF, Chen XX, Liao L. The effect of refined psychological pain nursing combined with IMB nursing on the pain, sleep and quality of life of patients after cervical cancer surgery. Medicine (Baltimore) 2024; 103:e37816. [PMID: 38640275 PMCID: PMC11029948 DOI: 10.1097/md.0000000000037816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
To explore the effect of refined psychological pain nursing combined with information-motivation-behavioral (IMB) care model on the pain, sleep and quality of life of patients after cervical cancer surgery, so as to provide reference and basis for the nursing of patients after cervical cancer surgery. The clinical data of 798 postoperative cervical cancer patients who were nursing in our hospital from January 2018 to December 2022 were included in this retrospective study and divided into the control group (n = 382) and observation group (n = 416) according to the different care methods. The control group used refined psychological pain nursing, and on this basis, the observation group used IMB nursing to observe and compare the differences in pain, sleep and quality of life between the 2 groups. There was no significant difference in pain between the 2 groups before nursing (P > .05). After nursing, the pain of both groups was significantly improved. The scores of NRS, VAS, and PSEQ of the observation group were significantly better than those of the control group (P < .001). After nursing, the quality of life scores such as emotion, cognition, society, and overall health were significantly higher in the observation group than those of the control group, while physical, fatigue, nausea, vomiting, and pain were significantly lower than those of the control group (P < .05). The negative emotion score of the observation group was significantly lower than that of the control group (P < .001). The residual urine volume and urinary tract infection rate of the observation group were significantly lower than those of the control group (P < .05). The bladder function was significantly better than that of the control group (P < .05). The analgesic effect of refined psychological pain nursing combined with IMB nursing on patients after cervical cancer surgery is better than that of refined psychological pain nursing alone, which can promote pain recovery and further improve the quality of life and sleep quality of patients.
Collapse
Affiliation(s)
- Xiao-Xue Chen
- Department of Gynaecology, WuHan No.1 Hospital, Wuhan, Hubei, China
| | - Chang Nie
- Department of Gynaecology, WuHan No.1 Hospital, Wuhan, Hubei, China
| | - Dan-Feng Rao
- Department of Gynaecology, WuHan No.1 Hospital, Wuhan, Hubei, China
| | - Xiang-Xiang Chen
- Department of Gynaecology, WuHan No.1 Hospital, Wuhan, Hubei, China
| | - Li Liao
- Department of Venous Allocation Center, Enshi Tujia and Miao Autonomous Prefecture Central Hospital, Enshi, Hubei, China
| |
Collapse
|
13
|
Zhao W, Li Q, Wen S, Li Y, Bai Y, Tian Z. Novel biomarkers of inflammation-associated immunity in cervical cancer. Front Oncol 2024; 14:1351736. [PMID: 38532933 PMCID: PMC10964772 DOI: 10.3389/fonc.2024.1351736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Background Cervical cancer (CC) is a highly malignant gynecological cancer with a direct causal link to inflammation, primarily resulting from persistent high-risk human papillomavirus (HPV) infection. Given the challenges in early detection and mid to late-stage treatment, our research aims to identify inflammation-associated immune biomarkers in CC. Methods Using a bioinformatics approach combined with experimental validation, we integrated two CC datasets (GSE39001 and GSE63514) in the Gene Expression Omnibus (GEO) to eliminate batch effects. Immune-related inflammation differentially expressed genes (DGEs) were obtained by R language identification. Results This analysis identified 37 inflammation-related DEGs. Subsequently, we discussed the different levels of immune infiltration between CC cases and controls. Weighted gene co-expression network analysis (WGCNA) identified seven immune infiltration-related modules in CC. We identified 15 immune DEGs associated with inflammation at the intersection of these findings. In addition, we constructed a protein interaction network using the String database and screened five hub genes using "CytoHubba": CXC chemokine ligand 8 (CXCL8), CXC chemokine ligand 10 (CXCL10), CX3C chemokine receptor 1 (CX3CR1), Fc gamma receptors 3B (FCGR3B), and SELL. The expression of these five genes in CC was determined by PCR experiments. In addition, we assessed their diagnostic value and further analyzed the association of immune cells with them. Conclusions Five inflammation- and immune-related genes were identified, aiming to provide new directions for early diagnosis and mid to late-stage treatment of CC from multiple perspectives.
Collapse
Affiliation(s)
- Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Songquan Wen
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqin Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Ying Bai
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiyu Tian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Gonçalves-Nobre JG, Matos A, Carreira M, Santos AC, Veiga LC, Ginete C, Brito M, Pires M, Pereira H, Cardoso C, Bicho M, Bicho MC. The interplay between HPV, other Sexually Transmissible Infections and genital microbiome on cervical microenvironment (MicroCervixHPV study). Front Cell Infect Microbiol 2024; 13:1251913. [PMID: 38532749 PMCID: PMC10963500 DOI: 10.3389/fcimb.2023.1251913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/04/2023] [Indexed: 03/28/2024] Open
Abstract
Background The importance of Cervicovaginal Microbiota in protecting against infections (such as HPV) is already well established, namely through Lactobacillus spp., as well as the mechanism through which HPV leads to Cervical Neoplasia. However, it is not possible to classify HPV as a complete carcinogen. Thus, the importance of exploring Cervicovaginal dysbiosis with the intention of deciphering this interaction with HPV, takes on greater relevance. The main objectives of this study were: 1) Comparison of the MCV composition of women with or without HPV and women with ASCUS or LSIL; 2) Characterization of cytokines present in the vaginal microenvironment; 3) Evaluation of the blood count ratios as prognostic systemic inflammatory biomarkers; 4) Correlation between MCV, HPV serotypes and cytokines. Methods This was a retrospective, observational, multicenter, cross-sectional study. CVM analysis was performed by isolation RNA and sequencing on a NGS platform. Cytokine concentrations of CVM were obtained through Multiplex platform. Statistical analysis was performed in SPSS v 26.0. An α of 0.05 was considered statistically significant. Results Highlighting the core of the study, CVM types of CST I and CST IV were found to influence the emergence of cervical lesions. Neutrophil-to-Lymphocyte ratio was found to impact the prognosis of ASCUS. Within CVM, Lactobacillus prevent the growth of other CST IV species, while the latter express symbiotic relationships with each other and show affinity for specific HPV serotypes. At last, RANTES chemokine is significantly elevated in cervicovaginal infections. Conclusion The importance of using vaginal cytokine profiles and CVM is highlighted in the hypothesis of prevention of Cervical Neoplasia development, as well as in its use as a prognostic biomarker. Taken together, these insights are one step closer to personalized medicine.
Collapse
Affiliation(s)
- J. Guilherme Gonçalves-Nobre
- Institute of Environmental Health (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Preventive Medicine and Public Health (IMPSP), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal
| | - Andreia Matos
- Institute of Environmental Health (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Preventive Medicine and Public Health (IMPSP), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal
- Tumour & Microenvironment Interactions Group i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Mariana Carreira
- Amedes MVZ Müenchen GmbH fier Gynaekologie und Pathologie, Munich, Germany
| | - Ana Carolina Santos
- Institute of Environmental Health (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Preventive Medicine and Public Health (IMPSP), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal
| | - Luisa Carvalho Veiga
- Health and Technology Research Center, Escola superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Catarina Ginete
- Health and Technology Research Center, Escola superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Miguel Brito
- Health and Technology Research Center, Escola superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Marina Pires
- Joaquim Chaves Saúde, Laboratório de Análises Clínicas, Carnaxide, Portugal
| | - Hermínia Pereira
- Joaquim Chaves Saúde, Laboratório de Análises Clínicas, Carnaxide, Portugal
| | - Carlos Cardoso
- Joaquim Chaves Saúde, Laboratório de Análises Clínicas, Carnaxide, Portugal
| | - Manuel Bicho
- Institute of Environmental Health (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Preventive Medicine and Public Health (IMPSP), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal
| | - Maria Clara Bicho
- Institute of Environmental Health (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Institute of Preventive Medicine and Public Health (IMPSP), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal
- Joaquim Chaves Saúde, Laboratório de Análises Clínicas, Carnaxide, Portugal
| |
Collapse
|
15
|
Fong Amaris WM, de Assumpção PP, Valadares LJ, Moreira FC. Microbiota changes: the unseen players in cervical cancer progression. Front Microbiol 2024; 15:1352778. [PMID: 38389527 PMCID: PMC10881787 DOI: 10.3389/fmicb.2024.1352778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Cervical cancer ranks among the most prevalent cancers globally with high-risk human papillomaviruses implicated in nearly 99% of cases. However, hidden players such as changes in the microbiota are now being examined as potential markers in the progression of this disease. Researchers suggest that changes in the vaginal microbiota might correlate with cervical cancer. This review provides a comprehensive look at the microbiota changes linked with the advancement of cervical cancer. It also scrutinizes the databases from past studies on the microbiota during healthy and cancerous stages, drawing connections between prior findings concerning the role of the microbiota in the progression of cervical cancer. Preliminary findings identify Fusobacterium spp., Peptostreptococcus spp., Campylobacter spp., and Haemophilus spp., as potential biomarkers for cervical cancer progression. Alloscardovia spp., Eubacterium spp., and Mycoplasma spp. were identified as potential biomarkers for HPVs (+), while Methylobacterium spp. may be indicative of HPV (-). However, the study's limitations, including potential biases and methodological constraints, underscore the need for further research to validate these findings and delve deeper into the microbiota's role in HPV development. Despite these limitations, the review provides valuable insights into microbiota trends during cervical cancer progression, offering direction for future research. The review summarizes key findings from previous studies on microbiota during healthy and cancerous stages, as well as other conditions such as CIN, SIL, HPV (+), and HPV (-), indicating a promising area for further investigation. The consistent presence of HPV across all reported cervical abnormalities, along with the identification of distinct bacterial genera between cancerous and control samples, suggests a potential link that merits further exploration. In conclusion, a more profound understanding of the microbial landscape could elucidate the pathogenesis of cervical diseases and inform future strategies for diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- W M Fong Amaris
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Leonardo Jacomo Valadares
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
16
|
Garolla A, Graziani A, Grande G, Ortolani C, Ferlin A. HPV-related diseases in male patients: an underestimated conundrum. J Endocrinol Invest 2024; 47:261-274. [PMID: 37770654 PMCID: PMC10859347 DOI: 10.1007/s40618-023-02192-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE Human papillomavirus (HPV) infection is the most common sexually transmitted disease, in males and females worldwide. While the role of HPV in female diseases is well known and largely studied, males have negligibly been included in these programs, also because the proportion of women suffering and dying from HPV-related diseases is much larger than men. The aim of this review is to focus on HPV-related diseases in male patients. METHODS We performed a literature analysis on the electronic database PubMed. We considered randomized trials, observational and retrospective studies, original articles having as topic the relationship between HPV male infection and the following items: oral, anal penile cancers, warts, condylomas, male infertility, altered sperm parameters, anti-sperm antibodies (ASA). We also included experimental in vitro studies focused on the effects of HPV infection on oocyte fertilization, blastocyst development, and trophoblastic cell invasiveness. In addition, studies describing the adjuvant administration of the HPV vaccination as a possible strategy to promote HPV clearance from semen in infected males were included. RESULTS Regarding head and neck HPV-related diseases, the most important non-neoplastic disease is recurrent respiratory papillomatosis (RRP). Regarding neoplastic diseases, the proportion of head and neck cancers attributable to HPV has increased dramatically worldwide. In addition, nowadays, it is thought that half of head and neck squamous cell carcinomas (HNSCCs) cases in the United States are caused by infection with high-risk HPV. HPV is noteworthy in andrological practice too. It was described as having a high HPV prevalence, ranging between 50 and 70%, in male penile shaft, glans penis/coronal sulcus, semen as well as in scrotal, perianal, and anal regions. Moreover, in male patients, HPV infection has been associated, among other diseases, with penile cancers. HPV semen infection has been reported in about 10% in men from the general population and about 16% in men with unexplained infertility, although these data seem widely underestimated according to clinical experience. In particular, HPV semen infection seems to be most related to asthenozoospermia and to anti-sperm antibodies (ASAs). CONCLUSIONS HPV infection represents a health problem with a detrimental social and public impact. Despite this evidence, little has been done to date to widely promote vaccination among young males.
Collapse
Affiliation(s)
- A Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padua, Italy.
| | - A Graziani
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padua, Italy
| | - G Grande
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padua, Italy
| | - C Ortolani
- Section of Otolaryngology, Department of Neurosciences, University of Padova, Padua, Italy
| | - A Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padua, Italy
| |
Collapse
|
17
|
Zhang N, Chen Z, Huang M, Lu Q, Yang H, Xiang J, Yang J, Peng Y, Wang G, Han N, Min X, Huang J. Cervicovaginal microbiota long-term dynamics and prediction of different outcomes in persistent human papillomavirus infection. J Med Virol 2024; 96:e29451. [PMID: 38305046 DOI: 10.1002/jmv.29451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Persistent human papillomavirus (HPV) infection can lead to cervical intraepithelial neoplasia (CIN) and cervical cancer, posing serious threats to the health of women. Although the cervicovaginal microbiota is strongly associated with CIN, the dynamics of the microbiota during CIN development are unknown. In this retrospective cohort study, we analyzed 3-year longitudinal data from 72 patients diagnosed with a persistent HPV infection almost all caused by high-risk HPV types. Patients were categorized into groups with HPV persistent infection (n = 37), progression to CIN (n = 16), and CIN regression (n = 19) based on infection outcome during the follow-up period. Furthermore, 16S rRNA gene sequencing was performed on consecutively collected cervical samples to explore the composition and dynamics of the cervicovaginal microbiota during the development and regression of CIN. Our results showed that the composition of the cervicovaginal microbiota varied among women with different HPV infection outcomes and remained relatively stable during the follow-up period. Notably, the serial follow-up data showed that these microbial alterations were present for at least 1-2 years and occurred before pathologic changes. In addition, microbial markers that were highly discriminatory for CIN progression or regression were identified. This study provides evidence for a temporal relationship between changes in the cervicovaginal microbiota and the development of CIN, and our findings provide support for future microbial intervention strategies for CIN.
Collapse
Affiliation(s)
- Ningqing Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Zuyi Chen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qin Lu
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Hui Yang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Jialin Xiang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Yanfeng Peng
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Niwei Han
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Mulato-Briones IB, Rodriguez-Ildefonso IO, Jiménez-Tenorio JA, Cauich-Sánchez PI, Méndez-Tovar MDS, Aparicio-Ozores G, Bautista-Hernández MY, González-Parra JF, Cruz-Hernández J, López-Romero R, del Rosario Rojas-Sánchez TM, García-Palacios R, Garay-Villar Ó, Apresa-García T, López-Esparza J, Marrero D, Castelán-Vega JA, Jiménez-Alberto A, Salcedo M, Ribas-Aparicio RM. Cultivable Microbiome Approach Applied to Cervical Cancer Exploration. Cancers (Basel) 2024; 16:314. [PMID: 38254804 PMCID: PMC10813707 DOI: 10.3390/cancers16020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional microbiological methodology is valuable and essential for microbiota composition description and microbe role assignations at different anatomical sites, including cervical and vaginal tissues; that, combined with molecular biology strategies and modern identification approaches, could give a better perspective of the microbiome under different circumstances. This pilot work aimed to describe the differences in microbiota composition in non-cancer women and women with cervical cancer through a culturomics approach combining culture techniques with Vitek mass spectrometry and 16S rDNA sequencing. To determine the possible differences, diverse statistical, diversity, and multivariate analyses were applied; the results indicated a different microbiota composition between non-cancer women and cervical cancer patients. The Firmicutes phylum dominated the non-cancer (NC) group, whereas the cervical cancer (CC) group was characterized by the predominance of Firmicutes and Proteobacteria phyla; there was a depletion of lactic acid bacteria, an increase in the diversity of anaerobes, and opportunistic and non-typical human microbiota isolates were present. In this context, we hypothesize and propose a model in which microbial composition and dynamics may be essential for maintaining the balance in the cervical microenvironment or can be pro-oncogenesis microenvironmental mediators in a process called Ying-Yang or have a protagonist/antagonist microbiota role.
Collapse
Affiliation(s)
- Irma Berenice Mulato-Briones
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (I.B.M.-B.); (I.O.R.-I.); (J.A.J.-T.); (J.A.C.-V.); (A.J.-A.)
- Unidad de Investigación en Biomedicina y Oncología Genómica (UIBOG), del Hospital de Gineco Pediatría No. 3A, del Instituto Mexicano del Seguro Social (IMSS), Mexico City 07300, Mexico;
- Laboratorio de Biotecnología Molecular y Farmacéutica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Ismael Olan Rodriguez-Ildefonso
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (I.B.M.-B.); (I.O.R.-I.); (J.A.J.-T.); (J.A.C.-V.); (A.J.-A.)
- Unidad de Investigación en Biomedicina y Oncología Genómica (UIBOG), del Hospital de Gineco Pediatría No. 3A, del Instituto Mexicano del Seguro Social (IMSS), Mexico City 07300, Mexico;
- Laboratorio de Biotecnología Molecular y Farmacéutica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Julián Antonio Jiménez-Tenorio
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (I.B.M.-B.); (I.O.R.-I.); (J.A.J.-T.); (J.A.C.-V.); (A.J.-A.)
- Unidad de Investigación en Biomedicina y Oncología Genómica (UIBOG), del Hospital de Gineco Pediatría No. 3A, del Instituto Mexicano del Seguro Social (IMSS), Mexico City 07300, Mexico;
| | - Patricia Isidra Cauich-Sánchez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (P.I.C.-S.); (G.A.-O.)
| | - María del Socorro Méndez-Tovar
- Laboratorio de Bacteriología Clínica, Hospital General, Centro Médico Nacional “La Raza”, IMSS, Mexico City 02990, Mexico;
| | - Gerardo Aparicio-Ozores
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (P.I.C.-S.); (G.A.-O.)
| | - María Yicel Bautista-Hernández
- Unidad de Radiología, Hospital General de México “Dr. Eduardo Liceaga”, Secretaría de Salud, Mexico City 07300, Mexico; (M.Y.B.-H.); (J.F.G.-P.); (J.C.-H.)
| | - Juan Francisco González-Parra
- Unidad de Radiología, Hospital General de México “Dr. Eduardo Liceaga”, Secretaría de Salud, Mexico City 07300, Mexico; (M.Y.B.-H.); (J.F.G.-P.); (J.C.-H.)
| | - Jesús Cruz-Hernández
- Unidad de Radiología, Hospital General de México “Dr. Eduardo Liceaga”, Secretaría de Salud, Mexico City 07300, Mexico; (M.Y.B.-H.); (J.F.G.-P.); (J.C.-H.)
| | - Ricardo López-Romero
- Unidad de Investigación en Biomedicina y Oncología Genómica (UIBOG), del Hospital de Gineco Pediatría No. 3A, del Instituto Mexicano del Seguro Social (IMSS), Mexico City 07300, Mexico;
| | | | | | - Ónix Garay-Villar
- Departamento de Braquiterapia, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS (DBHOCMN-IMSS), Mexico City 07300, Mexico;
| | - Teresa Apresa-García
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, Mexico City 07300, Mexico;
| | - Juan López-Esparza
- Laboratorio de H109, Academia de Microbiología, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico;
| | - Daniel Marrero
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City 07300, Mexico;
| | - Juan Arturo Castelán-Vega
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (I.B.M.-B.); (I.O.R.-I.); (J.A.J.-T.); (J.A.C.-V.); (A.J.-A.)
- Laboratorio de Biotecnología Molecular y Farmacéutica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Alicia Jiménez-Alberto
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (I.B.M.-B.); (I.O.R.-I.); (J.A.J.-T.); (J.A.C.-V.); (A.J.-A.)
- Laboratorio de Biotecnología Molecular y Farmacéutica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Mauricio Salcedo
- Unidad de Investigación en Biomedicina y Oncología Genómica (UIBOG), del Hospital de Gineco Pediatría No. 3A, del Instituto Mexicano del Seguro Social (IMSS), Mexico City 07300, Mexico;
| | - Rosa María Ribas-Aparicio
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico; (I.B.M.-B.); (I.O.R.-I.); (J.A.J.-T.); (J.A.C.-V.); (A.J.-A.)
- Laboratorio de Biotecnología Molecular y Farmacéutica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| |
Collapse
|
19
|
Song Y, Zhang M, Zhang C, Du S, Zhai F. HPV E6/E7 mRNA combined with thin-prep cytology test for the diagnosis of residual/recurrence after loop electrosurgical excision procedure in patients with cervical intraepithelial neoplasia. Diagn Microbiol Infect Dis 2024; 108:116119. [PMID: 37890308 DOI: 10.1016/j.diagmicrobio.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
To evaluate the diagnostic value of combining HPV E6/E7 mRNA testing with Thin-Prep cytology (TCT) for residual/recurrence detection, a total of 289 patients who underwent loop electrosurgical excision procedure (LEEP) for high-grade cervical lesions were included. Patients were followed up at different time points, and residual/recurrent lesions were confirmed through vaginoscopy. TCT, HPV-DNA, and HPV E6/E7 mRNA tests were conducted. Diagnostic performance, including sensitivity, specificity, positive predictive value, negative predictive value, and accuracy, was assessed. Among the patients, 76 cases showed residual lesions/recurrence, while 213 cases showed no residual/recurrence. Positive margins in the cervical-vaginal and cervical canal areas were associated with a higher risk of residual/recurrence. The combined HPV E6/E7 mRNA and TCT test showed higher diagnostic efficacy than individual tests at 6-, 12-, and 24-months follow-up. The combined test consistently demonstrated higher specificity and sensitivity, with significantly larger area under the curve (AUC) values compared to the individual tests.
Collapse
Affiliation(s)
- Yinghui Song
- Department of Gynecology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China.
| | - Min Zhang
- Department of Gynecology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Cui Zhang
- Department of Gynecology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Shiyu Du
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Furui Zhai
- Department of Gynecology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
20
|
Sofou E, Gkoliou G, Pechlivanis N, Pasentsis K, Chatzistamatiou K, Psomopoulos F, Agorastos T, Stamatopoulos K. High risk HPV-positive women cervicovaginal microbial profiles in a Greek cohort: a retrospective analysis of the GRECOSELF study. Front Microbiol 2023; 14:1292230. [PMID: 38098662 PMCID: PMC10720629 DOI: 10.3389/fmicb.2023.1292230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Increasing evidence supports a role for the vaginal microbiome (VM) in the severity of HPV infection and its potential link to cervical intraepithelial neoplasia. However, a lot remains unclear regarding the precise role of certain bacteria in the context of HPV positivity and persistence of infection. Here, using next generation sequencing (NGS), we comprehensively profiled the VM in a series of 877 women who tested positive for at least one high risk HPV (hrHPV) type with the COBAS® 4,800 assay, after self-collection of a cervico-vaginal sample. Starting from gDNA, we PCR amplified the V3-V4 region of the bacterial 16S rRNA gene and applied a paired-end NGS protocol (Illumina). We report significant differences in the abundance of certain bacteria compared among different HPV-types, more particularly concerning species assigned to Lacticaseibacillus, Megasphaera and Sneathia genera. Especially for Lacticaseibacillus, we observed significant depletion in the case of HPV16, HPV18 versus hrHPVother. Overall, our results suggest that the presence or absence of specific cervicovaginal microbial genera may be linked to the observed severity in hrHPV infection, particularly in the case of HPV16, 18 types.
Collapse
Affiliation(s)
- Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Glykeria Gkoliou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, Faculty of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Pasentsis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kimon Chatzistamatiou
- 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Ye J, Qi X. Vaginal microecology and its role in human papillomavirus infection and human papillomavirus associated cervical lesions. APMIS 2023. [PMID: 37941500 DOI: 10.1111/apm.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
The vaginal microecology comprises the vaginal microbiome, immune microenvironment, vaginal anatomy, and the cervicovaginal fluid, which is rich in metabolites, enzymes, and cytokines. Investigating its role in the female reproductive system holds paramount significance. The advent of next-generation sequencing enabled a more profound investigation into the structure of the vaginal microbial community in relation to the female reproductive system. Human papillomavirus infection is prevalent among women of reproductive age, and persistent oncogenic HPV infection is widely recognized as a factor associated with cervical cancer. Extensive previous research has demonstrated that dysbiosis of vaginal microbiota characterized by a reduction in Lactobacillus species, heightens susceptivity to HPV infection, consequently contributing to persistent HPV infection and the progression of cervical lesion. Likewise, HPV infection can exacerbate dysbiosis. This review aims to provide a comprehensive summary of current literatures and to elucidate potential mechanisms underlying the interaction between vaginal microecology and HPV infection, with the intention of offering valuable insights for future clinical interventions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Sahal G, Donmez HG, Beksac MS. Cervicovaginal Bacillus velezensis Isolate: A Potential Probiotic and an Antagonist Against Candida and Staphylococcus. Curr Microbiol 2023; 80:332. [PMID: 37642756 DOI: 10.1007/s00284-023-03447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
The cervicovaginal microbiota is an essential aspect of women's reproductive and overall health. In this study, we aimed to evaluate the probiotic properties of a cervicovaginal isolate, obtained from a gynecologically healthy woman and assess its antagonistic effect against various microorganisms isolated from the vagina. Cytological examination was performed using Papanicolaou staining, and the isolated microorganism was identified via 16S Ribosomal RNA Gene Sequence Analysis. Probiotic characteristics were evaluated by determining the tolerance of the isolate to low pH, different NaCl concentrations, and bile salts. Bacterial adherence to stainless steel sheets, antibiotic susceptibility, and antimicrobial activity tests were also conducted and analyzed. Antimicrobial tests and antagonistic activities were assessed through disc diffusion assays. The cervicovaginal isolate was identified as B. velezensis ON116948 and was found to be tolerant to low pH, high NaCl and 0.3% bile salts. Additionally, it exhibited adherence. With the exception of amoxicillin/clavulanic acid (AMC) (30 μg) and oxacillin (OX) (1 μg), this isolate was susceptible to all the antibiotics tested. Candida species did not grow on B. velezensis spread media, while B. velezensis was able to grow on C. albicans, C. glabrata, C. tropicalis, S. condimenti and S. epidermidis spread media with growth zones of 13.7 ± 0.6, 13.3 ± 0.6, 14.2 ± 4.4, 10.5 ± 0.5 and 16.0 ± 1.0 (around discs), respectively. Our findings suggest that the cervicovaginal B. velezensis ON116948 isolate exhibits probiotic properties and antagonistic activity. These results provide important insights into the potential use of this isolate as a probiotic for the prevention of vaginal infections.
Collapse
Affiliation(s)
- Gulcan Sahal
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, Ankara, Turkey.
| | - Hanife Guler Donmez
- Department of Biology (General Biology), Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Blay Mensah LB, Ken-Amoah S, Essuman MA, Anane-Fenin B, Agbeno EK, Eliason S, Essien-Baidoo S. Cervical Microbiota Influences Cytokine Diversity in Cervical Intraepithelial Neoplasia among Rural Women in the Akyemansa District of Ghana. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5129709. [PMID: 37635942 PMCID: PMC10450155 DOI: 10.1155/2023/5129709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Background In recent times, cervical dysbiosis which mostly causes and aggravates infections is highlighted for its role in immune modulation in cervical dysplasia, which promotes the shifting of Th1 phenotype immunity to Th2 phenotype immunity. This study therefore estimated and compared the levels of circulatory IL-4, IL-6, IL-10, TNF-α, and IFN-γ cytokines among adult women identified to have different grades of cervical intraepithelial neoplasia (CIN) and with cervicovaginal infection. Methods A total of 157 participants were recruited from the Akyemansa District of Ghana, and cervical swabs and blood samples were taken. The Pap smear test, microbiological culture, and ELISA were employed for cytology analysis, bacteria isolation, and identification and estimation of IL-4, IL-6, IL-10, TNF-α, and IFN-γ cytokines, respectively. Results Overall, 14/157 (8.9%) had CIN with 7.6% having CIN 1 and 1.3% having CIN 2. The main predictor for CIN was age above 46 years (OR 11.16, 95% CI: 2.4-51.8). Bacterial vaginosis (p = 0.003) and Candida infection (p = 0.012) were significantly higher in CIN. Again, Staphylococcus aureus (60% vs. 17.6%, p = 0.005), Citrobacter sp. (40.0% vs. 13.2%, p = 0.017), and Morganella morganii (40.0% vs. 4.4%, p = 0.002) isolates were significantly higher in CIN-positive participants. IL-10 and TNF-α concentrations were elevated in participants with CIN 1+ (TNF-α NIL vs. CIN 1+ only, p < 0.05) while IL-6 was decreased among participants with CIN 1+. In the presence of vaginal infection, TNF-α decreased among CIN 1+ participants while IL-10 remained elevated. Conclusion The findings of this study suggest that cervical dysbiosis causes immune suppression, which creates a suitable microenvironment for the development of CIN.
Collapse
Affiliation(s)
- Loretta Betty Blay Mensah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sebastian Ken-Amoah
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mainprice Akuoko Essuman
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Betty Anane-Fenin
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Evans Kofi Agbeno
- Department of Obstetrics and Gynaecology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sebastian Eliason
- Department of Community Medicine, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Essien-Baidoo
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
24
|
Giovannetti O, Tomalty D, Velikonja L, Gray G, Boev N, Gilmore S, Oladipo J, Sjaarda C, Sheth PM, Adams MA. Pre- and post-LEEP: analysis of the female urogenital tract microenvironment and its association with sexual dysfunction. Sex Med 2023; 11:qfad039. [PMID: 37588087 PMCID: PMC10425579 DOI: 10.1093/sexmed/qfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023] Open
Abstract
Background The loop electrosurgical excision procedure (LEEP) to treat cervical dysplasia (CD) is known to alter the cervical microbiota, the community of bacteria that play a central role in female genital health. Perturbations to the microbiota of the female urogenital tract (FUT), including the urethra, vagina, and cervix, have been linked with symptoms of sexual dysfunction (SD), though correlations among LEEP, the microenvironment, and SD have not yet been described. Aims To characterize the FUT microbiota before and after LEEP and investigate possible associations with SD. Methods Females undergoing LEEP for CD were recruited to participate in the study. Urinary samples and vaginal and cervical swabs were collected immediately before and 3 months after treatment. Bacterial communities were characterized by 16S rRNA next-generation sequencing. Self-report surveys assessing demographics, medical history, and sexual function were completed at the same intervals. Outcomes Microbiota taxonomy and Female Sexual Function Index (FSFI) scores. Results Alpha diversity revealed a significant decrease in species richness in the FUT microbiota post-LEEP. Beta diversity demonstrated significant differences among the cervical, urinary, and vaginal microenvironments pre- and post-LEEP. Lactobacillus spp were the dominant microbial genus in the cervical microenvironment pre- and post-LEEP. Although the vaginal and urinary microenvironments were characterized by Prevotella pre-LEEP, they were colonized by Lactobacillus post-LEEP. Following LEEP, some participants experienced a significant increase in proinflammatory bacteria, including the genera Gardnerella, Megasphaera, Sneathia, Parvimonas, and Peptostreptococcus. Others experienced significant decreases in inflammatory and protective bacteria post-LEEP, including Butyricicoccus, Terriporobacter, Intestinimonas, and Negativibacillus. Overall there were no significant changes in pre- and post-LEEP FSFI scores. However, post-LEEP FSFI scores were seemingly associated with changes in inflammatory bacteria in some participants. Clinical Implications There is an overall reduction in FUT microbiota dysbiosis post-LEEP. However, we show variability as some participants experienced persistent dysbiosis of FUT microbiota and elevated FSFI scores, suggesting that therapies to treat dysbiosis of FUT microbiota may reduce FSFI scores, thereby improving SD symptoms. Strengths and Limitations We demonstrate novel associations among urogenital sites, microbiota changes, LEEP, and SD. The small sample size and inability of species classification are limitations. Conclusion Diverse inflammatory microbiota characterizes CD in the FUT, and LEEP mostly returns microenvironments to a healthy state. However, some participants have persistent inflammatory bacteria post-LEEP, suggesting a non-uniform healing response. This study provides an impetus for future longitudinal studies to monitor and restore FUT microenvironments post-LEEP, aimed at mitigating postoperative SD symptoms.
Collapse
Affiliation(s)
- Olivia Giovannetti
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
| | - Diane Tomalty
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
| | - Leah Velikonja
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
| | - George Gray
- Department of Obstetrics and Gynaecology, Kingston General Hospital, Kingston K7L3N6, Canada
| | - Nadejda Boev
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L3N6, Canada
| | - Shelby Gilmore
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
| | - Jummy Oladipo
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
| | - Calvin Sjaarda
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L3N6, Canada
| | - Prameet M Sheth
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston K7L3N6, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Science, Queen’s University, Kingston K7L3N6, Canada
| |
Collapse
|
25
|
Stoian IL, Botezatu A, Fudulu A, Ilea CG, Socolov DG. Exploring Microbiota Diversity in Cervical Lesion Progression and HPV Infection through 16S rRNA Gene Metagenomic Sequencing. J Clin Med 2023; 12:4979. [PMID: 37568379 PMCID: PMC10420036 DOI: 10.3390/jcm12154979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Cervical cancer is a significant health concern, with the main cause being persistent infection with high-risk Human Papillomavirus (hrHPV). There is still no evidence for why viral persistence occurs in some women, but recent studies have revealed the interplay between cervical microbiota and hrHPV. This research aimed to characterize the cervicovaginal microbiota in cervical lesion progression and HPV infection status. (2) Methods: This study included 85 cervical specimens from women from the north-eastern region of Romania. DNA was isolated from cervical secretion for HPV genotyping and 16S ribosomal RNA gene NGS sequencing. (3) Results: Our study revealed a distinct pattern within the studied group when considering Lactobacillus species, which differs from findings reported in other populations. Specifically, the presence of Lactobacillus iners coupled with the absence of Lactobacillus crispatus alongside Atopobium spp., Prevotella spp., and Gardnerella spp. could serve as defining factors for severe cervical lesions. The results also showed a significant association between microbiota diversity, HPV infection, and cervical lesion progression. (4) Conclusions: As the microbiota profile seems to vary among different populations and individuals, a deeper comprehension of its composition has the potential to develop personalized detection and treatment approaches for cervical dysplasia and cancer.
Collapse
Affiliation(s)
- Irina Livia Stoian
- Department of Obstetrics and Gynecology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.L.S.); (D.G.S.)
| | - Anca Botezatu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Alina Fudulu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Ciprian Gavrila Ilea
- Department of Obstetrics and Gynecology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.L.S.); (D.G.S.)
| | - Demetra Gabriela Socolov
- Department of Obstetrics and Gynecology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.L.S.); (D.G.S.)
| |
Collapse
|
26
|
Jin G, Li K, Niu S, Fan X, Guo Y. Efficacy and safety of intensity Modulated Radiation therapy combined with Concurrent Chemoradiotherapy in the treatment of Recurrent Cervical Cancer. Pak J Med Sci 2023; 39:1062-1067. [PMID: 37492330 PMCID: PMC10364281 DOI: 10.12669/pjms.39.4.6784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 04/24/2023] [Indexed: 07/27/2023] Open
Abstract
Objective To evaluate the clinical value of intensity modulated radiation therapy (IMRT) combined with concurrent chemoradiotherapy in the treatment of recurrent cervical cancer. Methods This was a retrospective study. Eighty patients with recurrent cervical cancer were recruited and randomly divided into two groups: the experimental group and the control group, with 40 cases in each group at The Fourth Hospital of Hebei Medical University from April, 2017 to April, 2022. Patients in the control group were only given IMRT, while those in the experimental group were given concurrent chemoradiotherapy with paclitaxel and cisplatin based on IMRT. All patients were evaluated for clinical efficacy, adverse drug reactions, and differences in the levels of SCC-Ag, CEA and CA724 and other tumor markers before and after treatment. Results The total effective rate in the experimental group was significantly better than in the control group (p=0.02). The incidence of adverse reactions was 40% in the experimental group and 32.5% in the control group, with no statistically significant difference (p=0.48). After treatment, the levels of tumor markers in the experimental group were significantly lower than those in the control group, with a statistically significant difference (p=0.00). The three years survival rate was 80% in the experimental group and 55% in the control group (p=0.03). The five years survival rate was 65% in the experimental group and 42.5% in the control group, with a statistically significant difference (p=0.04). Conclusion Intensity modulated radiation therapy (IMRT) combined with concurrent chemoradiotherapy is a safe and effective regimen for recurrent cervical cancer, boasting significant clinical efficacy, reduced tumor markers, no significant increase in adverse reactions, and significantly improved three-years and five years survival rate.
Collapse
Affiliation(s)
- Ge Jin
- Ge Jin, Department of Gynecology and Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, P.R. China
| | - Kuixiu Li
- Kuixiu Li, Department of Gynecology and Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, P.R. China
| | - Shuhuai Niu
- Shuhuai Niu, Department of Gynecology and Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiaomei Fan
- Xiaomei Fan, Department of Gynecology and Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, P.R. China
| | - Yunfeng Guo
- Yunfeng Guo, Department of Gynecology and Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, P.R. China
| |
Collapse
|
27
|
Gafen HB, Liu CC, Ineck NE, Scully CM, Mironovich MA, Guarneri L, Taylor CM, Luo M, Leis ML, Scott EM, Carter RT, Lewin AC. Relative and Quantitative Characterization of the Bovine Bacterial Ocular Surface Microbiome in the Context of Suspected Ocular Squamous Cell Carcinoma. Animals (Basel) 2023; 13:1976. [PMID: 37370486 DOI: 10.3390/ani13121976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The ocular surface microbiome is altered in certain disease states. The aim of this study was to characterize the bovine bacterial ocular surface microbiome (BBOSM) in the context of ocular squamous cell carcinoma (OSCC). The conjunctiva of normal (n = 28) and OSCC (n = 10) eyes of cows aged 2 to 13 years from two farms in Louisiana and Wyoming were sampled using individual sterile swabs. DNA extraction followed by 16S ribosomal ribonucleic acid (rRNA) gene sequencing and real-time polymerase chain reaction (RT-PCR) were performed to, respectively, assess the relative and absolute BBOSM. Discriminant analysis (DA) was performed using RT-PCR data, and relative abundance analysis was performed using 16S rRNA gene sequencing data. The 11 most abundant phyla in both normal and OSCC-affected cows were identified using 16S rRNA gene sequencing analysis. The relative abundance of Euryarchaeota was found to be significantly lower (p = 0.0372) in OSCC eyes compared to normal eyes. Relative abundance differences within and between geographic locations were also identified. Quadratic DA categorized samples as OSCC or normal with 100% sensitivity and 83.3-100% specificity. Relative abundance analysis identified relative BBOSM phylum alterations in OSCC. Quadratic DA can be used to accurately categorize BBOSM from normal and OSCC ocular surface samples.
Collapse
Affiliation(s)
- Hannah B Gafen
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nikole E Ineck
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Clare M Scully
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Melanie A Mironovich
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Lauren Guarneri
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University, New Orleans, LA 70112, USA
| | - Marina L Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Erin M Scott
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Renee T Carter
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Zhu R, Wang W, Yang A, Zhao W, Wang W, Wang Z, Wang J, Hou Y, Su X, Zhang L, Feng B, Yang J, Wang Z, Niu X, Lv W, Qu Z, Hao M. Interactions between vaginal local cytokine IL-2 and high-risk human papillomavirus infection with cervical intraepithelial neoplasia in a Chinese population-based study. Front Cell Infect Microbiol 2023; 13:1109741. [PMID: 37256111 PMCID: PMC10225571 DOI: 10.3389/fcimb.2023.1109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Background Although interleukin-2 (IL-2) has long been associated with cancer development, its roles in the development of cervical cancer remains unclear. Few studies examined the associations between IL-2 and high-risk human papillomavirus (HPV) with risk of cervical intraepithelial neoplasia (CIN). Objective We aimed to assess the association of IL-2 and high-risk HPV infection with risk of CIN as well as their interactions on the risk of CIN. Design We performed a cross-sectional analysis of screening data in 2285 women aged 19-65 years who participated in an ongoing community-based cohort of 40,000 women in Shanxi, China in 2014-2015. Both categorical and spline analyses were used to evaluation the association between IL-2 in the local vaginal fluids and prevalence of CIN. In addition, 1503 controls were followed up until January 31, 2019), the nested case-control study design was adopted to evaluate the association of vaginal lavage IL-2 levels and the risk of CIN progression. Results After adjusting for potential confounders, IL-2 levels were statistically inversely associated with prevalence of CIN (the 1st versus 4th quartile IL-2 levels: the respective odds ratio [OR] and 95% confidence intervals [CI] was: = 1.75 [1.37, 2.23] for CIN, 1.32 [1.01, 1.73] for CIN I, and 3.53 [2.26, 5.52] for CIN II/III). Increased IL-2 levels were inversely associated with prevalence of CIN (P-overall<0.01, P-nonlinearity<0.01 for CIN; P-overall<0.01, P-nonlinearity = 0.01 for CIN I; P-overall <0.01, P-nonlinearity = 0.62 for CIN II/III). The highest prevalence of CIN was observed in women with high-risk HPV, who also had the lowest IL-2 levels (P-interaction < 0.01). Nested case-control study observed an inverse association between IL-2 levels and risk of CIN progression (OR=3.43, [1.17, 10.03]). Conclusions IL-2 levels in the local vaginal fluids were inversely associated with the risk of CIN in Chinese women either with or without high-risk HPV infection.
Collapse
Affiliation(s)
- Ruoxi Zhu
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenhao Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Aiming Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Weihong Zhao
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhilian Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongli Hou
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqiang Su
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Zhang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Feng
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Yang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhe Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofen Niu
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiguo Lv
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhican Qu
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Hao
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Britto AMA, Siqueira JD, Curty G, Goes LR, Policarpo C, Meyrelles AR, Furtado Y, Almeida G, Giannini ALM, Machado ES, Soares MA. Microbiome analysis of Brazilian women cervix reveals specific bacterial abundance correlation to RIG-like receptor gene expression. Front Immunol 2023; 14:1147950. [PMID: 37180114 PMCID: PMC10167488 DOI: 10.3389/fimmu.2023.1147950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The relationship among microbiome, immunity and cervical cancer has been targeted by several studies, yet many questions remain unanswered. We characterized herein the virome and bacteriome from cervical samples and correlated these findings with innate immunity gene expression in a Brazilian convenience sample of HPV-infected (HPV+) and uninfected (HPV-) women. For this purpose, innate immune gene expression data were correlated to metagenomic information. Correlation analysis showed that interferon (IFN) is able to differentially modulate pattern recognition receptors (PRRs) expression based on HPV status. Virome analysis indicated that HPV infection correlates to the presence of Anellovirus (AV) and seven complete HPV genomes were assembled. Bacteriome results unveiled that vaginal community state types (CST) distribution was independent of HPV or AV status, although bacterial phyla distribution differed between groups. Furthermore, TLR3 and IFNαR2 levels were higher in the Lactobacillus no iners-dominated mucosa and we detected correlations among RIG-like receptors (RLR) associated genes and abundance of specific anaerobic bacteria. Collectively, our data show an intriguing connection between HPV and AV infections that could foster cervical cancer development. Besides that, TLR3 and IFNαR2 seem to create a protective milieu in healthy cervical mucosa (L. no iners-dominated), and RLRs, known to recognize viral RNA, were correlated to anaerobic bacteria suggesting that they might be related to dysbiosis.
Collapse
Affiliation(s)
- Alan Messala A. Britto
- Departamento de Enfermagem Materno-Infantil (DEMI), Faculdade de Enfermagem (FEnf), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Infecção HIV/aids e Hepatites Virais, Hospital Universitário Gaffrée e Guinle (HUGG/Ebserh), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Juliana D. Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Gislaine Curty
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Livia R. Goes
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Cintia Policarpo
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Angela R. Meyrelles
- Instituto de Ginecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yara Furtado
- Instituto de Ginecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Escola de Medicina e Cirurgia da Universidade Federal do Estado do Rio de Janeiro, Universidade Federal do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Gutemberg Almeida
- Instituto de Ginecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia M. Giannini
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elizabeth S. Machado
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Sharifian K, Shoja Z, Jalilvand S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol J 2023; 20:73. [PMID: 37076931 PMCID: PMC10114331 DOI: 10.1186/s12985-023-02037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Over the past few decades, we have grown accustomed to the idea that human papillomavirus can cause tumors. The genetic and environmental factors that make the difference between elimination of viral infection and the development of cancer are therefore an area of active investigation at present. Microbiota has emerged as an important factor that may affect this balance by increasing or decreasing the ability of viral infection to promote. The female reproductive system has its specific microbiota that helps to maintain health and prevent infection with pathogens. In contrast to other mucosal sites, the vaginal microbiota typically has low diversity and contains few Lactobacillus spp. which by using high-throughput 16s rRNA gene sequencing, classified into five different community state types. According to emerging information, increased diversity of vaginal microbiota and reduced abundance of Lactobacillus spp. contribute to HPV acquisition, persistence, and development of cervical cancer. In this review, the role of normal female reproductive tract microbiota in health, mechanisms which dysbiosis can cause diseases through interaction with microbes and several therapeutic approaches were addressed.
Collapse
Affiliation(s)
- Kimia Sharifian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran.
| |
Collapse
|
31
|
Ma Y, Li Y, Liu Y, Cao L, Han X, Gao S, Zhang C. Vaginal Microbiome Dysbiosis is Associated with the Different Cervical Disease Status. J Microbiol 2023; 61:423-432. [PMID: 37010797 DOI: 10.1007/s12275-023-00039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Vaginal microbiome composition was demonstrated to be associated with cervical disease. The colonization characteristics of vaginal microbes and their association with the different cervical disease status, especially cervical cancer (CC), are rarely investigated. In this cross-sectional study, we characterized the vaginal microbiome of women with different status of cervical diseases, including 22 NV + (normal tissue with HPV infection), low-grade squamous intraepithelial lesion (LSIL, n = 45), high-grade squamous intraepithelial lesion (HSIL, n = 36) and CC (n = 27) using bacterial 16S DNA sequencing. Thirty HPV-negative women with normal tissue were used as the control group. We found that higher diversity of microbiome with gradual depletion of Lactobacillus, especially L. crispatus, was associated with the severity of cervical disease. High-risk HPV16 infection was associated with higher microbiome diversity and depletion of Lactobacillus in high-grade cervical diseases (i.e. HSIL and CC). The CC group was characterized by higher levels of Fannyhessea vaginae, Prevotella, Bacteroides, Finegoldia, Vibrio, Veillonella, Peptostreptococcus, and Dialister. Co-occurrence network analyses showed that negative correlations were exclusively observed between Lactobacillus and other bacteria, and almost all non-Lactobacillus bacteria were positively correlated with each other. In particular, the most diverse and complex co-occurrence network of vaginal bacteria, as well as a complete loss of L. crispatus, was observed in women with CC. Logistic regression model identified HPV16 and Lactobacillus as significant risk and protective factors for CC, respectively. These results suggest that specific Lactobacillus species (e.g. L. crispatus and L. iners) can be used as important markers to target prevention measures prioritizing HPV16-infected women and other hrHPV-infected women for test, vaccination and treat initiatives.
Collapse
Affiliation(s)
- Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200437, People's Republic of China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200437, People's Republic of China
| | - Yanmei Liu
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, People's Republic of China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200437, People's Republic of China
| | - Xiao Han
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, People's Republic of China
| | - Shujun Gao
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200011, People's Republic of China.
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
32
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
33
|
Chen T, Wang J, Li M, Wu Q, Cui S. Genistein Inhibits Proliferation and Metastasis in Human Cervical Cancer Cells through the Focal Adhesion Kinase Signaling Pathway: A Network Pharmacology-Based In Vitro Study in HeLa Cells. Molecules 2023; 28:molecules28041919. [PMID: 36838908 PMCID: PMC9963694 DOI: 10.3390/molecules28041919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Previous studies have provided evidence that genistein exerts a therapeutic effect on different tumor cells. However, the mechanism of action of genistein against cervical cancer cells remains largely unknown. The aim of this study was to comprehensively decipher the anti-metastatic effect and molecular mechanism of genistein action on cervical cancer cells. We developed an integrated strategy from genotype to phenotype, combining network pharmacology and a transcriptome screening approach, to elucidate the underlying mechanism of action of genistein against human cervical cancer cells. In silico studies predicted that the focal adhesion pathway may be an important signaling cascade targeted by genistein treatment. Using RNA sequencing analysis, representative genes of the focal adhesion pathway were demonstrated to be significantly downregulated. Phenotypic studies revealed that genistein demonstrated strong anti-proliferative and anti-metastatic activity in HeLa cells. Moreover, genistein modulated this activity in a concentration-dependent manner. Genistein also inhibited both the activation and gene expression of FAK (Focal Adhesion Kinase) and paxillin. In addition, vimentin and β-catenin protein expression, and Snail and Twist gene expression, were strongly inhibited by genistein. Our findings provide strong evidence for a pleiotropic effect of genistein on cervical cancer cells, mediated through the focal adhesion pathway.
Collapse
Affiliation(s)
- Tingting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Juan Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Min Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Qingqing Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Jiangyang Middle Road 136, Yangzhou 225001, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou 225001, China
- Correspondence:
| |
Collapse
|
34
|
Long T, Zhang C, He G, Hu Y, Lin Z, Long L. Bacterial Vaginosis Decreases the Risk of Cervical Cytological Abnormalities. Cancer Prev Res (Phila) 2023; 16:109-117. [PMID: 36280380 PMCID: PMC9900316 DOI: 10.1158/1940-6207.capr-22-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
Genital tract infections, including vulvovaginal candidiasis and bacterial vaginosis, have emerged as potential modulators of persistent human papillomavirus (HPV) infections causing cervical cytologic abnormalities and cervical cancer. This study aimed to investigate whether vulvovaginal candidiasis or bacterial vaginosis had an additional effect on HPV infection and thus caused such abnormalities. ThinPrep cytologic tests were used to detect cytologic abnormalities, vulvovaginal candidiasis, and bacterial vaginosis in 14,679 women. Cytologic abnormalities included atypical squamous cells of undetermined significance, low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, atypical squamous cells-cannot exclude HSIL, and squamous cell carcinoma. Logistic regression Model 1 (univariate regression) and Model 2 (multivariate logistic regression analysis adjusted for age combined with HPV infection) were used to analyze the association between bacterial vaginosis and cytologic abnormalities, or vulvovaginal candidiasis and cytologic abnormalities, alone or in the presence of HPV infection. Bacterial vaginosis infection rates were found to be significantly higher in the cytology-negative group among all participants and those with HPV infection (P = 0.003, P < 0.001, respectively). Analyses using Model 1 and Model 2 both pointed to bacterial vaginosis as a protective factor against cytologic abnormalities for all participants (OR = 0.36, 0.17, respectively, P < 0.05) and for HPV-infected participants (OR = 0.17, 0.16, respectively, P < 0.05). Neither vulvovaginal candidiasis nor vulvovaginal candidiasis + HPV was significantly associated with the incidence of cytologic abnormalities based on Model 1 (OR = 0.94, 0.71, respectively, P > 0.05) and Model 2 (OR = 0.91, 0.74, respectively, P > 0.05). Furthermore, neither vulvovaginal candidiasis nor bacterial vaginosis increased the incidence of cytologic abnormalities regardless of HPV infection status, while bacterial vaginosis might possibly prevent cytologic abnormalities in women coinfected by HPV. PREVENTION RELEVANCE Neither vulvovaginal candidiasis nor bacterial vaginosis was found to increase the incidence of cervical cytologic abnormalities with or without the presence of HPV. On the contrary, bacterial vaginosis may play a role in preventing cytologic abnormalities in women with HPV coinfection.
Collapse
Affiliation(s)
- Tengfei Long
- Department of Obstetrics & Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chao Zhang
- Department of Obstetrics & Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gui He
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yue Hu
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhongqiu Lin
- Department of Obstetrics & Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lingli Long
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Corresponding Author: Lingli Long, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou 510000, P.R. China. Phone: 8613-5600-55597; E-mail:
| |
Collapse
|
35
|
Viana MC, Curty G, Furtado C, Singh B, Bendall ML, Viola JPB, de Melo AC, Soares MA, Moreira MAM. Naso-oropharyngeal microbiome from breast cancer patients diagnosed with COVID-19. Front Microbiol 2023; 13:1074382. [PMID: 36713167 PMCID: PMC9874304 DOI: 10.3389/fmicb.2022.1074382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Due to immunosuppressive cancer therapies, cancer patients diagnosed with COVID-19 have a higher chance of developing severe symptoms and present a higher mortality rate in comparison to the general population. Here we show a comparative analysis of the microbiome from naso-oropharyngeal samples of breast cancer patients with respect to SARS-CoV-2 status and identified bacteria associated with symptom severity. Total DNA of naso-oropharyngeal swabs from 74 women with or without breast cancer, positive or negative for SARS-CoV-2 were PCR-amplified for 16S-rDNA V3 and V4 regions and submitted to massive parallel sequencing. Sequencing data were analyzed with QIIME2 and taxonomic identification was performed using the q2-feature-classifier QIIME2 plugin, the Greengenes Database, and amplicon sequence variants (ASV) analysis. A total of 486 different bacteria were identified. No difference was found in taxa diversity between sample groups. Cluster analysis did not group the samples concerning SARS-CoV-2 status, breast cancer diagnosis, or symptom severity. Three taxa (Pseudomonas, Moraxella, and Klebsiella,) showed to be overrepresented in women with breast cancer and positive for SARS-CoV-2 when compared to the other women groups, and five bacterial groups were associated with COVID-19 severity among breast cancer patients: Staphylococcus, Staphylococcus epidermidis, Scardovia, Parasegitibacter luogiensis, and Thermomonas. The presence of Staphylococcus in COVID-19 breast cancer patients may possibly be a consequence of nosocomial infection.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gislaine Curty
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Carolina Furtado
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Bhavya Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Miguel A. M. Moreira
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil,*Correspondence: Miguel A. M. Moreira,
| |
Collapse
|
36
|
Cervicovaginal-Microbiome Analysis by 16S Sequencing and Real-Time PCR in Patients from Novosibirsk (Russia) with Cervical Lesions and Several Years after Cancer Treatment. Diagnostics (Basel) 2023; 13:diagnostics13010140. [PMID: 36611432 PMCID: PMC9818139 DOI: 10.3390/diagnostics13010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Disturbed cervicovaginal-microbiome (CVM) structure promotes human papillomavirus (HPV) persistence and reflects risks of cervical lesions and cancer onset and recurrence. Therefore, microbiomic biomarkers may be useful for cervical disease screening and patient management. Here, by 16S rRNA gene sequencing and commercial PCR-based diagnostic kits, we profiled CVM in cytological preparations from 140 HPV-tested women (from Novosibirsk, Russia) with normal cytological findings, cervical lesions, or cancer and from 101 women who had recently received different cancer therapies. An increase in lesion severity was accompanied by higher HPV prevalence and elevated CVM biodiversity. Post-treatment CVM was found to be enriched with well-known microbial biomarkers of dysbiosis, just as in cervical disease. Nonetheless, concentrations of some skin-borne and environmental species (which gradually increased with increasing lesion severity)-especially Cutibacterium spp., Achromobacter spp., and Ralstonia pickettii-was low in post-treatment patients and depended on treatment types. Frequency of Lactobacillus iners dominance was high in all groups and depended on treatment types in post-treatment patients. Microbiome analysis via PCR-based kits revealed statistically significant differences among all groups of patients. Thus, microbiome profiling may help to find diagnostic and prognostic markers for management of cervical lesions; quantitative PCR-based kits may be suitable for these purposes.
Collapse
|
37
|
Altered vaginal eukaryotic virome is associated with different cervical disease status. Virol Sin 2022; 38:184-197. [PMID: 36565811 PMCID: PMC10176265 DOI: 10.1016/j.virs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are important components of the human body. Growing evidence suggests that they are engaged in the physiology and disease status of the host. Even though the vaginal microbiome is involved in human papillomavirus (HPV) infection and cervical cancer (CC) progression, little is known about the role of the vaginal virome. In this pilot exploratory study, using unbiased viral metagenomics, we aim to investigate the vaginal eukaryotic virome in women with different levels of cervical lesions, and examine their associations with different cervical disease status. An altered eukaryotic virome was observed in women with different levels of lesions and Lactobacillus profiles. Anelloviruses and papillomaviruses are the most commonly detected eukaryotic viruses of the vaginal virome. Higher abundance and richness of anelloviruses and papillomaviruses were associated with low-grade squamous intraepithelial lesion (LSIL) and CC. Besides, higher anellovirus abundance was also associated with lactobacillus-depleted microbiome profiles and bacterial community state (CST) type IV. Furthermore, increased correlations between Anelloviridae and Papillomaviridae occurred in the women with increased cervical disease severity level from LSIL to CC. These data suggest underlying interactions between different microbes as well as the host physiology. Higher abundance and diversity of both anelloviruses and papillomaviruses shared by LSIL and CC suggest that anellovirus may be used as a potential adjunct biomarker to predict the risk of HPV persistent infection and/or CC. Future studies need to focus on the clinical relevance of anellovirus abundance with cervical disease status, and the evaluation of their potential as a new adjunct biomarker for the prediction and prognoses of CC.
Collapse
|
38
|
Rai R, Nahar M, Jat D, Gupta N, Mishra SK. A systematic assessment of stress insomnia as the high-risk factor for cervical cancer and interplay of cervicovaginal microbiome. Front Cell Infect Microbiol 2022; 12:1042663. [PMID: 36560927 PMCID: PMC9763463 DOI: 10.3389/fcimb.2022.1042663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is a dreaded form of cancer in women, the fourth most common cancer, with around 0.3 million females suffering from this disease worldwide. Over the past several decades, global researches have focused on the mitigation of cervical lesions and cancers and have explored the impact of physiological and psychological stress and insomnia on cervical pathogenesis. Furthermore, disruption of the cervicovaginal microbiome profiles is identified as an added high-risk factor for the occurrence of cervical cancer. The physiological regulation of stress has an underlying mechanism controlled via hypothalamic pituitary adrenal (HPA) and sympatho-adrenal medullary (SAM) axes. Disruptions in these axes have been identified as the factors responsible for maintaining the homeostasis balance. Recent studies on microbiomes have offered novel ways to combat cervical cancer and cervix infection by exploring the interplay of the cervicovaginal microbiome. Moreover, the integration of various immune cells and microbiome diversity is known to act as an effective strategy to decipher the cervix biological activity. Cytokine profiling and the related immune competence, and physiological stress and insomnia impart to the regulatory networks underlying the mechanism which may be helpful in designing mitigation strategies. This review addressed the current progress in the research on cervical cancer, HPV infection, immune cell interaction, and physiological stress and insomnia with the cervicovaginal microbiome to decipher the disease occurrence and therapeutic management.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Manisha Nahar
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India,*Correspondence: Siddhartha Kumar Mishra, ; Deepali Jat,
| | - Neelima Gupta
- Vice-Chancellor, Dr. Harisinsgh Gour Central University, Sagar, India
| | - Siddhartha Kumar Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India,*Correspondence: Siddhartha Kumar Mishra, ; Deepali Jat,
| |
Collapse
|
39
|
Vikramdeo KS, Anand S, Pierce JY, Singh AP, Singh S, Dasgupta S. Distribution of microbiota in cervical preneoplasia of racially disparate populations. BMC Cancer 2022; 22:1074. [PMID: 36258167 PMCID: PMC9578267 DOI: 10.1186/s12885-022-10112-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS Microbiome dysbiosis is an important contributing factor in tumor development and thus may be a risk predictor for human malignancies. In the United States, women with Hispanic/Latina (HIS) and African American (AA) background have a higher incidence of cervical cancer and poorer outcomes than Caucasian American (CA) women. METHODS Here, we assessed the distribution pattern of microbiota in cervical intraepithelial neoplasia (CIN) lesions obtained from HIS (n = 12), AA (n = 12), and CA (n = 12) women, who were screened for CC risk assessment. We employed a 16S rRNA gene sequencing approach adapted from the NIH-Human Microbiome Project to identify the microbial niche in all CIN lesions (n = 36). RESULTS We detected an appreciably decreased abundance of beneficial Lactobacillus in the CIN lesions of the AA and HIS women compared to the CA women. Differential abundance of potentially pathogenic Prevotella, Delftia, Gardnerella, and Fastidiosipila was also evident among the various racial groups. An increased abundance of Micrococcus was also evident in AA and HIS women compared to the CA women. The detection level of Rhizobium was higher among the AA ad CA women compared to the HIS women. In addition to the top 10 microbes, a unique niche of 27 microbes was identified exclusively in women with a histopathological diagnosis of CIN. Among these microbes, a group of 8 microbiota; Rubellimicrobium, Podobacter, Brevibacterium, Paracoccus, Atopobium, Brevundimonous, Comamonous, and Novospingobium was detected only in the CIN lesions obtained from AA and CA women. CONCLUSIONS Microbial dysbiosis in the cervical epithelium represented by an increased ratio of potentially pathogenic to beneficial microbes may be associated with increased CC risk disparities. Developing a race-specific reliable panel of microbial markers could be beneficial for CC risk assessment, disease prevention, and/or therapeutic guidance.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Shashi Anand
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Santanu Dasgupta
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
40
|
Shi Y, Gao Q, Liu Z, Shen G, Sun X, Di X. Identification of Immune and Hypoxia Risk Classifier to Estimate Immune Microenvironment and Prognosis in Cervical Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6906380. [PMID: 36304989 PMCID: PMC9593224 DOI: 10.1155/2022/6906380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2023]
Abstract
Purpose Cervical cancer (CC) is one of the most common gynecologic neoplasms. Hypoxia is an essential trigger for activating immunosuppressive activity and initiating malignant tumors. However, the determination of the role of immunity and hypoxia on the clinical outcome of CC patients remains unclear. Methods The CC independent cohort were collected from TCGA database. Consensus cluster analysis was employed to determine a molecular subtype based on immune and hypoxia gene sets. Cox relevant analyses were utilized to set up a risk classifier for prognosis assessment. The underlying pathways of classifier genes were detected by GSEA. Moreover, we conducted CIBERSORT algorithm to mirror the immune status of CC samples. Results We observed two cluster related to immune and hypoxia status and found the significant difference in outcome of patients between the two clusters. A total of 251 candidate genes were extracted from the two clusters and enrolled into Cox relevant analyses. Then, seven hub genes (CCL20, CXCL2, ITGA5, PLOD2, PTGS2, TGFBI, and VEGFA) were selected to create an immune and hypoxia-based risk classifier (IHBRC). The IHBRC can precisely distinguish patient risk and estimate clinical outcomes. In addition, IHBRC was closely bound up with tumor associated pathways such as hypoxia, P53 signaling and TGF β signaling. IHBRC was also tightly associated with numerous types of immunocytes. Conclusion This academic research revealed that IHBRC can be served as predictor for prognosis assessment and cancer treatment estimation in CC.
Collapse
Affiliation(s)
- Yujing Shi
- Department of Oncology, Jurong People's Hospital, Huayang Town, Jurong City, China
| | - Qing Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeyuan Liu
- Department of Radiation Oncology, Nanjing Jiangning Hospital and the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Gefenqiang Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchen Sun
- Department of Oncology, Jurong People's Hospital, Huayang Town, Jurong City, China
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Morales CG, Jimenez NR, Herbst-Kralovetz MM, Lee NR. Novel Vaccine Strategies and Factors to Consider in Addressing Health Disparities of HPV Infection and Cervical Cancer Development among Native American Women. Med Sci (Basel) 2022; 10:52. [PMID: 36135837 PMCID: PMC9503187 DOI: 10.3390/medsci10030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the 4th most common type of cancer in women world-wide. Many factors play a role in cervical cancer development/progression that include genetics, social behaviors, social determinants of health, and even the microbiome. The prevalence of HPV infections and cervical cancer is high and often understudied among Native American communities. While effective HPV vaccines exist, less than 60% of 13- to 17-year-olds in the general population are up to date on their HPV vaccination as of 2020. Vaccination rates are higher among Native American adolescents, approximately 85% for females and 60% for males in the same age group. Unfortunately, the burden of cervical cancer remains high in many Native American populations. In this paper, we will discuss HPV infection, vaccination and the cervicovaginal microbiome with a Native American perspective. We will also provide insight into new strategies for developing novel methods and therapeutics to prevent HPV infections and limit HPV persistence and progression to cervical cancer in all populations.
Collapse
Affiliation(s)
- Crystal G. Morales
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicole R. Jimenez
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
42
|
Karpinets TV, Wu X, Solley T, El Alam MB, Sims TT, Yoshida-Court K, Lynn E, Ahmed-Kaddar M, Biegert G, Yue J, Song X, Sun H, Petrosino JF, Mezzari MP, Okhuysen P, Eifel PJ, Jhingran A, Lin LL, Schmeler KM, Ramondetta L, Ajami N, Jenq RR, Futreal A, Zhang J, Klopp AH, Colbert LE. Metagenomes of rectal swabs in larger, advanced stage cervical cancers have enhanced mucus degrading functionalities and distinct taxonomic structure. BMC Cancer 2022; 22:945. [PMID: 36050658 PMCID: PMC9438314 DOI: 10.1186/s12885-022-09997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. Method Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient’s clinical characteristics. Results Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. Conclusions In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09997-0.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis T Sims
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mustapha Ahmed-Kaddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Greyson Biegert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingyan Yue
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Melissa P Mezzari
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Pablo Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lilie L Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lois Ramondetta
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim Ajami
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
43
|
Wang Y, Wang J, Mei H. Diagnosis of Cervical Intraepithelial Neoplasia and Invasive Cervical Carcinoma by Cervical Biopsy under Colposcopy and Analysis of Factors Influencing. Emerg Med Int 2022; 2022:9621893. [PMID: 35941961 PMCID: PMC9356899 DOI: 10.1155/2022/9621893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To explore the diagnosis of cervical intraepithelial neoplasia (CIN) and invasive cervical carcinoma (ICC) by cervical biopsy under colposcopy and analyze the factors influencing the detection. Methods The clinical data of 134 CIN confirmed by colposcopy biopsy in our hospital from June 2018 to October 2019 and subsequent LEEP treatment were analyzed retrospectively. All patients were diagnosed pathologically after the operation. The diagnosis of CIN by cervical biopsy under colposcopy was observed. The influencing factors of CIN and ICC detected by colposcopy biopsy were analyzed by the pathological results of loop electrosurgical excision procedure (LEEP) as the gold standard. Results After LEEP, the number of the no intraepithelial or malignant lesions (NILM) or ICC were higher than that of colposcopy biopsy, and CIN-III was lower than that of colposcopy biopsy, the differences were all statistically significant (P < 0.05). Among the 134 patients, the coincidence rate between colposcopy biopsy and LEEP examination results was 79.10% (106/134), and postoperative pathological findings showed that there were 13 cases (9.70%) with the pathological upgrade and 19 cases (14.18%) with pathological decrease. Multivariate logistic analysis showed that the image quality of colposcopy image, atypical blood vessels, biopsy sampling method, and visible lesion area of the cervix were the independent influencing factors for the detection of CIN and ICC by colposcopy biopsy (P < 0.05). Conclusion CIN and ICC can be diagnosed by colposcopy cervical biopsy and postoperative histopathology. However, there are still some missed and misdiagnosed cervical biopsies under colposcopy, and the combined detection of the two can further ensure the diagnosis rate. The clinical registration number is E2018091.
Collapse
Affiliation(s)
- Ying Wang
- Medical Department of Wuhan Wudong Hospital, Wuhan 430084, Hubei, China
| | - Jing Wang
- Hubei Materal and Child Health Hospital, Wuhan 430064, Hubei, China
| | - Hua Mei
- Hospital Infection Branch, Wuhan Wudong Hospital Public Health, Wuhan 430084, Hubei, China
| |
Collapse
|
44
|
Mei Z, Li D. The role of probiotics in vaginal health. Front Cell Infect Microbiol 2022; 12:963868. [PMID: 35967876 PMCID: PMC9366906 DOI: 10.3389/fcimb.2022.963868] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics have been widely used in the treatment of intestinal diseases, but the effect of probiotics on female reproductive tract health is still controversial. Lactobacillus is the most abundant microorganism in the vagina, which is related to the vaginal mucosal barrier. Lactobacillus adheres to the vaginal epithelium and can competitively antagonize the colonization of pathogens. The factors produced by Lactobacillus, such as bacteriocin and hydrogen peroxide (H2O2), can inhibit the growth of pathogenic microorganisms and maintain the low pH environment of the vagina. Probiotics play an important role in maintaining the stability of vaginal microenvironment, improving immune defense and blocking the progression of cervical cancer. We review the research progress of probiotics represented by Lactobacillus in gynecological diseases such as human papilloma virus (HPV) infection, bacterial vaginosis (BV) and Genitourinary Syndrome of Menopause (GSM), so as to provide basis for further exerting the role of probiotics in women’s health.
Collapse
Affiliation(s)
- Zhaojun Mei
- Luzhou Maternal and Child Health Hospital, Luzhou Second People’s Hospital, Luzhou, China
| | - Dandan Li
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dandan Li,
| |
Collapse
|
45
|
Wu Y, Chen T, Huang Y, Li Y, Wang X. MRI Using Artificial Intelligence Algorithm to Evaluate Concurrent Chemoradiotherapy for Local Recurrence and Distant Metastasis of Cervical Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4449696. [PMID: 35936360 PMCID: PMC9352503 DOI: 10.1155/2022/4449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the magnetic resonance imaging (MRI) features of patients with local recurrence and distant metastasis of cervical squamous cell carcinoma before and after concurrent chemoradiotherapy based on artificial intelligence algorithm. In this study, 100 patients with cervical squamous cell carcinoma with local recurrence and distant metastasis who underwent concurrent chemoradiotherapy were collected as the research subjects, and all underwent MRI multisequence imaging scans. At the same time, according to the evaluation criteria of solid tumor efficacy, patients with complete remission were classified into the effective group, and patients with partial remission, progressive disease, and stable disease were classified into the ineffective group. In addition, an image segmentation algorithm based on Balloon Snake model was proposed for MRI image processing, and simulation experiments were carried out. The results showed that the Dice coefficient of the proposed model segmentation of the reconstructed image was significantly higher than that of the level set model and the greedy algorithm, while the running time was the opposite (P < 0.05). The lesion volume (38.76 ± 5.34 cm3) in the effective group after treatment was significantly smaller than that in the noneffective group (46.33 ± 4.64 cm3), and the rate of lesion volume shrinkage (28.71%) was significantly larger than that in the noneffective group (12.49%) (P < 0.05). The relative apparent diffusion coefficient (rADC) value and rADC value change rate of the lesion after treatment in the effective group were significantly greater than those in the noneffective group (P < 0.05). In summary, the image segmentation and reconstruction algorithm based on Balloon Snake model can not only improve the quality of MRI images but also shorten the processing time and improve the diagnostic efficiency. The volume regression rate and rADC value change rate of cervical squamous cell carcinoma lesion can reflect the early efficacy of concurrent chemoradiotherapy for cervical squamous cell carcinoma and have predictive value.
Collapse
Affiliation(s)
- Youyi Wu
- Department of Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, Wenzhou, 325200 Zhejiang, China
| | - Tingting Chen
- Department of Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, Wenzhou, 325200 Zhejiang, China
| | - Yiwei Huang
- Department of Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, Wenzhou, 325200 Zhejiang, China
| | - Yongchou Li
- Department of Radiology and Imaging, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, Wenzhou, 325200 Zhejiang, China
| | - Xiaoyan Wang
- Department of Oncology Radiotherapy, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian, Wenzhou, 325200 Zhejiang, China
| |
Collapse
|
46
|
Association between Cervical Microbiota and HPV: Could This Be the Key to Complete Cervical Cancer Eradication? BIOLOGY 2022; 11:biology11081114. [PMID: 35892970 PMCID: PMC9351688 DOI: 10.3390/biology11081114] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The microbiota can modulate immune responses and modify the physiology of the human organism, thereby increasing infective risks and a neoplastic predisposition. In this review, we focus on the composition of the cervical microbiota, to identify the risk of developing Cervical Intraepithelial Neoplasia and better understand the interaction between cervico-vaginal microbiota and human papillomavirus as a means of promoting the identification of new therapeutic strategies. In fact, no therapy for HPV is yet available. A better understanding of the cervical micro-environment could be a key element allowing complete viral clearance to be achieved in largely affected populations. Abstract The heterogeneity of the cervico-vaginal microbiota can be appreciated in various conditions, both pathological and non-pathological, and can vary according to biological and environmental factors. Attempts are still in course to define the interaction and role of the various factors that constitute this community of commensals in immune protection, inflammatory processes, and the onset of precancerous lesions of the cervical epithelium. Despite the many studies on the relationship between microbiota, immunity, and HPV-related cervical tumors, further aspects still need to be probed. In this review article, we will examine the principal characteristics of microorganisms commonly found in cervico-vaginal specimens (i) the factors that notoriously condition the diversity and composition of microbiota, (ii) the role that some families of organisms may play in the onset of HPV-dysplastic lesions and in neoplastic progression, and (iii) possible diagnostic-therapeutic approaches.
Collapse
|
47
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
48
|
Martin A, Woolbright BL, Umar S, Ingersoll MA, Taylor JA. Bladder cancer, inflammageing and microbiomes. Nat Rev Urol 2022; 19:495-509. [PMID: 35798831 DOI: 10.1038/s41585-022-00611-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Ageing is correlated with elevated bladder cancer incidence, morbidity and mortality. Advanced age is also associated with elevated markers of chronic inflammation and perturbations in gut and urinary tract microbiota. One reason for the increased incidence and mortality of bladder cancer in the elderly might be that age-associated changes in multiple microbiomes induce systemic metabolic changes that contribute to immune dysregulation with potentially tumorigenic effects. The gut and urinary microbiomes could be dysregulated in bladder cancer, although the effect of these changes is poorly understood. Each of these domains - the immune system, gut microbiome and urinary microbiome - might also influence the response of patients with bladder cancer to treatment. Improved understanding of age-related alterations to the immune system and gut and urinary microbiomes could provide possible insight into the risk of bladder cancer development and progression in the elderly. In patients with bladder cancer, improved understanding of microbiota might also provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Austin Martin
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Molly A Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, Paris, France.,Mucosal Inflammation and Immunity group, Department of Immunology, Institut Pasteur, Paris, France
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
49
|
Zhou C, Chen F, Li L. A Disintegrin and Metalloprotease 17 (ADAM17)-Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Enhance Drug-Resistant Cervical Cancer Development. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADAM-17 is a type I transmembrane protein, and its abnormal expression affects the body development and tumor growth. BMSCs act as a target gene carrier in tumor tissues. This study mainly aims to explore the role of ADAM-17 and BMSCs in drug-resistant cervical cancer (CC). BMSCs were
transfected with ADAM-17 or empty vectors and then co-cultured with cisplatin-resistant CC cells followed by analysis of cell morphology. The in vivo effect of ADAM-17-modified BMSC was evaluated using animal model of CC. The protein expression of ADAM-17, EGFR, PI3K, and Akt was detected
using Western blot and RT-qPCR. Transfection of ADAM-17 significantly facilitated tumor growth at different time points (4 d, 7 d, 10 d, 14 d), accompanied with the upregulation of ADAM-17, EGFR, PI3K, and Akt expression (p < 0.05) without differences between empty vector group and
blank group (p > 0.05). Mechanistically, ADAM-17 directly targets EGFR in CC. In conclusion, ADAM-17-modified BMSC enhances the growth of drug-resistant CC cell and tumor growth through EGFR/PI3K/Akt signaling pathway, which may contribute to a novel therapy for treating CC.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Obstetrics and Gynecology, Union Jiangnan Hospital, Wuhan, Hubei, 430200, China
| | - Fengxia Chen
- Department of Obstetrics and Gynecology, Union Jiangnan Hospital, Wuhan, Hubei, 430200, China
| | - Liling Li
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, China
| |
Collapse
|
50
|
The Complex Interplay between Vaginal Microbiota, HPV Infection, and Immunological Microenvironment in Cervical Intraepithelial Neoplasia: A Literature Review. Int J Mol Sci 2022; 23:ijms23137174. [PMID: 35806188 PMCID: PMC9266651 DOI: 10.3390/ijms23137174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: in recent years, many studies were carried out to explore the role of vaginal microbiota in HPV infections and cervical intraepithelial neoplasia (CIN) progression. The aim of this study was to conduct a review of the literature to analyze the interaction between the vaginal microbiota, the CIN, and the immunological response. Methods: we performed a literature search, considering papers published between November 2015 and September 2021. Results: despite significant evidence suggesting a role of vaginal microbiota in the pathogenesis of HPV-related lesions, some studies still struggle to demonstrate this correlation. However, the vaginal microbiota of HPV-positive women shows an increased diversity, combined with a reduced relative abundance of Lactobacillus spp. and a higher pH. In cervical dysplasia progression, a strong association is found with new bacteria, and with the deregulation of pathways and hyperexpression of cytokines leading to chronic inflammation. Conclusions: in HPV progression, there is a strong correlation between potential biomarkers, such as Sneathia and Delftia found in community state types IV and II, and chronic inflammation with cytokine overexpression. Better analysis of these factors could be of use in the prevention of the progression of the disease and, eventually, in new therapeutic strategies.
Collapse
|