1
|
Queiroz M, Sena CM. Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc Diabetol 2024; 23:455. [PMID: 39732729 PMCID: PMC11682657 DOI: 10.1186/s12933-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration. This exacerbates vascular dysfunction by impairing endothelial cell function and promoting endothelial activation. Dysregulated PVAT also contributes to hemodynamic alterations and hypertension through enhanced sympathetic nervous system activity and impaired vasodilatory capacity of PVAT-derived factors. Therapeutic interventions targeting key components of this interaction, such as modulating PVAT inflammation, restoring adipokine balance, and attenuating immune cell activation, hold promise for mitigating obesity-related vascular complications. Lifestyle interventions, pharmacological agents targeting inflammatory pathways, and surgical approaches aimed at reducing PVAT mass or improving adipose tissue function are potential therapeutic avenues for managing vascular diseases associated with obesity and PVAT dysfunction.
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| |
Collapse
|
2
|
Ahmed B, Farb MG, Gokce N. Cardiometabolic implications of adipose tissue aging. Obes Rev 2024; 25:e13806. [PMID: 39076025 DOI: 10.1111/obr.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Adipose tissue is a large endocrine organ that serves numerous physiological functions. As we age, adipose tissue remodels and can develop functional changes that alters its phenotype, potentially contributing to metabolic and cardiovascular disorders. Aging adipose tissue is characterized by regional redistribution of fat, accumulation of senescent cells, fibrosis, and decline in adipocyte differentiation capacities, which collectively impact adipose tissue function and whole body health. A notable transformation involves increased accumulation of intra-abdominal visceral adipose tissue and ectopic fat around internal organs such as the heart, blood vessels, liver, and kidneys that alter their functions. Other changes associated with aging include alterations in adipokine secretion and changes in adipocyte size and numbers. Aging adipocytes play a role in mediating chronic inflammation, metabolic dysfunction, and insulin resistance. Visceral adipose tissue, which increases in volume with aging, is in particular associated with inflammation, angiogenic dysfunction, and microvascular abnormalities, and mediators released by visceral fat may have adverse consequences systemically in multiple target organs, including the cardiovascular system. Understanding mechanisms underlying adipose tissue aging and its impact on cardiovascular health are important for developing interventions and treatments to promote healthy aging and reduce cardiometabolic disease risk.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melissa G Farb
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. Int J Mol Sci 2024; 25:11188. [PMID: 39456971 PMCID: PMC11508873 DOI: 10.3390/ijms252011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Vascular aging encompasses structural and functional changes in the vasculature, significantly contributing to cardiovascular diseases, which are the leading cause of death globally. The incidence and prevalence of these diseases increase with age, with most morbidity and mortality attributed to myocardial infarction and stroke. Diagnosing and intervening in vascular aging while understanding the mechanisms behind age-induced vascular phenotypic and pathophysiological alterations offers the potential for delaying and preventing cardiovascular mortality in an aging population. This review delves into various aspects of vascular aging by examining age-related changes in arterial health at the cellular level, including endothelial dysfunction, cellular senescence, and vascular smooth muscle cell transdifferentiation, as well as at the structural level, including arterial stiffness and changes in wall thickness and diameter. We also explore aging-related changes in perivascular adipose tissue deposition, arterial collateralization, and calcification, providing insights into the physiological and pathological implications. Overall, aging induces phenotypic changes that augment the vascular system's susceptibility to disease, even in the absence of traditional risk factors, such as hypertension, diabetes, obesity, and smoking. Overall, age-related modifications in cellular phenotype and molecular homeostasis increase the vulnerability of the arterial vasculature to structural and functional alterations, thereby accelerating cardiovascular risk. Increasing our understanding of these modifications is crucial for success in delaying or preventing cardiovascular diseases. Non-invasive techniques, such as measuring carotid intima-media thickness, pulse wave velocity, and flow-mediated dilation, as well as detecting vascular calcifications, can be used for the early detection of vascular aging. Targeting specific pathological mechanisms, such as cellular senescence and enhancing angiogenesis, holds promise for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Ahmed A. Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sujin Lee
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Vanalderwiert L, Henry A, Wahart A, Carvajal Berrio DA, Brauchle EM, El Kaakour L, Schenke-Layland K, Brinckmann J, Steenbock H, Debelle L, Six I, Faury G, Jaisson S, Gillery P, Durlach V, Sartelet H, Maurice P, Bennasroune A, Martiny L, Duca L, Romier B, Blaise S. Metabolic syndrome-associated murine aortic wall stiffening is associated with premature elastic fibers aging. Am J Physiol Cell Physiol 2024; 327:C698-C715. [PMID: 38946422 DOI: 10.1152/ajpcell.00615.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Type 2 diabetes (T2D) constitutes a major public health problem, and despite prevention efforts, this pandemic disease is one of the deadliest diseases in the world. In 2022, 6.7 million patients with T2D died prematurely from vascular complications. Indeed, diabetes increases the risk of myocardial infarction or stroke eightfold. The identification of the molecular factors involved in the occurrence of cardiovascular complications and their prevention are therefore major axes. Our hypothesis is that factors brought into play during physiological aging appear prematurely with diabetes progression. Our study focused on the aging of the extracellular matrix (ECM), a major element in the maintenance of vascular homeostasis. We characterized the morphological and functional aspects of aorta, with a focus on the collagen and elastic fibers of diabetic mice aged from 6 mo to nondiabetic mice aged 6 mo and 20 mo. The comparison with the two nondiabetic models (young and old) highlighted an exacerbated activity of proteases, which could explain a disturbance in the collagen accumulation and an excessive degradation of elastic fibers. Moreover, the generation of circulating elastin-derived peptides reflects premature aging of the ECM. These extracellular elements contribute to the appearance of vascular rigidity, often the origin of pathologies such as hypertension and atherosclerosis. In conclusion, we show that diabetic mice aged 6 mo present the same characteristics of ECM wear as those observed in mice aged 20 mo. This accelerated aortic wall remodeling could then explain the early onset of cardiovascular diseases and, therefore, the premature death of patients with T2D.NEW & NOTEWORTHY Aortic elastic fibers of young (6-mo old) individuals with diabetes degrade prematurely and exhibit an appearance like that found in aged (20-mo old) nondiabetic mice. Exacerbated elastolysis and elastin-derived peptide production are characteristic elements, contributing to early aortic wall rigidity and hypertension development. Therefore, limiting this early aging could be a judicious therapeutic approach to reduce cardiovascular complications and premature death in patients with diabetes.
Collapse
MESH Headings
- Animals
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Vascular Stiffness/physiology
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Mice, Inbred C57BL
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Male
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Metabolic Syndrome/physiopathology
- Elastin/metabolism
- Collagen/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Aging/pathology
- Aging/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Aging, Premature/metabolism
- Aging, Premature/pathology
- Aging, Premature/physiopathology
Collapse
Affiliation(s)
| | - Auberi Henry
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Amandine Wahart
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Daniel A Carvajal Berrio
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Eva M Brauchle
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, Reutlingen, Germany
| | - Lara El Kaakour
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, Reutlingen, Germany
- Division of Cardiology, Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Juergen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Laurent Debelle
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Isabelle Six
- Research Unit 7517, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), University of Picardie Jules Verne, Amiens, France
| | - Gilles Faury
- University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Stéphane Jaisson
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
- Biochemistry Department, University Hospital of Reims, Reims, France
| | - Philippe Gillery
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
- Biochemistry Department, University Hospital of Reims, Reims, France
| | - Vincent Durlach
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
- Cardiovascular and Thoracic Division, Hôpital Robert Debré, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Béatrice Romier
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 MEDyc, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
5
|
Li Y, Chen Z, Xiao Y, Li X. Cross-talks between perivascular adipose tissue and neighbors: multifaceted nature of nereids. Front Pharmacol 2024; 15:1442086. [PMID: 39156105 PMCID: PMC11327032 DOI: 10.3389/fphar.2024.1442086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a unique fat depot surrounding blood vessels and plays a vital role in the progression of vascular remodeling and dysfunction. PVAT exhibits remarkable differences in structure, phenotype, origin, and secretome across anatomical locations. The proximity of PVAT to neighboring vascular beds favors a niche for bidirectional communication between adipocytes and vascular smooth muscle cells, endothelial cells, and immune cells. In this review, we update our understanding of PVAT's regional differences and provide a comprehensive exploration of how these differences impact cross-talks between PVAT and the vascular wall. Different PVAT depots show different degrees of vasoprotective function and resilience to pathological changes such as obesity and vasculopathies, shaping multifaceted interactions between PVAT depots and adjacent vasculatures. The depot-specific resilience may lead to innovative strategies to manage cardiometabolic disorders.
Collapse
Affiliation(s)
- Yujuan Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- (R & D Center) Laboratory for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zhang Chen
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- (R & D Center) Laboratory for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Xinzhi Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- (R & D Center) Laboratory for Drug Discovery from Natural Resource, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
6
|
Wang Y, Wang X, Chen Y, Zhang Y, Zhen X, Tao S, Dou J, Li P, Jiang G. Perivascular fat tissue and vascular aging: A sword and a shield. Pharmacol Res 2024; 203:107140. [PMID: 38513826 DOI: 10.1016/j.phrs.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The understanding of the function of perivascular adipose tissue (PVAT) in vascular aging has significantly changed due to the increasing amount of information regarding its biology. Adipose tissue surrounding blood vessels is increasingly recognized as a key regulator of vascular disorders. It has significant endocrine and paracrine effects on the vasculature and is mediated by the production of a variety of bioactive chemicals. It also participates in a number of pathological regulatory processes, including oxidative stress, immunological inflammation, lipid metabolism, vasoconstriction, and dilation. Mechanisms of homeostasis and interactions between cells at the local level tightly regulate the function and secretory repertoire of PVAT, which can become dysregulated during vascular aging. The PVAT secretion group changes from being reducing inflammation and lowering cholesterol to increasing inflammation and increasing cholesterol in response to systemic or local inflammation and insulin resistance. In addition, the interaction between the PVAT and the vasculature is reciprocal, and the biological processes of PVAT are directly influenced by the pertinent indicators of vascular aging. The architectural and biological traits of PVAT, the molecular mechanism of crosstalk between PVAT and vascular aging, and the clinical correlation of vascular age-related disorders are all summarized in this review. In addition, this paper aims to elucidate and evaluate the potential benefits of therapeutically targeting PVAT in the context of mitigating vascular aging. Furthermore, it will discuss the latest advancements in technology used for targeting PVAT.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianmin Wang
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Yang Chen
- School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Li
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China.
| |
Collapse
|
7
|
Jin Q, Zhao T, Lin L, Yao X, Teng Y, Zhang D, Jin Y, Yang M. PIAS1 impedes vascular endothelial injury and atherosclerotic plaque formation in diabetes by blocking the RUNX3/TSP-1 axis. Hum Cell 2023; 36:1915-1927. [PMID: 37584829 DOI: 10.1007/s13577-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/17/2023]
Abstract
The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models. A diabetic vascular injury was induced in human umbilical vein endothelial cells (HUVECs) by stimulation with H2O2 and advanced glycation end product (AGE), and a streptozotocin (STZ)-induced mouse model of diabetes was constructed, followed by detection of endogenous PIAS1 expression and SUMOylation level of RUNX3. Effects of PIAS1 concerning RUNX3 and TSP-1 on the HUVEC apoptosis and inflammation were evaluated using the ectopic expression experiments. Down-regulated PIAS1 expression and SUMOylation level of RUNX3 were identified in the H2O2- and AGE-induced HUVEC model of diabetic vascular injury and STZ-induced mouse models of diabetes. PIAS1 promoted the SUMOylation of RUNX3 at the K148 site of RUNX3. PIAS1-mediated SUMOylation of RUNX3 reduced RUNX3 transactivation activity, weakened the binding of RUNX3 to the promoter region of TSP-1, and caused downregulation of TSP-1 expression. PIASI decreased the expression of TSP-1 by inhibiting H2O2- and AGE-induced RUNX3 de-SUMOylation, thereby arresting the inflammatory response and apoptosis of HUVECs. Besides, PIAS1 reduced vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes by inhibiting the RUNX3/TSP-1 axis. Our study proved that PIAS1 suppressed vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes via the RUNX3/TSP-1 axis.
Collapse
Affiliation(s)
- Qingsong Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Tiantian Zhao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Liangyan Lin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Xiaoyan Yao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Yaqin Teng
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Dongdong Zhang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China
| | - Yongjun Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Mouping District, Binzhou, 264100, Shandong Province, People's Republic of China.
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Binzhou Medical University, No. 522, Huanghe Third Road, Binzhou, 264003, People's Republic of China.
| |
Collapse
|
8
|
Gogiraju R, Witzler C, Shahneh F, Hubert A, Renner L, Bochenek ML, Zifkos K, Becker C, Thati M, Schäfer K. Deletion of endothelial leptin receptors in mice promotes diet-induced obesity. Sci Rep 2023; 13:8276. [PMID: 37217565 DOI: 10.1038/s41598-023-35281-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity promotes endothelial dysfunction. Endothelial cells not only respond, but possibly actively promote the development of obesity and metabolic dysfunction. Our aim was to characterize the role of endothelial leptin receptors (LepR) for endothelial and whole body metabolism and diet-induced obesity. Mice with tamoxifen-inducible, Tie2.Cre-ERT2-mediated deletion of LepR in endothelial cells (End.LepR knockout, KO) were fed high-fat diet (HFD) for 16 weeks. Body weight gain, serum leptin levels, visceral adiposity and adipose tissue inflammation were more pronounced in obese End.LepR-KO mice, whereas fasting serum glucose and insulin levels or the extent of hepatic steatosis did not differ. Reduced brain endothelial transcytosis of exogenous leptin, increased food intake and total energy balance were observed in End.LepR-KO mice and accompanied by brain perivascular macrophage accumulation, whereas physical activity, energy expenditure and respiratory exchange rates did not differ. Metabolic flux analysis revealed no changes in the bioenergetic profile of endothelial cells from brain or visceral adipose tissue, but higher glycolysis and mitochondrial respiration rates in those isolated from lungs. Our findings support a role for endothelial LepRs in the transport of leptin into the brain and neuronal control of food intake, and also suggest organ-specific changes in endothelial cell, but not whole-body metabolism.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Fatemeh Shahneh
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Astrid Hubert
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Christian Becker
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Clinic of Dermatology, University Clinic Münster, Münster, Germany
| | - Madhusudhan Thati
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Chao CT, Hung KY. Vascular frailty, a proposal for new frailty type: A narrative review. Kaohsiung J Med Sci 2023; 39:318-325. [PMID: 36866657 DOI: 10.1002/kjm2.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Frailty is the incremental accumulation of minute defects that progressively impair health and performance. Frailty is commonly observed in older adults; however, secondary frailty may also occur in patients with metabolic disorders or major organ failure. In addition to physical frailty, several distinct types of frailty have been identified, including oral, cognitive, and social frailty, each of which is of practical importance. This nomenclature suggests that detailed descriptions of frailty can potentially advance relevant researches. In this narrative review, we first summarize the clinical value and plausible biological origin of frailty, as well as how to appropriately assess it using physical frailty phenotypes and frailty indexes. In the second part, we discuss the issue of vascular tissue as a relatively underappreciated organ whose pathologies contribute to the development of physical frailty. Moreover, when vascular tissue undergoes degeneration, it exhibits vulnerability to subtle injuries and manifests a unique phenotype amenable to clinical assessment prior to or accompanying physical frailty development. Finally, we propose that vascular frailty, based on an extensive set of experimental and clinical evidence, can be considered a new frailty type that requires our attention. We also outline potential methods for the operationalization of vascular frailty. Further studies are required to validate our claim and sharpen the spectrum of this degenerative phenotype.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Hung
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
10
|
Song J, Farris D, Ariza P, Moorjani S, Varghese M, Blin M, Chen J, Tyrrell D, Zhang M, Singer K, Salmon M, Goldstein DR. Age-associated adipose tissue inflammation promotes monocyte chemotaxis and enhances atherosclerosis. Aging Cell 2023; 22:e13783. [PMID: 36683460 PMCID: PMC9924943 DOI: 10.1111/acel.13783] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Although aging enhances atherosclerosis, we do not know if this occurs via alterations in circulating immune cells, lipid metabolism, vasculature, or adipose tissue. Here, we examined whether aging exerts a direct pro-atherogenic effect on adipose tissue in mice. After demonstrating that aging augmented the inflammatory profile of visceral but not subcutaneous adipose tissue, we transplanted visceral fat from young or aged mice onto the right carotid artery of Ldlr-/- recipients. Aged fat transplants not only increased atherosclerotic plaque size with increased macrophage numbers in the adjacent carotid artery, but also in distal vascular territories, indicating that aging of the adipose tissue enhances atherosclerosis via secreted factors. By depleting macrophages from the visceral fat, we identified that adipose tissue macrophages are major contributors of the secreted factors. To identify these inflammatory factors, we found that aged fat transplants secreted increased levels of the inflammatory mediators TNFα, CXCL2, and CCL2, which synergized to promote monocyte chemotaxis. Importantly, the combined blockade of these inflammatory mediators impeded the ability of aged fat transplants to enhance atherosclerosis. In conclusion, our study reveals that aging enhances atherosclerosis via increased inflammation of visceral fat. Our study suggests that future therapies targeting the visceral fat may reduce atherosclerosis disease burden in the expanding older population.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Diana Farris
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Paola Ariza
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Smriti Moorjani
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mita Varghese
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel Blin
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Judy Chen
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Tyrrell
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Min Zhang
- Department of BiostatisticsUniversity of MichiganAnn ArborMichiganUSA
| | - Kanakadurga Singer
- Department of Pediatrics, Division of EndocrinologyUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
- Graduate Program in ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
11
|
Shi H, Wu H, Winkler MA, Belin de Chantemèle EJ, Lee R, Kim HW, Weintraub NL. Perivascular adipose tissue in autoimmune rheumatic diseases. Pharmacol Res 2022; 182:106354. [PMID: 35842184 PMCID: PMC10184774 DOI: 10.1016/j.phrs.2022.106354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023]
Abstract
Perivascular adipose tissue (PVAT) resides at the outermost boundary of the vascular wall, surrounding most conduit blood vessels, except for the cerebral vessels, in humans. A growing body of evidence suggests that inflammation localized within PVAT may contribute to the pathogenesis of cardiovascular disease (CVD). Patients with autoimmune rheumatic diseases (ARDs), e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriasis, etc., exhibit heightened systemic inflammation and are at increased risk for CVD. Data from clinical studies in patients with ARDs support a linkage between dysfunctional adipose tissue, and PVAT in particular, in disease pathogenesis. Here, we review the data linking PVAT to the pathogenesis of CVD in patients with ARDs, focusing on the role of novel PVAT imaging techniques in defining disease risk and responses to biological therapies.
Collapse
Affiliation(s)
- Hong Shi
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hanping Wu
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Michael A Winkler
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J Belin de Chantemèle
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Richard Lee
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc 2022; 97:1844-1867. [PMID: 35569818 PMCID: PMC9541442 DOI: 10.1111/brv.12866] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Atherosclerosis, characterized by lipid‐rich plaques in the arterial wall, is an age‐related disorder and a leading cause of mortality worldwide. However, the specific mechanisms remain complex. Recently, emerging evidence has demonstrated that senescence of various types of cells, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, endothelial progenitor cells (EPCs), and adipose‐derived mesenchymal stem cells (AMSCs) contributes to atherosclerosis. Cellular senescence and atherosclerosis share various causative stimuli, in which dyslipidemia has attracted much attention. Dyslipidemia, mainly referred to elevated plasma levels of atherogenic lipids or lipoproteins, or functional impairment of anti‐atherogenic lipids or lipoproteins, plays a pivotal role both in cellular senescence and atherosclerosis. In this review, we summarize the current evidence for dyslipidemia‐induced cellular senescence during atherosclerosis, with a focus on low‐density lipoprotein (LDL) and its modifications, hydrolysate of triglyceride‐rich lipoproteins (TRLs), and high‐density lipoprotein (HDL), respectively. Furthermore, we describe the underlying mechanisms linking dyslipidemia‐induced cellular senescence and atherosclerosis. Finally, we discuss the senescence‐related therapeutic strategies for atherosclerosis, with special attention given to the anti‐atherosclerotic effects of promising geroprotectors as well as anti‐senescence effects of current lipid‐lowering drugs.
Collapse
Affiliation(s)
- Qunyan Xiang
- Department of Geriatrics, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Institute of Aging and Age‐related Disease Research Central South University Changsha Hunan 410011 PR China
| | - Feng Tian
- Department of Geriatric Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Shilan Zhang
- Department of Gastroenterology, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| |
Collapse
|
13
|
Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021; 12:710842. [PMID: 34456867 PMCID: PMC8385491 DOI: 10.3389/fendo.2021.710842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels throughout the body. It provides mechanical support and maintains vascular homeostasis in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors, and participates in vascular inflammation through various cells and mediators; thus, it causes dysfunction involving vascular smooth muscle cells and endothelial cells. Inflammation is an important pathophysiological event in many vascular diseases, such as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for the prevention and treatment of vascular diseases. In this review, we summarize findings concerning PVAT function and inflammation in different pathophysiological backgrounds, focusing on the secretory functions of PVAT and the crosstalk between PVAT and vascular inflammation in terms of vascular aging, atherosclerosis, hypertension, diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for potential vascular diseases involving PVAT.
Collapse
Affiliation(s)
- Yaozhi Chen
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Zeyu Qin
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| | - Yunxia Liu
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| |
Collapse
|
14
|
Liu Y, Sun Y, Hu C, Liu J, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y. Perivascular Adipose Tissue as an Indication, Contributor to, and Therapeutic Target for Atherosclerosis. Front Physiol 2020; 11:615503. [PMID: 33391033 PMCID: PMC7775482 DOI: 10.3389/fphys.2020.615503] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has been identified to have significant endocrine and paracrine functions, such as releasing bioactive adipokines, cytokines, and chemokines, rather than a non-physiological structural tissue. Considering the contiguity with the vascular wall, PVAT could play a crucial role in the pathogenic microenvironment of atherosclerosis. Growing clinical evidence has shown an association between PVAT and atherosclerosis. Moreover, based on computed tomography, the fat attenuation index of PVAT was verified as an indication of vulnerable atherosclerotic plaques. Under pathological conditions, such as obesity and diabetes, PVAT shows a proatherogenic phenotype by increasing the release of factors that induce endothelial dysfunction and inflammatory cell infiltration, thus contributing to atherosclerosis. Growing animal and human studies have investigated the mechanism of the above process, which has yet to be fully elucidated. Furthermore, traditional treatments for atherosclerosis have been proven to act on PVAT, and we found several studies focused on novel drugs that target PVAT for the prevention of atherosclerosis. Emerging as an indication, contributor to, and therapeutic target for atherosclerosis, PVAT warrants further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Meng Chai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
15
|
Man AWC, Zhou Y, Xia N, Li H. Perivascular Adipose Tissue as a Target for Antioxidant Therapy for Cardiovascular Complications. Antioxidants (Basel) 2020; 9:E574. [PMID: 32630640 PMCID: PMC7402161 DOI: 10.3390/antiox9070574] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue surrounding most of the systemic blood vessels. PVAT is now recognized as an important endocrine tissue that maintains vascular homeostasis. Healthy PVAT has anticontractile, anti-inflammatory, and antioxidative roles. Vascular oxidative stress is an important pathophysiological event in cardiometabolic complications of obesity, type 2 diabetes, and hypertension. Accumulating data from both humans and experimental animal models suggests that PVAT dysfunction is potentially linked to cardiovascular diseases, and associated with augmented vascular inflammation, oxidative stress, and arterial remodeling. Reactive oxygen species produced from PVAT can be originated from mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and uncoupled endothelial nitric oxide synthase. PVAT can also sense vascular paracrine signals and response by secreting vasoactive adipokines. Therefore, PVAT may constitute a novel therapeutic target for the prevention and treatment of cardiovascular diseases. In this review, we summarize recent findings on PVAT functions, ROS production, and oxidative stress in different pathophysiological settings and discuss the potential antioxidant therapies for cardiovascular diseases by targeting PVAT.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
16
|
Gorwood J, Ejlalmanesh T, Bourgeois C, Mantecon M, Rose C, Atlan M, Desjardins D, Le Grand R, Fève B, Lambotte O, Capeau J, Béréziat V, Lagathu C. SIV Infection and the HIV Proteins Tat and Nef Induce Senescence in Adipose Tissue and Human Adipose Stem Cells, Resulting in Adipocyte Dysfunction. Cells 2020; 9:cells9040854. [PMID: 32244726 PMCID: PMC7226797 DOI: 10.3390/cells9040854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Aging is characterized by adipose tissue senescence, inflammation, and fibrosis, with trunk fat accumulation. Aging HIV-infected patients have a higher risk of trunk fat accumulation than uninfected individuals—suggesting that viral infection has a role in adipose tissue aging. We previously demonstrated that HIV/SIV infection and the Tat and Nef viral proteins were responsible for adipose tissue fibrosis and impaired adipogenesis. We hypothesized that SIV/HIV infection and viral proteins could induce adipose tissue senescence and thus lead to adipocyte dysfunctions. Methods: Features of tissue senescence were evaluated in subcutaneous and visceral adipose tissues of SIV-infected macaques and in human adipose stem cells (ASCs) exposed to Tat or Nef for up to 30 days. Results: p16 expression and p53 activation were higher in adipose tissue of SIV-infected macaques than in control macaques, indicating adipose tissue senescence. Tat and Nef induced higher senescence in ASCs, characterized by higher levels of senescence-associated beta-galactosidase activity, p16 expression, and p53 activation vs. control cells. Treatment with Tat and Nef also induced oxidative stress and mitochondrial dysfunction. Prevention of oxidative stress (using N-acetyl-cysteine) reduced senescence in ASCs. Adipocytes having differentiated from Nef-treated ASCs displayed alterations in adipogenesis with lower levels of triglyceride accumulation and adipocyte marker expression and secretion, and insulin resistance. Conclusion: HIV/SIV promotes adipose tissue senescence, which in turn may alter adipocyte function and contribute to insulin resistance.
Collapse
Affiliation(s)
- Jennifer Gorwood
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
| | - Tina Ejlalmanesh
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
| | - Christine Bourgeois
- Immunology of Viral infections and Autoimmune Diseases, IDMIT Department, IBFJ, U1184, INSERM-CEA-Université Paris Sud 11, F-92260 Fontenay-Aux-Roses and F-94270 Le Kremlin-Bicêtre, France; (C.B.); (O.L.)
| | - Matthieu Mantecon
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
| | - Cindy Rose
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
| | - Michael Atlan
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
- Plastic Surgery Department, Tenon Hospital, AP-HP, F-75020 Paris, France
| | - Delphine Desjardins
- IDMIT Department, Center for Immunology of Viral Infections and Autoimmune Diseases, Inserm, CEA, Université Paris Saclay, F-92260 Fontenay-aux-Roses, France; (D.D.); (R.L.G.)
| | - Roger Le Grand
- IDMIT Department, Center for Immunology of Viral Infections and Autoimmune Diseases, Inserm, CEA, Université Paris Saclay, F-92260 Fontenay-aux-Roses, France; (D.D.); (R.L.G.)
| | - Bruno Fève
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
- Diabétologie et Reproduction, PRISIS, Service d’Endocrinologie, Hôpital Saint-Antoine, AP-HP, F-75012 Paris, France
| | - Olivier Lambotte
- Immunology of Viral infections and Autoimmune Diseases, IDMIT Department, IBFJ, U1184, INSERM-CEA-Université Paris Sud 11, F-92260 Fontenay-Aux-Roses and F-94270 Le Kremlin-Bicêtre, France; (C.B.); (O.L.)
- Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, AP-HP, F-94270 Le Kremlin-Bicêtre, France
| | - Jacqueline Capeau
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
| | - Véronique Béréziat
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
- Correspondence: (V.B.); (C.L.); Tel.: +33140011321 (V.B.)
| | - Claire Lagathu
- Lipodystrophies, Metabolic and Hormonal Adaptation, and Aging, UMR_S 938, Centre de Recherche Saint-Antoine-Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), INSERM, Sorbonne Université, F-75012 Paris, France; (J.G.); (T.E.); (M.M.); (C.R.); (M.A.); (B.F.); (J.C.)
- Correspondence: (V.B.); (C.L.); Tel.: +33140011321 (V.B.)
| |
Collapse
|