1
|
Wang Y, Han W, Wang T, Jia C, Liu J, Fan X, Chen J. Elucidating the genetic basis of bulb-related traits in garlic (Allium sativum) through genome-wide association study. Int J Biol Macromol 2025; 284:137842. [PMID: 39579831 DOI: 10.1016/j.ijbiomac.2024.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The genetic architecture of garlic bulb related traits were still not well elucidated due to its big and complex genome. In this study, genotyping-by-sequencing (GBS) in 163 garlic accessions mainly from China were conducted. All the 163 garlic accessions were divided into three subpopulations, and largely consistent with geographic origins. Genome-wide association study (GWAS) was conducted for 5 garlic bulb related traits across four environments. Totally, 26 significantly loci were identified in two or more environments and located within or near 431 genes, and explain 14.0-31.7 % of the phenotypic variances. Among these, qBW5.1 was nearly with the qBH5.1. Four loci were reported previously, whereas the remaining 22 are likely to be new. Gene ontology enrichment analysis showed that the candidate genes were significantly enriched in metabolic process, biosynthetic process and catalytic activity. Nine candidate genes encode the zinc finger domain-containing protein, serine/threonine-protein kinase, peroxygenase, auxin-induced protein, ethylene-responsive transcription and E3-Ubiquitin protein ligases were identified and validated. Additionally, a meaningful achievement is one kompetitive allele-specific PCR marker, Kasp_chr7_BW for bulb weight were successfully developed and validated in a diverse panel. These results uncover the genetic mechanism of garlic bulb related traits and provide accessions and KASP markers for further garlic molecular breeding.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenjing Han
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Taotao Wang
- Shandong Dongyun Engineering and Technology Research Center for Garlic, Jining 272200, China
| | - Chunying Jia
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Liu
- Shandong Jinchunyu Seed Technology Co., Ltd., Jining 272200, China
| | - Xiaorong Fan
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Maity A, Paul D, Rocha RL, Bagavathiannan M, Beckie HJ, Ashworth MB. Intensive cropping influences the success of seed dormancy breaking methods in Australian collected Hordeum, Avena, and Bromus sp. PEST MANAGEMENT SCIENCE 2024. [PMID: 39697148 DOI: 10.1002/ps.8616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Seed dormancy is a critical evolutionary trait that enhances the persistence of plant populations under both natural and managed conditions. It is influenced by genetic and environmental factors, with crop management practices like tillage and herbicide use reportedly selecting for increased seed dormancy in weeds. This study aimed to compare the success of seed dormancy breaking methods between weed populations collected from intensively managed crop fields and unmanaged ruderal locations. RESULTS Weeds from intensively managed fields, including Hordeum glaucum, H. leporinum, Avena fatua, Bromus diandrus, and B. rigidus exhibited significantly higher seed dormancy and didn't respond largely to seed dormancy breaking methods compared to those from unmanaged areas. Dormancy-breaking treatments such as sandpaper scarification were effective in barley grass, while endosperm excision followed by cold stratification alleviated dormancy in brome grass and wild oat. Dark incubation consistently improved germination across all species, enhancing the efficacy of treatments like cold stratification, sandpaper scarification, and gibberellic acid (GA3). CONCLUSION Weeds in managed fields develop greater seed dormancy, likely as an adaptive response to agricultural practices. Techniques such as tillage, which incorporate seeds deeper into the soil, may help mitigate seed dormancy traits by reducing light exposure. These findings highlight the importance of dormancy management in controlling persistent weed populations. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aniruddha Maity
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Debashis Paul
- Division of Crop Improvement, ICAR-Central Institute for Cotton Research, Regional Station, Sirsa, India
| | - Roberto Lujan Rocha
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | | | - Hugh J Beckie
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Michael B Ashworth
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture and Environment, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Al-Obaidi JR, Lau SE, Liew YJM, Tan BC, Rahmad N. Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications. Protein J 2024; 43:1083-1103. [PMID: 39487361 DOI: 10.1007/s10930-024-10240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Seeds are essential for plant reproduction, ensuring species survival and dispersal while adapting to diverse environments throughout a plant's life. Proteomics has emerged as a powerful tool for deciphering the complexities of seed growth, germination, and stress responses. Advanced proteomic technologies enable the analysis of protein changes during germination, dormancy, and ageing, enhancing our understanding of seed lifespan and vitality. Recent studies have revealed detailed insights into metabolic processes and storage protein profiles across various plant species. This knowledge is crucial for improving seed storage, conserving quality, and maintaining viability. Additionally, it contributes to sustainable agriculture by identifying stress-responsive proteins and signalling pathways that can mitigate stress and enhance farming practices. This review highlights significant advancements in seed proteomics over the past decade, discussing critical discoveries related to storage proteins, protein interactions, and proteome modifications due to stress. It illustrates how these insights transform seed biology, boosting productivity, food security, and environmentally friendly practices. The review also identifies existing knowledge gaps and provides direction for future research, underscoring the need for continued interdisciplinary collaboration in this dynamic field.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, 35900, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yvonne Jing Mei Liew
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
4
|
Ga Z, Gao L, Quzong X, Mu W, Zhuoma P, Taba X, Jiao G, Dondup D, Namgyal L, Sang Z. Metabolomics, phytohormone and transcriptomics strategies to reveal the mechanism of barley heading date regulation to responds different photoperiod. BMC Genomics 2024; 25:879. [PMID: 39300396 DOI: 10.1186/s12864-024-10788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The correlation between heading date and flowering time significantly regulates grain filling and seed formation in barley and other crops, ultimately determining crop productivity. In this study, the transcriptome, hormone content detection, and metabolome analysis were performed systematically to analyze the regulatory mechanism of heading time in highland barley under different light conditions. The heading date of D18 (winter highland barley variety, Dongqing18) was later than that of K13 (vernal highland barley variety) under normal growth conditions or long-day (LD) treatment, while this situation will reverse with short-day (SD) treatment. RESULTS The circadian rhythm plant, plant hormone signaling transduction, starch and sucrose metabolism, and photosynthesis-related pathways are significantly enriched in barley under SD and LD to influence heading time. In the plant circadian rhythm pathway, the key genes GI (Gigantea), PRR (Pesudoresponseregulator), FKF1 (Flavin-binding kelch pepeat F-Box 1), and FT (Flowering locus T) are identified as highly expressed in D18SD3 and K13SD2, while they are significantly down-regulated in K13SD3. These genes play an important role in regulating the heading date of D18 earlier than that of K13 under SD conditions. In photosynthesis-related pathways, a-b binding protein and RBS were highly expressed in K13LD3, while NADP-dependent malic enzyme, phosphoenolpyruvate carboxylase, fructose-bisphosphate aldolase, and triosephosphate isomerase were significantly expressed in D18SD3. In the starch and sucrose metabolism pathway, 41 DEGs (differentially expressed genes) and related metabolites were identified as highly expressed and accumulated in D18SD3. The DEGs SAUR (Small auxin-up RNA), ARF (Auxin response factor), TIR1 (Transport inhibitor response 1), EIN3 (Ethylene-insensitive 3), ERS1 (Ethylene receptor gene), and JAZ1 (Jasmonate ZIM-domain) in the plant hormone pathway were significantly up-regulated in D18SD3. Compared with D18LD3, the content of N6-isopentenyladenine, indole-3-carboxylic acid, 1-aminocyclopropanecarboxylic acid, trans-zeatin, indole-3-carboxaldehyde, 1-O-indol-3-ylacetylglucose, and salicylic acid in D18SD3 also increased. The expression levels of vernalization genes (HvVRN1, HvVRN2, and HvVRN3), photoperiod genes (PPD), and PPDK (Pyruvate phosphate dikinase) that affect photosynthetic efficiency in barley are also analyzed, which play important regulatory roles in barley heading date. The WGCNA analysis of the metabolome data and circadian regulatory genes identified the key metabolites and candidate genes to regulate the heading time of barley in response to the photoperiod. CONCLUSION These studies will provide a reference for the regulation mechanism of flowering and the heading date of highland barley.
Collapse
Affiliation(s)
- Zhuo Ga
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Xiruo Quzong
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Wang Mu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Pubu Zhuoma
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Xiongnu Taba
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Guocheng Jiao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Dawa Dondup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Lhundrup Namgyal
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000, China.
- Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, 850000, China.
| |
Collapse
|
5
|
Bu Y, Dong X, Zhang R, Shen X, Liu Y, Wang S, Takano T, Liu S. Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana. eLife 2024; 13:e96797. [PMID: 39037769 PMCID: PMC11364434 DOI: 10.7554/elife.96797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.
Collapse
Affiliation(s)
- Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xingye Dong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Rongrong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xianglian Shen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Yan Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Shu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ASNESC), University of TokyoTokyoJapan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
6
|
Antonova EV, Shimalina NS, Korotkova AM, Kolosovskaya EV, Gerasimova SV, Khlestkina EK. Germination and Growth Characteristics of nud Knockout and win1 Knockout Barley Lines under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1169. [PMID: 38732384 PMCID: PMC11085773 DOI: 10.3390/plants13091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Hordeum vulgare genes NUD (HvNUD) and WIN1 (HvWIN1) play a regulatory role in cuticle organization. Because the cuticle is a key evolutionary acquisition of plants for protection against environmental factors, a knockout (KO) of each gene may alter their ability to adapt to unfavorable conditions. A potential pleiotropic effect of HvNUD or HvWIN1 gene mutations can be assessed under salt stress. Initial developmental stages are the most sensitive in living organisms; therefore, we evaluated salt tolerance of nud KO and win1 KO barley lines at the seedling stage. Air-dried barley grains of the KO lines and of a wild-type (WT) line were germinated in NaCl solutions (50, 100, or 150 mM). Over 30 physiological and morphological parameters of seedlings were assessed. Potential pleiotropic effects of the HvNUD gene KO under salt stress included the stimulation of root growth (which was lower under control conditions) and root necrosis. The pleiotropic effects of the HvWIN1 gene KO under the stressful conditions manifested themselves as maintenance of longer root length as compared to the other lines; stable variation of most of morphological parameters; lack of correlation between root lengths before and after exposure to NaCl solutions, as well as between shoot lengths; and the appearance of twins. Salt tolerance of the analyzed barley lines could be ranked as follows: nud KO > win1 KO ≈ WT, where nud KO lines were the most salt-tolerant. A comparison of effects of salinity and ionizing radiation on nud KO and win1 KO barley lines indicated differences in tolerance of the lines to these stressors.
Collapse
Affiliation(s)
- Elena V Antonova
- Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences, 8 Marta 202, Ekaterinburg 620144, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
| | - Nadezhda S Shimalina
- Institute of Plant and Animal Ecology (IPAE), Ural Branch of Russian Academy of Sciences, 8 Marta 202, Ekaterinburg 620144, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
| | - Anna M Korotkova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Ekaterina V Kolosovskaya
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Sophia V Gerasimova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| | - Elena K Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Bolshaya Morskaya 42-44, Saint Petersburg 190000, Russia
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentjeva 10, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Montazerinezhad S, Solouki M, Emamjomeh A, Kavousi K, Taheri A, Shiri Y. Transcriptomic analysis of alternative splicing events for different stages of growth and development in Sistan Yaghooti grape clusters. Gene 2024; 896:148030. [PMID: 38008270 DOI: 10.1016/j.gene.2023.148030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Sistan Yaghooti grape variety, despite characteristics such as early ripening, is vulnerable to cluster rot due to small berries and dense clusters. In this regard, AS may serve as a regulatory mechanism during developmental processes and in response to environmental signals. RNA-Seq analysis was performed to measure gene expression and the extent of AS events in the cluster growth and development stages of Sistan Yaghooti grape. The number of AS events increased during stages, suggesting that it contributes to the grapevine's adaptability to various stresses. In addition, DEG and DAS genes showed little overlap in cluster growth stages. Functional analysis of 19,194 DAS -gene sets showed that VIT_06s0004g06670 gene is involved in the activation of calcium channels (Ca2+) through the activation of 5 PLC biosynthetic pathways. Among the 27,229 DEG -sets, VIT_07s0005g05320 gene showed higher expression. Interestingly, this gene is involved in the synthesis of an EF -hand domain-containing protein capable of binding to Ca2+ by activating 4 biochemical pathways. These genes increase cytosolic Ca2+ concentration, enhancing plant stress tolerance and resistance to cracking. These results show that AS can respond independently to different types of stress. Among the other DAS genes, the GA2ox gene (VvGA2ox) showed an increase in AS events during cluster development. This gene is critical for initiating the degradation process of GA and plays a crucial role in different stages of seed development. Therefore, it is very likely that this gene is one of the main factors responsible for the density and seedlessness of Sistan Yaghooti grape.
Collapse
Affiliation(s)
- Somayeh Montazerinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran; Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tenn, United States
| | - Yasoub Shiri
- Agronomy and Plant Breeding Department, Agriculture Research Center, Zabol Research Institute, Zabol, Iran; Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
| |
Collapse
|
8
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
9
|
Li R, Fu R, Li M, Song Y, Li J, Chen C, Gu Y, Liang X, Nie W, Ma L, Wang X, Zhang H, Zhang H. Transcriptome profiling reveals multiple regulatory pathways of Tamarix chinensis in response to salt stress. PLANT CELL REPORTS 2023; 42:1809-1824. [PMID: 37733273 DOI: 10.1007/s00299-023-03067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/22/2023]
Abstract
KEY MESSAGE Multiple regulatory pathways of T. chinensis to salt stress were identified through transcriptome data analysis. Tamarix chinensis (Tamarix chinensis Lour.) is a typical halophyte capable of completing its life cycle in soils with medium to high salinity. However, the mechanisms underlying its resistance to high salt stress are still largely unclear. In this study, transcriptome profiling analyses in different organs of T. chinensis plants in response to salt stress were carried out. A total number of 2280, 689, and 489 differentially expressed genes (DEGs) were, respectively, identified in roots, stems, and leaves, with more DEGs detected in roots than in stems and leaves. Gene Ontology (GO) term analysis revealed that they were significantly enriched in "biological processes" and "molecular functions". Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that "Beta-alanine metabolism" was the most differentially enriched pathway in roots, stems, and leaves. In pair-to-pair comparison of the most differentially enriched pathways, a total of 14 pathways, including 5 pathways in roots and leaves, 6 pathways in roots and stems, and 3 pathways in leaves and stems, were identified. Furthermore, genes encoding transcription factor, such as bHLH, bZIP, HD-Zip, MYB, NAC, WRKY, and genes associated with oxidative stress, starch and sucrose metabolism, and ion homeostasis, were differentially expressed with distinct organ specificity in roots, stems, and leaves. Our findings in this research provide a novel approach for exploring the salt tolerance mechanism of halophytes and identifying new gene targets for the genetic breeding of new plant cultivars with improved resistance to salt stress.
Collapse
Affiliation(s)
- Ruxia Li
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Rao Fu
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Meng Li
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Yanjing Song
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Junlin Li
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Chuanjie Chen
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Yinyu Gu
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Xiaoyan Liang
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Wenjing Nie
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Lan Ma
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Xiangyu Wang
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Haiyang Zhang
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
| | - Hongxia Zhang
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
- 3The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
10
|
Li X, Xi D, Gao L, Zhu H, Yang X, Song X, Zhang C, Miao L, Zhang D, Zhang Z, Hou X, Zhu Y, Wei M. Integrated Transcriptome and Proteome Analysis Revealed the Regulatory Mechanism of Hypocotyl Elongation in Pakchoi. Int J Mol Sci 2023; 24:13808. [PMID: 37762111 PMCID: PMC10531338 DOI: 10.3390/ijms241813808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hypocotyl length is a critical determinant for the efficiency of mechanical harvesting in pakchoi production, but the knowledge on the molecular regulation of hypocotyl growth is very limited. Here, we report a spontaneous mutant of pakchoi, lhy7.1, and identified its characteristics. We found that it has an elongated hypocotyl phenotype compared to the wild type caused by the longitudinal growth of hypocotyl cells. Different light quality treatments, transcriptome, and proteomic analyses were performed to reveal the molecular mechanisms of hypocotyl elongation. The data showed that the hypocotyl length of lhy7.1 was significantly longer than that of WT under red, blue, and white lights but there was no significant difference under dark conditions. Furthermore, we used transcriptome and label-free proteome analyses to investigate differences in gene and protein expression levels between lhy7.1 and WT. At the transcript level, 4568 differentially expressed genes (DEGs) were identified, which were mainly enriched in "plant hormone signal transduction", "photosynthesis", "photosynthesis-antenna proteins", and "carbon fixation in photosynthetic organisms" pathways. At the protein level, 1007 differentially expressed proteins (DEPs) were identified and were mainly enriched in photosynthesis-related pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network of hypocotyl elongation involving plant hormone signal transduction and photosynthesis-related pathways. The findings of this study help elucidate the regulatory mechanisms of hypocotyl elongation in lhy7.1.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dandan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Lu Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xiuke Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China;
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Liming Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Zhaohui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Yuying Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
11
|
Shohat H, Cheriker H, Cohen A, Weiss D. Tomato ABA-IMPORTING TRANSPORTER 1.1 inhibits seed germination under high salinity conditions. PLANT PHYSIOLOGY 2023; 191:1404-1415. [PMID: 36449559 PMCID: PMC9922386 DOI: 10.1093/plphys/kiac545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of seed maturation and dormancy. ABA also restrains germination under abiotic-stress conditions. Here, we show in tomato (Solanum lycopersicum) that the ABA importer ABA-IMPORTING TRANSPORTER 1.1 (AIT1.1/NPF4.6) has a role in radicle emergence under salinity conditions. AIT1.1 expression was upregulated following seed imbibition, and CRISPR/Cas9-derived ait1.1 mutants exhibited faster radicle emergence, increased germination and partial resistance to ABA. AIT1.1 was highly expressed in the endosperm, but not in the embryo, and ait1.1 isolated embryos did not show resistance to ABA. On the other hand, loss of AIT1.1 activity promoted the expression of endosperm-weakening-related genes, and seed-coat scarification eliminated the promoting effect of ait1.1 on radicle emergence. Therefore, we propose that imbibition-induced AIT1.1 expression in the micropylar endosperm mediates ABA-uptake into micropylar cells to restrain endosperm weakening. While salinity conditions strongly inhibited wild-type M82 seed germination, high salinity had a much weaker effect on ait1.1 germination. We suggest that AIT1.1 evolved to inhibit germination under unfavorable conditions, such as salinity. Unlike other ABA mutants, ait1.1 exhibited normal seed longevity, and therefore, the ait1.1 allele may be exploited to improve seed germination in crops.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Amir Cohen
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
12
|
Weng H, Yan J, Guo L, Chen H. Integrated transcriptomic and metabolomic analyses of the molecular mechanisms of two highland barley genotypes with pyroxsulam responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1030578. [PMID: 36618617 PMCID: PMC9812518 DOI: 10.3389/fpls.2022.1030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Highland barley is one of the few crops that can be grown at high elevations, making it a key resource within the Tibet Plateau. Weeds are a significant threat to highland barley production, and new herbicides and tolerant barley varieties are needed to control this ever-growing problem. A better understanding of existing herbicide resistance mechanisms is therefore needed. In this study, transcriptomic and metabolomic analyses were used to identify molecular and physiological changes in two highland barley genotypes with differing sensitivities to the herbicide pyroxsulam. We identified several stress-responsive metabolites, including flavonoids and antioxidants, which accumulated to significantly higher levels in the pyroxsulam-resistant genotype. Additionally, we found key genes in both the flavonoid biosynthesis pathway and the antioxidant system that were up-regulated in pyroxsulam-resistant barley. This work significantly expands on the current understanding of the molecular mechanisms underlying differing pyroxsulam tolerance among barley genotypes and provides several new avenues to explore for breeding or engineering tolerant barley.
Collapse
|
13
|
Ma D, Cai J, Ma Q, Wang W, Zhao L, Li J, Su L. Comparative time-course transcriptome analysis of two contrasting alfalfa ( Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1070846. [PMID: 36570949 PMCID: PMC9773191 DOI: 10.3389/fpls.2022.1070846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is a major abiotic stress affecting plant growth and crop yield. For the successful cultivation of alfalfa (Medicago sativa L.), a key legume forage, in saline-affected areas, it's essential to explore genetic modifications to improve salt-tolerance.Transcriptome assay of two comparative alfalfa genotypes, Adina and Zhaodong, following a 4 h and 8 h's 300 mM NaCl treatment was conducted in this study in order to investigate the molecular mechanism in alfalfa under salt stress conditions. Results showed that we obtained 875,023,571 transcripts and 662,765,594 unigenes were abtained from the sequenced libraries, and 520,091 assembled unigenes were annotated in at least one database. Among them, we identified 1,636 differentially expression genes (DEGs) in Adina, of which 1,426 were up-regulated and 210 down-regulated, and 1,295 DEGs in Zhaodong, of which 565 were up-regulated and 730 down-regulated. GO annotations and KEGG pathway enrichments of the DEGs based on RNA-seq data indicated that DEGs were involved in (1) ion and membrane homeostasis, including ABC transporter, CLC, NCX, and NHX; (2) Ca2+ sensing and transduction, including BK channel, EF-hand domain, and calmodulin binding protein; (3) phytohormone signaling and regulation, including TPR, FBP, LRR, and PP2C; (4) transcription factors, including zinc finger proteins, YABBY, and SBP-box; (5) antioxidation process, including GST, PYROX, and ALDH; (6) post-translational modification, including UCH, ubiquitin family, GT, MT and SOT. The functional roles of DEGs could explain the variations in salt tolerance performance observed between the two alfalfa genotypes Adina and Zhaodong. Our study widens the understanding of the sophisticated molecular response and tolerance mechanism to salt stress, providing novel insights on candidate genes and pathways for genetic modification involved in salt stress adaptation in alfalfa.
Collapse
Affiliation(s)
- Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jinjun Cai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Wenjing Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lijuan Zhao
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jiawen Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lina Su
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Integration of transcriptomic and proteomic analyses of Rhododendron chrysanthum Pall. in response to cold stress in the Changbai Mountains. Mol Biol Rep 2022; 50:3607-3616. [PMID: 36418773 DOI: 10.1007/s11033-022-08114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cold stress is one of the abiotic stresses that affect plant growth and development, as well as life and geographical distribution important. For researching how plants react to low temperature stress, Rhododendron chrysanthum Pall. (R. chrysanthum) growing in Changbai Mountains of China is an essential study subject. METHODS AND RESULTS R. chrysanthum was cold-treated at 4 °C for 12 h (cold-stress group-CS, and controls-CK), combined with transcriptomics (RNA-seq) and proteomics (iTRAQ) techniques, to investigate the response mechanisms of R. chrysanthum response to cold stress. Cold stress resulted in the discovery of 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs). Correlation of proteomic and transcriptome data, proteome regulation of distinct subcellular localization, and gene/protein functional groupings are all part of the investigation. CONCLUSIONS The combined analysis showed that 6378 DEPs matched the corresponding DEGs when the control was compared with the cold-treated samples (CK vs CS). The analysis identified 54 DEGs-DEPs associated with cold stress. cold-tolerant DEGs-DEPs were enriched with hydrolase activity, acting on glycosyl bonds, carbon-oxygen lyase activity and ferric iron binding. Seven potential DEGs-DEPs with significant involvement in the cold stress response were identified by co-expression network analysis. These findings identify the synergistic effect of DEGs-DEPs as the key to improve the cold tolerance of R. chrysanthum and provide a theoretical basis for further studies on its cold resistance subsequently.
Collapse
|
15
|
Chen Y, Wang J, Yao L, Li B, Ma X, Si E, Yang K, Li C, Shang X, Meng Y, Wang H. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int J Mol Sci 2022; 23:ijms231810515. [PMID: 36142428 PMCID: PMC9499682 DOI: 10.3390/ijms231810515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress factor affecting crop production, and understanding of the response mechanisms of seed germination to salt stress can help to improve crop tolerance and yield. The differences in regulatory pathways during germination in different salt-tolerant barley seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics and metabolomics of two barley seeds with different salt tolerances were comprehensively examined. Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research, which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites. These data not only provide new ideas for how seeds respond to salt stress but also provide new directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the early stages of germination under abiotic stresses.
Collapse
Affiliation(s)
- Yiyou Chen
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Juncheng Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Lirong Yao
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Erjing Si
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Ke Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| | - Huajun Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| |
Collapse
|
16
|
Zhang G, Yan Y, Zeng X, Wang Y, Zhang Y. Quantitative Proteomics Analysis Reveals Proteins Associated with High Melatonin Content in Barley Seeds under NaCl-Induced Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8492-8510. [PMID: 35759742 DOI: 10.1021/acs.jafc.2c00466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil salinization limits hull-less barley cultivation in the Qinghai-Tibet Plateau of China. However, some wild hull-less barley seeds accumulate high melatonin (MEL) during germination with improved salt tolerance; but the mechanism of melatonin-mediated salt tolerance in hull-less barley is not well understood at the protein level. This study investigated proteome changes resulting in high melatonin content in germinating hull-less barley seeds under high saline conditions. The proteome profiles of seed treatment with 240 mM-NaCl (N), water (H), and control (C) taken 7 days after germination were compared using the TMT-based quantitative proteomics. Our results indicate that salt stress-induced global changes in the proteomes of germinating hull-less barley seeds, altering the expression and abundance of proteins related to cell cycle and control, carbohydrate and energy metabolism, and amino acid transport and metabolism including proteins related to melatonin production. Furthermore, proteins associated with cellular redox homeostasis, osmotic stress response, and secondary metabolites derived primarily from amino acid metabolism, purine degradation, and shikimate pathways increased significantly in abundance and may contribute to the high melatonin content in seeds under salt stress. Consequently, triggering the robust response to oxidative stress occasioned by the NaCl-induced salt stress, improved seed germination and strong adaptation to salt stress.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yingying Yan
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xingquan Zeng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yulin Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuhong Zhang
- Institute of Agricultural Products Processing & Food Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| |
Collapse
|
17
|
Zhou R, Jiang F, Niu L, Song X, Yu L, Yang Y, Wu Z. Increase Crop Resilience to Heat Stress Using Omic Strategies. FRONTIERS IN PLANT SCIENCE 2022; 13:891861. [PMID: 35656008 PMCID: PMC9152541 DOI: 10.3389/fpls.2022.891861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Varieties of various crops with high resilience are urgently needed to feed the increased population in climate change conditions. Human activities and climate change have led to frequent and strong weather fluctuation, which cause various abiotic stresses to crops. The understanding of crops' responses to abiotic stresses in different aspects including genes, RNAs, proteins, metabolites, and phenotypes can facilitate crop breeding. Using multi-omics methods, mainly genomics, transcriptomics, proteomics, metabolomics, and phenomics, to study crops' responses to abiotic stresses will generate a better, deeper, and more comprehensive understanding. More importantly, multi-omics can provide multiple layers of information on biological data to understand plant biology, which will open windows for new opportunities to improve crop resilience and tolerance. However, the opportunities and challenges coexist. Interpretation of the multidimensional data from multi-omics and translation of the data into biological meaningful context remained a challenge. More reasonable experimental designs starting from sowing seed, cultivating the plant, and collecting and extracting samples were necessary for a multi-omics study as the first step. The normalization, transformation, and scaling of single-omics data should consider the integration of multi-omics. This review reports the current study of crops at abiotic stresses in particular heat stress using omics, which will help to accelerate crop improvement to better tolerate and adapt to climate change.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lifei Niu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Lu Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuwen Yang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Wu XT, Xiong ZP, Chen KX, Zhao GR, Feng KR, Li XH, Li XR, Tian Z, Huo FL, Wang MX, Song W. Genome-Wide Identification and Transcriptional Expression Profiles of PP2C in the Barley (Hordeum vulgare L.) Pan-Genome. Genes (Basel) 2022; 13:genes13050834. [PMID: 35627219 PMCID: PMC9140614 DOI: 10.3390/genes13050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The gene family protein phosphatase 2C (PP2C) is related to developmental processes and stress responses in plants. Barley (Hordeum vulgare L.) is a popular cereal crop that is primarily utilized for human consumption and nutrition. However, there is little knowledge regarding the PP2C gene family in barley. In this study, a total of 1635 PP2C genes were identified in 20 barley pan-genome accessions. Then, chromosome localization, physical and chemical feature predictions and subcellular localization were systematically analyzed. One wild barley accession (B1K-04-12) and one cultivated barley (Morex) were chosen as representatives to further analyze and compare the differences in HvPP2Cs between wild and cultivated barley. Phylogenetic analysis showed that these HvPP2Cs were divided into 12 subgroups. Additionally, gene structure, conserved domain and motif, gene duplication event detection, interaction networks and gene expression profiles were analyzed in accessions Morex and B1K-04-12. In addition, qRT-PCR experiments in Morex indicated that seven HvMorexPP2C genes were involved in the response to aluminum and low pH stresses. Finally, a series of positively selected homologous genes were identified between wild accession B1K-04-12 and another 14 cultivated materials, indicating that these genes are important during barley domestication. This work provides a global overview of the putative physiological and biological functions of PP2C genes in barley. We provide a broad framework for understanding the domestication- and evolutionary-induced changes in PP2C genes between wild and cultivated barley.
Collapse
Affiliation(s)
- Xiao-Tong Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Zhu-Pei Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Kun-Xiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Guo-Rong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Ke-Ru Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Xiu-Hua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Xi-Ran Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Zhao Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Fu-Lin Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
| | - Meng-Xing Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (M.-X.W.); (W.S.)
| | - Weining Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China; (X.-T.W.); (Z.-P.X.); (K.-X.C.); (G.-R.Z.); (K.-R.F.); lxh (X.-H.L.); (X.-R.L.); (Z.T.); (F.-L.H.)
- Correspondence: (M.-X.W.); (W.S.)
| |
Collapse
|
19
|
Qian C, Huang M, Du Y, Song J, Mu H, Wei Y, Zhang S, Yin Z, Yuan C, Liu B, Liu B. Chemotaxis and Shorter O-Antigen Chain Length Contribute to the Strong Desiccation Tolerance of a Food-Isolated Cronobacter sakazakii Strain. Front Microbiol 2022; 12:779538. [PMID: 35058898 PMCID: PMC8764414 DOI: 10.3389/fmicb.2021.779538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen causing a lethality rate as high as 80% in infants. Desiccation tolerance ensures its survival in powdered infant formula (PIF) and contributes to the increased exposure to neonates, resulting in neonatal meningitis, septicemia, and necrotizing enterocolitis. This study showed that a food-isolated C. sakazakii G4023 strain exhibited a stronger desiccation tolerance than C. sakazakii ATCC 29544 strain. Considering the proven pathogenicity of G4023, it could be a big threat to infants. Transcriptome and proteome were performed to provide new insights into the desiccation adaptation mechanisms of G4023. Integrated analyses of these omics suggested that 331 genes were found regulated at both transcriptional and protein levels (≥2.0- and ≥1.5-fold, respectively). Deletion of chemotaxis system encoded genes cheA and cheW resulted in decreased tolerance in both short- and long-term desiccation. Reduced O-antigen chain length contributed to the biofilm formation and desiccation tolerance in the short term rather than the long term. In addition, biosynthesis of flagella, arginine and its transport system, and Fe/S cluster were also observed regulated in desiccated G4023. A better understanding of desiccation adaptation mechanisms of G4023 could in turn guide the operations during production and preservation of PIF or other food to reduce survival odds of G4023 and lower its exposure to get to infants.
Collapse
Affiliation(s)
- Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Si Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
20
|
Yang R, Yang Z, Peng Z, He F, Shi L, Dong Y, Ren M, Zhang Q, Geng G, Zhang S. Integrated transcriptomic and proteomic analysis of Tritipyrum provides insights into the molecular basis of salt tolerance. PeerJ 2022; 9:e12683. [PMID: 35036157 PMCID: PMC8710252 DOI: 10.7717/peerj.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Soil salinity is a major environmental stress that restricts crop growth and yield. Methods Here, crucial proteins and biological pathways were investigated under salt-stress and recovery conditions in Tritipyrum ‘Y1805’ using the data-independent acquisition proteomics techniques to explore its salt-tolerance mechanism. Results In total, 44 and 102 differentially expressed proteins (DEPs) were identified in ‘Y1805’ under salt-stress and recovery conditions, respectively. A proteome-transcriptome-associated analysis revealed that the expression patterns of 13 and 25 DEPs were the same under salt-stress and recovery conditions, respectively. ‘Response to stimulus’, ‘antioxidant activity’, ‘carbohydrate metabolism’, ‘amino acid metabolism’, ‘signal transduction’, ‘transport and catabolism’ and ‘biosynthesis of other secondary metabolites’ were present under both conditions in ‘Y1805’. In addition, ‘energy metabolism’ and ‘lipid metabolism’ were recovery-specific pathways, while ‘antioxidant activity’, and ‘molecular function regulator’ under salt-stress conditions, and ‘virion’ and ‘virion part’ during recovery, were ‘Y1805’-specific compared with the salt-sensitive wheat ‘Chinese Spring’. ‘Y1805’ contained eight specific DEPs related to salt-stress responses. The strong salt tolerance of ‘Y1805’ could be attributed to the strengthened cell walls, reactive oxygen species scavenging, osmoregulation, phytohormone regulation, transient growth arrest, enhanced respiration, transcriptional regulation and error information processing. These data will facilitate an understanding of the molecular mechanisms of salt tolerance and aid in the breeding of salt-tolerant wheat.
Collapse
Affiliation(s)
- Rui Yang
- Guizhou University, Guiyang, China
| | | | - Ze Peng
- Guizhou University, Guiyang, China
| | - Fang He
- Guizhou University, Guiyang, China
| | - Luxi Shi
- Guizhou University, Guiyang, China
| | | | - Mingjian Ren
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | | | | | - Suqin Zhang
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| |
Collapse
|
21
|
Zhang M, Chen Z, Yuan F, Wang B, Chen M. Integrative transcriptome and proteome analyses provide deep insights into the molecular mechanism of salt tolerance in Limonium bicolor. PLANT MOLECULAR BIOLOGY 2022; 108:127-143. [PMID: 34950990 DOI: 10.1007/s11103-021-01230-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 05/21/2023]
Abstract
Integrative transcriptome and proteome analyses revealed many candidate members that may involve in salt secretion from salt glands in Limonium bicolor. Limonium bicolor, a typical recretohalophyte, protects itself from salt damage by excreting excess salt out of its cells through salt glands. Here, to provide an overview of the salt-tolerance mechanism of L. bicolor, we conducted integrative transcriptome and proteome analyses of this species under salt treatment. We identified numerous differentially expressed transcripts and proteins that may be related to the salt-tolerance mechanism of L. bicolor. By measuring the Na+ secretion rate, were found that this cation secretion rate of a single salt gland was significantly increased after high salinity treatment compared with that in control and then reached the maximum in a short time. Interestingly, transcripts and proteins involved in transmembrane transport of ions were differentially expressed in response to high salinity treatment, suggesting a number of genes and proteins they may play important roles in the salt-stress response. Correlation between differentially expressed transcript and protein profiles revealed several transcripts and proteins that may be responsible for salt tolerance, such as cellulose synthases and annexins. Our findings uncovered many candidate transcripts and proteins in response to the salt tolerance of L. bicolor, providing deep insights into the molecular mechanisms of this important process in recretohalophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
22
|
Hussain T, Asrar H, Zhang W, Gul B, Liu X. Combined Transcriptome and Proteome Analysis to Elucidate Salt Tolerance Strategies of the Halophyte Panicum antidotale Retz. FRONTIERS IN PLANT SCIENCE 2021; 12:760589. [PMID: 34804096 PMCID: PMC8598733 DOI: 10.3389/fpls.2021.760589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 05/24/2023]
Abstract
Panicum antidotale, a C4 monocot, has the potential to reclaim saline and drylands and to be utilized as fodder and forage. Its adaptability to survive saline stress has been proven with eco-physiological and biochemical studies. However, little is known about its molecular mechanisms of salt tolerance. In this study, an integrated transcriptome and proteome analysis approach, based on RNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), was used to identify the said mechanisms. Plants were treated with control (0 mM), low (100 mM), and high (300 mM) sodium chloride (NaCl) treatments to distinguish beneficial and toxic pathways influencing plant biomass. The results indicated differential expression of 3,179 (1,126 upregulated/2,053 downregulated) and 2,172 (898 upregulated/1,274 downregulated) genes (DEGs), and 514 (269 upregulated/245 downregulated) and 836 (494 upregulated/392 downregulated) proteins (DEPs) at 100 and 300 mM NaCl, respectively. Among these, most upregulated genes and proteins were involved in salt resistance strategies such as proline biosynthesis, the antioxidant defense system, ion homeostasis, and sugar accumulation at low salinity levels. On the other hand, the expression of several genes and proteins involved in the respiratory process were downregulated, indicating the inability of plants to meet their energy demands at high salinity levels. Moreover, the impairments in photosynthesis were also evident with the reduced expression of genes regulating the structure of photosystems and increased expression of abscisic acid (ABA) mediated pathways which limits stomatal gas exchange. Similarly, the disturbance in fatty acid metabolism and activation of essential ion transport blockers damaged the integrity of the cell membrane, which was also evident with enhanced malondialdehyde (MDA). Overall, the analysis of pathways revealed that the plant optimal performance at low salinity was related to enhanced metabolism, antioxidative defense, cell growth, and signaling pathways, whereas high salinity inhibited biomass accumulation by altered expression of numerous genes involved in carbon metabolism, signaling, transcription, and translation. The data provided the first global analysis of the mechanisms imparting salt stress tolerance of any halophyte at transcriptome and proteome levels.
Collapse
Affiliation(s)
- Tabassum Hussain
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Wensheng Zhang
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Xiaojing Liu
- Chinese Academy of Sciences Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
23
|
Dermendjiev G, Schnurer M, Weiszmann J, Wilfinger S, Ott E, Gebert C, Weckwerth W, Ibl V. Tissue-Specific Proteome and Subcellular Microscopic Analyses Reveal the Effect of High Salt Concentration on Actin Cytoskeleton and Vacuolization in Aleurone Cells during Early Germination of Barley. Int J Mol Sci 2021; 22:9642. [PMID: 34502558 PMCID: PMC8431815 DOI: 10.3390/ijms22179642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cereal grain germination provides the basis for crop production and requires a tissue-specific interplay between the embryo and endosperm during heterotrophic germination involving signalling, protein secretion, and nutrient uptake until autotrophic growth is possible. High salt concentrations in soil are one of the most severe constraints limiting the germination of crop plants, affecting the metabolism and redox status within the tissues of germinating seed. However, little is known about the effect of salt on seed storage protein mobilization, the endomembrane system, and protein trafficking within and between these tissues. Here, we used mass spectrometry analyses to investigate the protein dynamics of the embryo and endosperm of barley (Hordeum vulgare, L.) at five different early points during germination (0, 12, 24, 48, and 72 h after imbibition) in germinated grains subjected to salt stress. The expression of proteins in the embryo as well as in the endosperm was temporally regulated. Seed storage proteins (SSPs), peptidases, and starch-digesting enzymes were affected by salt. Additionally, microscopic analyses revealed an altered assembly of actin bundles and morphology of protein storage vacuoles (PSVs) in the aleurone layer. Our results suggest that besides the salt-induced protein expression, intracellular trafficking and actin cytoskeleton assembly are responsible for germination delay under salt stress conditions.
Collapse
Affiliation(s)
- Georgi Dermendjiev
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Madeleine Schnurer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Jakob Weiszmann
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Sarah Wilfinger
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Emanuel Ott
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Claudia Gebert
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Verena Ibl
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| |
Collapse
|
24
|
Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, Wang H, Su C, Jiao F, Zhang M, Qian Y. Comparative Proteomic Analysis of Tolerant and Sensitive Varieties Reveals That Phenylpropanoid Biosynthesis Contributes to Salt Tolerance in Mulberry. Int J Mol Sci 2021; 22:9402. [PMID: 34502318 PMCID: PMC8431035 DOI: 10.3390/ijms22179402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| |
Collapse
|
25
|
Plant Proteomic Research 3.0: Challenges and Perspectives. Int J Mol Sci 2021; 22:ijms22020766. [PMID: 33466599 PMCID: PMC7828657 DOI: 10.3390/ijms22020766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
|
26
|
Wang D, Lu X, Chen X, Wang S, Wang J, Guo L, Yin Z, Chen Q, Ye W. Temporal salt stress-induced transcriptome alterations and regulatory mechanisms revealed by PacBio long-reads RNA sequencing in Gossypium hirsutum. BMC Genomics 2020; 21:838. [PMID: 33246403 PMCID: PMC7694341 DOI: 10.1186/s12864-020-07260-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cotton (Gossypium hirsutum) is considered a fairly salt tolerant crop however, salinity can still cause significant economic losses by affecting the yield and deteriorating the fiber quality. We studied a salt-tolerant upland cotton cultivar under temporal salt stress to unfold the salt tolerance molecular mechanisms. Biochemical response to salt stress (400 mM) was measured at 0 h, 3 h, 12 h, 24 h and 48 h post stress intervals and single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) combined with the unique molecular identifiers approach was used to identify differentially expressed genes (DEG). Results Antioxidant enzymes including, catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) were found significantly induced under temporal salt stress, suggesting that reactive oxygen species scavenging antioxidant machinery is an essential component of salt tolerance mechanism in cotton. We identified a wealth of novel transcripts based on the PacBio long reads sequencing approach. Prolonged salt stress duration induces high number of DEGs. Significant numbers of DEGs were found under key terms related to stress pathways such as “response to oxidative stress”, “response to salt stress”, “response to water deprivation”, “cation transport”, “metal ion transport”, “superoxide dismutase”, and “reductase”. Key DEGs related to hormone (abscisic acid, ethylene and jasmonic acid) biosynthesis, ion homeostasis (CBL-interacting serine/threonine-protein kinase genes, calcium-binding proteins, potassium transporter genes, potassium channel genes, sodium/hydrogen exchanger or antiporter genes), antioxidant activity (POD, SOD, CAT, glutathione reductase), transcription factors (myeloblastosis, WRKY, Apetala 2) and cell wall modification were found highly active in response to salt stress in cotton. Expression fold change of these DEGs showed both positive and negative responses, highlighting the complex nature of salt stress tolerance mechanisms in cotton. Conclusion Collectively, this study provides a good insight into the regulatory mechanism under salt stress in cotton and lays the foundation for further improvement of salt stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07260-z.
Collapse
Affiliation(s)
- Delong Wang
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, P. R. China.,State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Zujun Yin
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China
| | - Quanjia Chen
- College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, P. R. China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, Henan, China.
| |
Collapse
|
27
|
Taranto F, D'Agostino N, Rodriguez M, Pavan S, Minervini AP, Pecchioni N, Papa R, De Vita P. Whole Genome Scan Reveals Molecular Signatures of Divergence and Selection Related to Important Traits in Durum Wheat Germplasm. Front Genet 2020; 11:217. [PMID: 32373150 PMCID: PMC7187681 DOI: 10.3389/fgene.2020.00217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 01/31/2023] Open
Abstract
The first breeding program in the world for durum wheat was conceived in Italy in the early 1900s. Over the decades, pressure exerted by natural and artificial selection could have progressively reduced the genetic diversity of the durum wheat germplasm. In the present study, a large panel of Italian durum wheat accessions that includes landraces, old and modern cultivars was subjected to genotyping using the Illumina iSelect 15K wheat SNP array. The aim was to assess the impact that selection has in shaping Italian durum wheat genetic diversity and to exploit the patterns of genetic diversity between populations to identify molecular signatures of divergence and selection. Relatively small differences in genetic diversity have been observed among accessions, which have been selected and cultivated in Italy over the past 150 years. Indeed, directional selection combined with that operated by farmers/breeders resulted in the increase of linkage disequilibrium (LD) and in changes of the allelic frequencies in DNA regions that control important agronomic traits. Results from this study also show that major well-known genes and/or QTLs affecting plant height (RHT), earliness (VRN, PPD) and grain quality (GLU, PSY, PSD, LYC, PPO, LOX3) co-localized with outlier SNP loci. Interestingly, many of these SNPs fall in genomic regions where genes involved in nitrogen metabolism are. This finding highlights the key role these genes have played in the transition from landraces to modern cultivars. Finally, our study remarks on the need to fully exploit the genetic diversity of Italian landraces by intense pre-breeding activities aimed at introducing a new source of adaptability and resistance in the genetic background of modern cultivars, to contrast the effect of climate change. The list of divergent loci and loci under selection associated with useful agronomic traits represents an invaluable resource to detect new allelic variants for target genes and for guiding new genomic selection programs in durum wheat.
Collapse
Affiliation(s)
- Francesca Taranto
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Sassari, Italy.,CBV - Interdepartmental Centre for Plant Biodiversity Conservation and Enhancement Sassari University, Alghero, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Anna P Minervini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|