1
|
Kaushal SK, Parul, Tripathi A, Singh DP, Paul A, Alka K, Shukla S, Singh D. IL-33 prevents age-related bone loss and memory impairment by suppression of Th17 response: evidence in a d-galactose-induced aging mouse model. JBMR Plus 2024; 8:ziae101. [PMID: 39224568 PMCID: PMC11365962 DOI: 10.1093/jbmrpl/ziae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are the primary mediators of age-related disorders. The IL-17/IL-10 axis plays a crucial role in bone destruction and neuro-inflammation. Additionally, a new Th2 cytokine-IL-33-has gained attention for its potential implications in aging-associated conditions. However, the involvement of IL-33 in aging-mediated bone loss and memory impairment remains unclear and needs further investigation. This study reveals the impact of IL-33 on various aspects of the immune system, bone health, and neural functions. To induce senescence, we used d-galactose for its convenience and fewer side effects. The experimental design involved treating 20-week-old C57BL/6J mice with d-galactose subcutaneously for 10 weeks to induce aging-like effects. Thereafter, IL-33 recombinant protein was administered intraperitoneally for 15 days to evaluate its impact on various immune, skeletal, and neural parameters. The results demonstrated that d-galactose-induced aging led to bone loss and compromised osteogenic parameters, accompanied by increased oxidative stress and neurodegeneration in specific brain regions. Behavioral activities were also affected. However, supplementation with IL-33 mitigated these effects, elevating osteogenic parameters and reducing senescence markers in osteoblast cells in an aging mouse model and exerted neuroprotective potential. Notably d-galactose-induced aging was characterized by high bone turnover, reflected by altered serum levels of CTX, PTH, beta-galactosidase, and P1NP. IL-33 treatment attenuated these effects, suggesting its role in regulating bone metabolism. Furthermore, d-galactose-induced aging was associated with increased differentiation of Th17 cells and upregulation of associated markers, such as STAT-3 and ROR-γt, while downregulating Foxp3, which antagonizes Th17 cell differentiation. IL-33 treatment countered these effects by suppressing Th17 cell differentiation and promoting IL-10-producing T-regulatory cells. Overall, these findings provide insights into the potential therapeutic implications of IL-33 in addressing aging-induced bone loss and memory impairment.
Collapse
Affiliation(s)
- Saurabh Kumar Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Alok Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Devendra Pratap Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ankita Paul
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Shubha Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
2
|
Zhu A, Baur C, Götz P, Elbs K, Lasch M, Faro A, Preissner KT, Deindl E. The Complement System Is Essential for Arteriogenesis by Enhancing Sterile Inflammation as a Relevant Step in Collateral Artery Growth. Cells 2024; 13:1405. [PMID: 39272977 PMCID: PMC11394660 DOI: 10.3390/cells13171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Arteriogenesis is an inflammatory driven mechanism, describing the growth of a natural bypass from pre-existing collateral arteries to compensate for an occluded artery. The complement system component C3 is a potent natural inflammatory activator. Here, we investigated its impact on the process of collateral artery growth using C3-deficient (C3 -/-) and wildtype control mice in a murine hindlimb model of arteriogenesis. Induction of arteriogenesis by unilateral femoral artery ligation resulted in decreased perfusion recovery in C3 -/- mice on day 7 as shown by Laser Doppler imaging. Immunofluorescence staining revealed a reduced vascular cell proliferation in C3 -/- mice. Gene expression analysis displayed a significant reduction in monocyte chemoattractant protein-1 (MCP-1) expression in C3 -/- mice. Interestingly, 3 days after induction of arteriogenesis, the number of macrophages (CD68+) recruited to growing collaterals was not affected by C3 deficiency. However, a significant reduction in inflammatory M1-like polarized macrophages (CD68+/MRC1-) was noted. Forced mast cell activation by Compound 48/80 as well as exogenous MCP-1 application rescued the number of M1-like polarized macrophages along with perfusion recovery in C3 -/- mice. In summary, this study demonstrates that complement C3 influences arteriogenesis by mediating MCP-1 expression, which is essential for the induction and enhancement of sterile inflammation.
Collapse
Affiliation(s)
- Amanda Zhu
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Carolin Baur
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Philipp Götz
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Katharina Elbs
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Manuel Lasch
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anna Faro
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Klaus T Preissner
- Department of Cardiology, Kerckhoff-Heart Research Institute, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Elisabeth Deindl
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Hsiao YY, Chen YH, Chen YW, Tang KT. The Fracture Risk of Elderly Patients With Atopic Dermatitis. Dermatitis 2024; 35:380-385. [PMID: 38227792 DOI: 10.1089/derm.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Background: A higher fracture risk has been reported previously in patients with atopic Dermatitis (AD). The bone mineral density (BMD) was not accounted for in these studies. Objective: To investigate the fracture risk in AD patients after adjustment for factors including BMD. Methods: We retrospectively analyzed AD patients (≥45 years) who underwent BMD examination at our hospital from July 2010 to February 2023. Individuals who received BMD examinations during a health checkup were identified as the controls. We documented their clinical characteristics, BMD, 10-year risk for a major fracture based on FRAX (Fracture Risk Assessment Tool), and development of osteoporotic fractures. Patients were followed until development of new onset fracture or the end of the study period. A cross-sectional comparison of BMD between AD patients and controls at baseline was performed using the Mann-Whitney U test after propensity score matching (PSM). Their fracture risks were compared using the multivariate Cox regression model. BMD and fracture risk were also compared between AD patients who received systemic therapy and those who did not. Results: A total of 50 AD patients and 386 controls were enrolled. The median age was older in AD patients when compared with controls (70 years vs 60 years). Their BMD at all sites was similar after PSM. After a median follow-up of 1.7-2.0 years, 13 osteoporotic fractures were identified. In the multivariate Cox regression analysis, AD was not associated with new onset fractures of all sites (adjusted hazard ratio [aHR] 2.55, 95% confidence interval [CI] 0.72-9.01) but was significantly associated with new onset vertebral fractures (aHR 6.80, 95% CI 1.77-26.17). The BMD and incidence of fractures were similar between AD who received systemic therapy and those who did not. Conclusions: Elderly AD patients had similar BMD but a higher short-term risk for vertebral fractures when compared with the controls.
Collapse
Affiliation(s)
- Yu-Yu Hsiao
- From the Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Wen Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of General Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Salamanna F, Faldini C, Veronesi F, Borsari V, Ruffilli A, Manzetti M, Viroli G, Traversari M, Marchese L, Fini M, Giavaresi G. A Pilot Study on Circulating, Cellular, and Tissue Biomarkers in Osteosarcopenic Patients. Int J Mol Sci 2024; 25:5879. [PMID: 38892069 PMCID: PMC11172451 DOI: 10.3390/ijms25115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.
Collapse
Affiliation(s)
- Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Cesare Faldini
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Alberto Ruffilli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Marco Manzetti
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Giovanni Viroli
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
- Department of Biomedical and Neuromotor Science (DIBINEM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Matteo Traversari
- 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.F.); (A.R.); (M.M.); (G.V.); (M.T.)
| | - Laura Marchese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.S.); (V.B.); (L.M.); (G.G.)
| |
Collapse
|
6
|
Du J, Wang Y, Wu C, Zhang X, Zhang X, Xu X. Targeting bone homeostasis regulation: potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis. Front Pharmacol 2024; 15:1361864. [PMID: 38628649 PMCID: PMC11018902 DOI: 10.3389/fphar.2024.1361864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis is a systemic metabolic disease characterized by disrupted bone formation/resorption and homeostasis. Flavonoids extracted from traditional Chinese medicinal plants regulate bone homeostasis by intervening in differentiating bone marrow mesenchymal stem cells, balancing the bone immune system, inhibiting oxidative stress response, and reversing iron overload. The target molecules and signaling pathways, such as Wnt/β-catenin and OPG/RANKL/RANK, directly affect osteoblast/osteoclast activity, exhibiting significant potential in the treatment of OP. Therefore, this study presents a systematic review of the recent literature to provide comprehensive information on the traditional Chinese medicine flavonoids involved in the regulation of bone homeostasis. Also, the molecular mechanisms and pharmacological uses of these metabolites are summarized, and their clinical translation and development potential are discussed.
Collapse
Affiliation(s)
- Jiazhe Du
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengliang Wu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xilin Xu
- Department of Orthopedics, The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Muhsin HY, Khazaal AQ, Ismaeel HM, Alosami MH, Ad'hiah AH. Evaluation of interleukins (IL-1α, IL-1Ra, IL-12, IL-17A, IL-31, and IL-33) and chemokines (CXCL10 and CXCL16) in the serum of male patients with ankylosing spondylitis. Int Immunopharmacol 2024; 129:111697. [PMID: 38364743 DOI: 10.1016/j.intimp.2024.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND A case-control study was performed to explore eight pro-inflammatory and anti-inflammatory cytokines, namely interleukin (IL)-1α, IL-1Ra (IL-1 receptor antagonist), IL-12, IL-17A, IL-31, IL-33, CXCL10 (C-X-C motif chemokine ligand 10), and CXCL16, with the aim to understand their role in ankylosing spondylitis (AS) pathogenesis and evaluate their utility as markers to differentiate between diseased and healthy individuals. Among these cytokines, IL-31 and CXCL16 have not been well studied in AS. PATIENTS AND METHODS The study included 94 male patients with AS and 91 age-matched control males. Interleukin and chemokine levels were measured using ELISA kits. RESULTS Serum levels of IL-17A, CXCL10, and CXCL16 were significantly elevated in patients compared to controls, while IL-31 levels were significantly decreased in patients. IL-17A, CXCL10, and CXCL16 were associated with an increased risk of AS, while IL-31 was associated with a decreased risk of disease (odds ratio = 1.22, 1.78, 1.14, and 0.89, respectively). As indicated by the area under the curve (AUC), IL-17A, IL-31, CXCL10, and CXCL16 were potential markers to differentiate between AS patients and controls (AUC = 0.877, 0.735, 0.8, and 0.7, respectively). IL-1α, IL-1Ra, IL-12, and IL-33 levels showed no significant variations between patients and controls. CONCLUSIONS Among the eight cytokines examined, IL-17A, CXCL10, and CXCL16 were up-regulated in the serum of AS patients, while IL-31 was down-regulated. The levels of IL-1α, IL-1Ra, IL-12, and IL-33 showed no significant differences between patients and controls. Serum levels of all cytokines were not affected by disease duration, HLA-B27 positivity, or disease activity.
Collapse
Affiliation(s)
- Hanan Y Muhsin
- Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq
| | - Ali Q Khazaal
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Haneen M Ismaeel
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Mohammed H Alosami
- Rheumatology Unit, Department of Internal Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
8
|
Silva FRF, Heredia JE, Duffles LF, Arntz OJ, Teixeira MM, Ferreira AVM, Silva TA, van de Loo FAJ, Macari S, Oliveira MC. Protective Effect of Bovine Milk Extracellular Vesicles on Alveolar Bone Loss. Mol Nutr Food Res 2024; 68:e2300445. [PMID: 38087782 DOI: 10.1002/mnfr.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Indexed: 02/10/2024]
Abstract
SCOPE Bovine milk extracellular vesicles (MEVs) have demonstrated therapeutic potential in regulating bone cell activity. However, the outcome of their use on alveolar bone loss has not yet been demonstrated. METHODS AND RESULTS This study evaluates the effect of oral administration of MEVs on ovariectomized (OVX) mice. There is a reduced height of the alveolar bone crest in OVX mice by MEVs treatment, but the alveolar bone parameters are not altered. OVX mice are then submitted to a force-induced bone remodeling model by orthodontic tooth movement (OTM). MEVs-treated mice have markedly less bone remodeling movement, unlike the untreated OVX mice. Also, OVX mice treated with MEVs show an increased number of osteoblasts and osteocytes associated with higher sclerostin expression and reduce osteoclasts in the alveolar bone. Although the treatment with MEVs in OVX mice does not show differences in root structure in OTM, few odontoclasts are observed in the dental roots of OVX-treated mice. Compared to untreated mice, maxillary and systemic RANKL/OPG ratios are reduced in OVX mice treated with MEVs. CONCLUSION Treatment with MEVs results in positive bone cell balance in the alveolar bone and dental roots, indicating its beneficial potential in treating alveolar bone loss in the nutritional context.
Collapse
Affiliation(s)
- Francine R F Silva
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joyce E Heredia
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia F Duffles
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mauro M Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene V M Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcilia A Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Soraia Macari
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
9
|
Janyga S, Kajdaniuk D, Czuba Z, Ogrodowczyk-Bobik M, Urbanek A, Kos-Kudła B, Marek B. Interleukin (IL)-23, IL-31, and IL-33 Play a Role in the Course of Autoimmune Endocrine Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:585-595. [PMID: 37694787 DOI: 10.2174/1871530323666230908143521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Interleukins (IL)-23, 31, and 33 are involved in the regulation of T helper 17 (Th17)/regulatory T (Treg) cells balance. The role of IL-23, 31 and 33 in non-endocrine autoimmune diseases has been confirmed. Data on the involvement of these cytokines in endocrine autoimmune diseases are limited. OBJECTIVE This study aimed to determine the involvement of cytokines regulating the T helper 17 (Th17)/regulatory T (Treg) cells axis in the course of autoimmune endocrine diseases. METHODS A total number of 80 participants were divided into 4 groups: the autoimmune polyendocrine syndrome (APS) group consisting of APS type 2 (APS-2) and type 3 (APS-3) subgroups, the Hashimoto's thyroiditis (HT) group, the Graves' disease (GD) group and the control (C) group. Fifteen cytokines related to Th17 and Treg lymphocytes were determined in the serum of all participants. RESULTS Higher levels of IL-23 and IL-31 were found in the APS, GD, and HT groups compared to the C group. Higher levels of IL-23 and IL-31 were also observed in the APS-2 group, in contrast to the APS-3 group. Correlation analysis of variables in the groups showed a statistically significant correlation between the cytokines IL-23, IL-31, and IL-33 in the APS and APS-2 groups, but no correlation in the APS-3 and C groups. CONCLUSION IL-23 and IL-31 are independent factors in the course of HT, GD, and APS-2, in contrast to APS-3. The positive correlation between IL-23 and IL-31, IL-23 and IL-33, and between IL-31 and IL-33 in the APS, APS-2 groups, but the lack of correlation in the APS-3 and C groups may further suggest the involvement of these cytokines in the course of Addison's disease.
Collapse
Affiliation(s)
- Szymon Janyga
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
| | - Dariusz Kajdaniuk
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Poland
| | - Monika Ogrodowczyk-Bobik
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
| | - Agata Urbanek
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| | - Bogdan Marek
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Xu G, Zhang W, Yang J, Sun N, Qu X. Identification of neutrophil extracellular traps and crosstalk genes linking inflammatory bowel disease and osteoporosis by integrated bioinformatics analysis and machine learning. Sci Rep 2023; 13:23054. [PMID: 38155235 PMCID: PMC10754907 DOI: 10.1038/s41598-023-50488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Musculoskeletal deficits are among the most common extra-intestinal manifestations and complications of inflammatory bowel disease (IBD). This study aimed to identify crosstalk genes between IBD and osteoporosis (OP) and potential relationships between crosstalk and neutrophil extracellular traps (NETs)-related genes. Three common hub genes from different compared groups are actually the same, namely HDAC6, IL-8, and PPIF. ROC showed that the combined diagnostic value of HDAC6, IL-8, and PPIF was higher than each of the three key hub genes. Immune infiltration results showed that HDAC6 and IL-8 key genes negatively correlated with CD65 bright natural killer cells. USF1 was the common upstream TFs between HDAC6 and PPIF, and MYC was the common upstream TFs between IL-8 and PPIF in RegNetwork. Taken together, this study shows a linked mechanism between IBD and OP via NETs and crosstalk genes. These findings may show light on better diagnosis and treatment of IBD complicated with OP.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, China.
| | - Wanhao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jun Yang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Na Sun
- Department of Pharmacy, The Third People's Hospital of Dalian, Dalian, Liaoning Province, China
| | - Xiaochen Qu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, China.
| |
Collapse
|
11
|
De Martinis M, Ginaldi L. Letter to the editor regarding "Biological effects of IL-33/ST2 axis on oral diseases: Autoimmune diseases and periodontal diseases". Int Immunopharmacol 2023; 124:110980. [PMID: 37751657 DOI: 10.1016/j.intimp.2023.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Affiliation(s)
- M De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Long Term Care Unit, Giulianova Hospital, AUSL 04 Teramo, Italy; Technical Group for the Coordination of Gender Medicine, Regione Abruzzo, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy.
| | - L Ginaldi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, Teramo, Italy; Technical Group for the Coordination of Gender Medicine, Regione Abruzzo, Italy
| |
Collapse
|
12
|
Orsini F, Crotti C, Cincinelli G, Di Taranto R, Amati A, Ferrito M, Varenna M, Caporali R. Bone Involvement in Rheumatoid Arthritis and Spondyloartritis: An Updated Review. BIOLOGY 2023; 12:1320. [PMID: 37887030 PMCID: PMC10604370 DOI: 10.3390/biology12101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue's own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Collapse
Affiliation(s)
- Francesco Orsini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Gilberto Cincinelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Raffaele Di Taranto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Andrea Amati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Matteo Ferrito
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| |
Collapse
|
13
|
Murdaca G, Gangemi S, Greco M. The IL-33/IL-31 Axis in Allergic and Immune-Mediated Diseases. Int J Mol Sci 2023; 24:9227. [PMID: 37298179 PMCID: PMC10252527 DOI: 10.3390/ijms24119227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023] Open
Abstract
Interleukin 31 (IL-31) belongs to the IL-6 superfamily [...].
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova and IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy;
| |
Collapse
|
14
|
Liu J, Zhang D, Cao Y, Zhang H, Li J, Xu J, Yu L, Ye S, Yang L. Screening of crosstalk and pyroptosis-related genes linking periodontitis and osteoporosis based on bioinformatics and machine learning. Front Immunol 2022; 13:955441. [PMID: 35990678 PMCID: PMC9389017 DOI: 10.3389/fimmu.2022.955441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective This study aimed to identify crosstalk genes between periodontitis (PD) and osteoporosis (OP) and potential relationships between crosstalk and pyroptosis-related genes. Methods PD and OP datasets were downloaded from the GEO database and were performed differential expression analysis to obtain DEGs. Overlapping DEGs got crosstalk genes linking PD and OP. Pyroptosis-related genes were obtained from literature reviews. Pearson coefficients were used to calculate crosstalk and pyroptosis-related gene correlations in the PD and OP datasets. Paired genes were obtained from the intersection of correlated genes in PD and OP. PINA and STRING databases were used to conduct the crosstalk-bridge-pyroptosis genes PPI network. The clusters in which crosstalk and pyroptosis-related genes were mainly concentrated were defined as key clusters. The key clusters' hub genes and the included paired genes were identified as key crosstalk-pyroptosis genes. Using ROC curve analysis and XGBoost screened key genes. PPI subnetwork, gene-biological process and gene-pathway networks were constructed based on key genes. In addition, immune infiltration was analyzed on the PD dataset using the CIBERSORT algorithm. Results A total of 69 crosstalk genes were obtained. 13 paired genes and hub genes TNF and EGFR in the key clusters (cluster2, cluster8) were identified as key crosstalk-pyroptosis genes. ROC and XGBoost showed that PRKCB, GSDMD, ARMCX3, and CASP3 were more accurate in predicting disease than other key crosstalk-pyroptosis genes while better classifying properties as a whole. KEGG analysis showed that PRKCB, GSDMD, ARMCX3, and CASP3 were involved in neutrophil extracellular trap formation and MAPK signaling pathway pathways. Immune infiltration results showed that all four key genes positively correlated with plasma cells and negatively correlated with T cells follicular helper, macrophages M2, and DCs. Conclusion This study shows a joint mechanism between PD and OP through crosstalk and pyroptosis-related genes. The key genes PRKCB, GSDMD, ARMCX3, and CASP3 are involved in the neutrophil extracellular trap formation and MAPK signaling pathway, affecting both diseases. These findings may point the way to future research.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ding Zhang
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yu Cao
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang W, Liu H, Liu T, Yang H, He F. Insights into the Role of Macrophage Polarization in the Pathogenesis of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2485959. [PMID: 35707276 PMCID: PMC9192196 DOI: 10.1155/2022/2485959] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide suffer from osteoporosis, which causes bone fragility and increases the risk of fractures. Osteoporosis is closely related to the inhibition of osteogenesis and the enhancement of osteoclastogenesis. In addition, chronic inflammation and macrophage polarization may contribute to osteoporosis as well. Macrophages, crucial to inflammatory responses, display different phenotypes under the control of microenvironment. There are two major phenotypes, classically activated macrophages (M1) and alternatively activated macrophages (M2). Generally, M1 macrophages mainly lead to bone resorption, while M2 macrophages result in osteogenesis. M1/M2 ratio reflects the "fluid" state of macrophage polarization, and the imbalance of M1/M2 ratio may cause disease such as osteoporosis. Additionally, antioxidant drugs, such as melatonin, are applied to change the state of macrophage polarization and to treat osteoporosis. In this review, we introduce the mechanisms of macrophage polarization-mediated bone resorption and bone formation and the contribution to the clinical strategies of osteoporosis treatment.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
16
|
The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J Immunol Res 2022; 2022:2054431. [PMID: 35378905 PMCID: PMC8976653 DOI: 10.1155/2022/2054431] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Interleukins (ILs)—which are important members of cytokines—consist of a vast group of molecules, including a wide range of immune mediators that contribute to the immunological responses of many cells and tissues. ILs are immune-glycoproteins, which directly contribute to the growth, activation, adhesion, differentiation, migration, proliferation, and maturation of immune cells; and subsequently, they are involved in the pro and anti-inflammatory responses of the body, by their interaction with a wide range of receptors. Due to the importance of immune system in different organisms, the genes belonging to immune elements, such as ILs, have been studied vigorously. The results of recent investigations showed that the genes pertaining to the immune system undergo progressive evolution with a constant rate. The occurrence of any mutation or polymorphism in IL genes may result in substantial changes in their biology and function and may be associated with a wide range of diseases and disorders. Among these abnormalities, single nucleotide polymorphisms (SNPs) can represent as important disruptive factors. The present review aims at concisely summarizing the current knowledge available on the occurrence, properties, role, and biological consequences of SNPs within the IL-1 family members.
Collapse
|
17
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
18
|
Sirufo MM, De Pietro F, Catalogna A, Ginaldi L, De Martinis M. The Microbiota-Bone-Allergy Interplay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010282. [PMID: 35010543 PMCID: PMC8750778 DOI: 10.3390/ijerph19010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
Emerging knowledge suggests an increasing importance of gut microbiota in health and disease. Allergy and bone metabolism are closely interconnected, and the possible negative effects of common therapies are not the only aspects of this relationship. The immune system is influenced by the microbiota-host interactions, and several pieces of evidence suggest the existence of an interplay between microbiota, bone metabolism, and allergies. Understanding these inter-relationships is essential for the development of new potential strategies of treatment and prevention targeting microbiota. A wide range of substances and germs, prebiotics and probiotics, are capable of influencing and modifying the microbiota. Prebiotics and probiotics have been shown in several studies to have different actions based on various factors such as sex, hormonal status, and age. In this review, we summarize the latest knowledge on the topic, and we discuss practical implications and the need for further studies.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Alessandra Catalogna
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi n. 1, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (A.C.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861-429548
| |
Collapse
|
19
|
Srivastava RK, Schmidt-Bleek K, Chattopadhyay N, De Martinis M, Mishra PK. Editorial: Recent Advances in Basic and Translational Osteoimmunology. Front Immunol 2021; 12:800508. [PMID: 34868088 PMCID: PMC8636454 DOI: 10.3389/fimmu.2021.800508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| |
Collapse
|
20
|
Rong K, Liang Z, Xiang W, Wang Z, Wen F, Lu L. IL1R2 polymorphisms and their interaction are associated with osteoporosis susceptibility in the Chinese Han population. Int J Immunogenet 2021; 48:510-525. [PMID: 34664761 DOI: 10.1111/iji.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS Interleukin 1 (IL-1) inhibitory receptor type 2 (IL1R2) serves as a negative regulator of IL-1 signalling and is involved in the pathogenesis of osteoporosis. This study aimed to determine the correlation between IL1R2 polymorphism and osteoporosis susceptibility in the Chinese Han population. METHODS We recruited 594 osteoporosis patients and 599 healthy controls. Six single nucleotide polymorphisms (SNPs) in IL1R2 were selected for genotyping using the Agena MassARRAY platform. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis with adjustment for age and sex. Linkage disequilibrium analysis was plotted using Haploview v4.2. Multifactor dimension reduction (MDR) was performed to estimate the SNP-SNP interactions of IL1R2 variants. RESULTS Rs11674595 (OR = 1.86, p = 0.020), rs2072472 (OR = 1.26, p = 0.019) and rs4851527 (OR = 0.78, p = 0.007) were related to the risk of osteoporosis. Moreover, the contribution of IL1R2 polymorphisms to osteoporosis risk was associated with age, sex and body mass index. We found the relationships of Trs11674595 Ars4851527 (OR = 0.80, p = 0.015), Crs11674595 Grs4851527 (OR = 1.22, p = 0.043) and Ars3218977 Grs2072472 (OR = 1.25, p = 0.022) haplotypes to osteoporosis occurrence, and a potential accumulated effect of IL1R2 SNPs (testing accuracy = 0.5783 and cross validation consistency = 10/10) on osteoporosis susceptibility. CONCLUSION IL1R2 polymorphisms (rs11674595, rs4851527, rs2072472 and rs3218977) may contribute to osteoporosis risk in the Chinese Han population. Our findings may increase our understanding of the effects of IL1R2 polymorphisms on the predisposition to osteoporosis.
Collapse
Affiliation(s)
- Kai Rong
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiquan Liang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wenyuan Xiang
- Department of Traumatology, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Wulumuqi, China
| | - Zhan Wang
- Department of Traumatology, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Wulumuqi, China
| | - Fengli Wen
- Department of Traumatology, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Wulumuqi, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Lin TL, Wu CY, Yen JJY, Juan CK, Chang YL, Ho HJ, Chen YJ. Fracture risks in patients with atopic dermatitis: A nationwide matched cohort study. Ann Allergy Asthma Immunol 2021; 127:667-673.e2. [PMID: 34537357 DOI: 10.1016/j.anai.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The risk of osteoporosis has been explored in atopic dermatitis (AD). The long-term risk of fractures in patients with AD and the effects of various AD treatments on bone health remain to be elucidated. OBJECTIVE To evaluate the long-term risk of fractures in patients with AD. METHODS This nationwide matched cohort study was conducted using the National Health Insurance Research Database of Taiwan for the period 1997 to 2013. A total of 36,855 patients with AD and 147,420 reference subjects without AD were identified. Demographic characteristics and comorbidities were compared, and cumulative incidence of fractures was evaluated. Adjusted hazard ratios for fracture risks of AD and various AD treatments were calculated using the Cox proportional hazards model. RESULTS A total of 1518 patients (4.12%) in the AD cohort and 5579 patients (3.78%) in the reference cohort had fractures (P = .003). The mean ages were 22.6 years in both groups. The 16-year cumulative incidence of fractures in the AD cohort (8.043%) was significantly higher than that in the reference cohort (7.366%) (P = .002). Severe AD (adjusted hazard ratio [aHR], 1.31; 95% confidence interval [CI], 1.08-1.59) was independently associated with fractures. Other independent risk factors included exposure to topical (aHR, 1.21; 95% CI, 1.05-1.39) or systemic (≥10 mg/d; aHR, 1.62; 95% CI, 1.38-1.91) corticosteroids. Use of disease-modifying antirheumatic drugs (aHR, 0.71; 95% CI, 0.53-0.90) and phototherapy (aHR, 0.73; 95% CI, 0.56-0.95) was associated with a lower risk of fractures. The results were consistent across sensitivity analyses. CONCLUSION Patients with AD have a higher incidence of fractures. Severe AD is independently associated with fractures.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Ying Wu
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jeffrey J-Y Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan Mouse Clinic, Academia Sinica, Taipei, Taiwan
| | - Chao-Kuei Juan
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ling Chang
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics, Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
22
|
Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, Gayathri M, Kumar Das A, Cheong SK. The potential role of mesenchymal stem cells in modulating antiageing process. Cell Biol Int 2021; 45:1999-2016. [PMID: 34245637 DOI: 10.1002/cbin.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
Collapse
Affiliation(s)
- Vijayendran Govindasamy
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Abilashini Rajendran
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Zhi-Xin Lee
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Kong-Yong Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia.,Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Khong-Lek Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Merilynn Gayathri
- Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Anjan Kumar Das
- Deparment of Surgery, IQ City Medical College, Durgapur, West Bengal, India
| | - Soon-Keng Cheong
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Kajang, Selangor, Malaysia
| |
Collapse
|
23
|
Calcium-Enriched Pumpkin Affects Serum Leptin Levels and Fat Content in a Rat Model of Postmenopausal Osteoporosis. Nutrients 2021; 13:nu13072334. [PMID: 34371845 PMCID: PMC8308801 DOI: 10.3390/nu13072334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Because the world’s population is deficient in dietary calcium, it is important to search for new sources of this essential mineral for the bones and the entire body. One of the innovative foods that could act as such a source is pumpkin enriched with calcium lactate by means of osmotic dehydration. Providing the body with easily absorbable calcium may have beneficial effects on the reconstruction of bone tissue. Postmenopausal osteoporosis is associated with body weight and fat mass gain, and the aim of the present study was to evaluate the effect of consuming enriched pumpkin on the levels of adipokines and cytokines produced by the adipose tissue. This study was conducted on 12-month-old female Wistar rats that received nutritional intervention for 12 weeks. After termination of the rats, the levels of leptin, adiponectin, interleukin 31 and interleukin 33 in serum and adipose tissue were determined, and the femurs were examined histopathologically. It was demonstrated that calcium-enriched pumpkin reduced bone marrow femoral adipocytes and also markedly decreased serum leptin levels in groups of rats after ovariectomy, which was associated with a decrease of fat content. Additionally, it seems that calcium-enriched pumpkin may reduce body weight gain often observed after menopause.
Collapse
|
24
|
Sirufo MM, Ginaldi L, De Martinis M. Peripheral Vascular Abnormalities in Anorexia Nervosa: A Psycho-Neuro-Immune-Metabolic Connection. Int J Mol Sci 2021; 22:5043. [PMID: 34068698 PMCID: PMC8126077 DOI: 10.3390/ijms22095043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Immune, neuroendocrine, and autonomic nervous system dysregulation in anorexia nervosa lead to cardiovascular complications that can potentially result in increased morbidity and mortality. It is suggested that a complex non-invasive assessment of cardiovascular autonomic regulation-cardiac vagal control, sympathetic vascular activity, and cardiovascular reflex control-could represent a promising tool for early diagnosis, personalized therapy, and monitoring of therapeutic interventions in anorexia nervosa particularly at a vulnerable adolescent age. In this view, we recommend to consider in the diagnostic route, at least in the subset of patients with peripheral microvascular symptoms, a nailfold video-capillaroscopy as an easy not invasive tool for the early assessing of possible cardiovascular involvement.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| |
Collapse
|
25
|
Zhang L, Yang Y, Geng D, Wu Y. Identification of Potential Therapeutic Targets and Molecular Regulatory Mechanisms for Osteoporosis by Bioinformatics Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851421. [PMID: 33778083 PMCID: PMC7969088 DOI: 10.1155/2021/8851421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteoporosis is characterized by low bone mass, deterioration of bone tissue structure, and susceptibility to fracture. New and more suitable therapeutic targets need to be discovered. METHODS We collected osteoporosis-related datasets (GSE56815, GSE99624, and GSE63446). The methylation markers were obtained by differential analysis. Degree, DMNC, MCC, and MNC plug-ins were used to screen the important methylation markers in PPI network, then enrichment analysis was performed. ROC curve was used to evaluate the diagnostic effect of osteoporosis. In addition, we evaluated the difference in immune cell infiltration between osteoporotic patients and control by ssGSEA. Finally, differential miRNAs in osteoporosis were used to predict the regulators of key methylation markers. RESULTS A total of 2351 differentially expressed genes and 5246 differentially methylated positions were obtained between osteoporotic patients and controls. We identified 19 methylation markers by PPI network. They were mainly involved in biological functions and signaling pathways such as apoptosis and immune inflammation. HIST1H3G, MAP3K5, NOP2, OXA1L, and ZFPM2 with higher AUC values were considered key methylation markers. There were significant differences in immune cell infiltration between osteoporotic patients and controls, especially dendritic cells and natural killer cells. The correlation between MAP3K5 and immune cells was high, and its differential expression was also validated by other two datasets. In addition, NOP2 was predicted to be regulated by differentially expressed hsa-miR-3130-5p. CONCLUSION Our efforts aim to provide new methylation markers as therapeutic targets for osteoporosis to better treat osteoporosis in the future.
Collapse
Affiliation(s)
- Li Zhang
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| | - Yunlong Yang
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yonghua Wu
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Kabashima K, Irie H. Interleukin-31 as a Clinical Target for Pruritus Treatment. Front Med (Lausanne) 2021; 8:638325. [PMID: 33644103 PMCID: PMC7906974 DOI: 10.3389/fmed.2021.638325] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, the published literature has suggested the key involvement of the cytokine interleukin-31 (IL-31) in the symptomatology of pruritus, and both IL-31 and its receptor have become potential therapeutic targets for a range of pruritic diseases. Elevated levels of IL-31 or its receptor have been reported in the tissue or serum of patients with pruritic skin diseases, such as atopic dermatitis, prurigo nodularis, and psoriasis. Pruritus places a heavy burden on patients, and can have a negative impact on daily life, sleep, and mental health. Since current anti-pruritic treatments are often ineffective, affected patients are in urgent need of new therapies. As a result, drug development targeting the IL-31 pathway is evolving rapidly. To date, only nemolizumab, a humanized monoclonal antibody targeting the IL-31 receptor, has successfully completed late-stage clinical studies. This article will highlight our current clinical understanding of the role of IL-31 in pruritic disease, and explore recent progress in drug development as well as the anticipated future advances in this field.
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Irie
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Abousaud AI, Barbee MS, Davis CC, Caulfield SE, Wang Z, Boykin A, Carthon BC, Gogineni K. Safety and efficacy of extended dosing intervals of denosumab in patients with solid cancers and bone metastases: a retrospective study. Ther Adv Med Oncol 2021; 12:1758835920982859. [PMID: 33488782 PMCID: PMC7768832 DOI: 10.1177/1758835920982859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Aim More than half of patients with breast, lung, or prostate cancer who have bone metastases have evidence of skeletal-related events (SREs). Denosumab is a fully human monoclonal antibody that binds to and neutralizes receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts and their precursors. The United States Food and Drug Administration (FDA)-approved dose of denosumab is 120 mg every 4 weeks; however, other schedules have been used in practice for patient convenience. Evidence for the safety and efficacy of alternative dosing intervals is lacking. Patient & Methods Adult patients with solid cancers and bone metastases who received at least two doses of denosumab 120 mg were reviewed. Patients were grouped based on an average denosumab dosing interval of <5 weeks (short-interval) versus 5-11 weeks (medium-interval) versus ⩾12 weeks (long-interval). The primary outcome was the time to first SRE while on denosumab between the short- and medium-interval groups. The secondary outcomes were overall survival (OS), efficacy comparisons between the other groups, and safety events. Results There was no significant difference in median time to first SRE between the short- and medium-interval denosumab groups [33.2 versus 28.4 months, hazard ratio (HR): 1.13, 95% confidence interval (CI): 0.66-1.92, p = 0.91] or the medium- and long-interval dosing groups (28.4 versus 32.2 months, HR: 1.15, 95% CI: 0.66-2.01, p = 0.62). Median OS was not found to differ significantly between any of the groups. There were significantly more hospitalizations in the short-interval dosing group than the other groups (55.2% versus 33.8% versus 30.4%, p < 0.001). Conclusion Extending denosumab dosing intervals does not appear to negatively impact time to first SRE and is associated with fewer hospitalizations in real-world patients with solid cancers and bone metastases.
Collapse
Affiliation(s)
- Aseala I Abousaud
- Department of Pharmaceutical Services, Emory Healthcare, 5665 Peachtree Dunwoody Road NE, Atlanta, GA 30342, USA
| | - Meagan S Barbee
- Global Medical Information Specialist, Oncology at Med Communications Inc
| | - Christine C Davis
- Department of Pharmaceutical Services, Emory Healthcare, Atlanta, GA, USA
| | - Sarah E Caulfield
- Department of Pharmaceutical Services, Emory Healthcare, Atlanta, GA, USA
| | - Zeyuan Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health
| | - Alexa Boykin
- Medical Science Liason, Novocure Inc., Atlanta, GA, USA
| | - Bradley C Carthon
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Keerthi Gogineni
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
De Martinis M, Sirufo MM, Polsinelli M, Placidi G, Di Silvestre D, Ginaldi L. Gender Differences in Osteoporosis: A Single-Center Observational Study. World J Mens Health 2021; 39:750-759. [PMID: 33474849 PMCID: PMC8443988 DOI: 10.5534/wjmh.200099] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Osteoporosis affects more than 200 million people worldwide: its prevalence increases with age and is actually growing due to the constant population aging. Women are at greater risk than men, but in recent years it has become increasingly evident that osteoporosis represents a significantly important problem also for men. However, osteoporosis in men is still poorly studied, underdiagnosed and inadequately treated. Materials and Methods We conducted an observational study to identify any gender disparities in osteoporosis screening. For this purpose we observed people consecutively admitted at our Outpatient Service for the Diagnosis of Osteoporosis during the last 3 years. Patients underwent clinical and laboratory assessment and bone mineral density (BMD) measurements by dual-energy X-ray absorptiometry. Bone turnover serum markers have been evaluated and stratified according to gender. Results Out of 3,752 patients, 2,376 subjects who met the inclusion criteria were identified. As expected, the great majority (94.5%) of the screened subjects were women and only 5.4% were men. Women exhibited lower BMD compared to men (T-score values: −2.33±1.14 vs. −1.31±1.55; p<0.001), whereas the prevalence of fractures in osteoporotic men was significantly higher (50% vs. 31%; p<0.001). Women had lower vitamin D and higher bone remodeling markers compared to men. Secondary osteoporosis was more frequent in men (66.67%) than in women (20.83%) and the calculated risk for hip fractures was higher in osteoporotic men compared to women (11.47±10.62 vs. 6.87±7.73; p<0.001). Conclusions Here we highlighted that men are under-screened for osteoporosis and exhibit secondary osteoporosis more frequently than women.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy.
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy
| | - Matteo Polsinelli
- A2VI-Lab, Department of Life, Health and Environmental Sciences, L'Aquila, Italy
| | - Giuseppe Placidi
- A2VI-Lab, Department of Life, Health and Environmental Sciences, L'Aquila, Italy
| | - Daniela Di Silvestre
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, Teramo, Italy
| |
Collapse
|
29
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021. [PMID: 33477816 DOI: 10.3390/biom11010122.pmid:33477816;pmcid:pmc7832894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, 95123 Catania, Italy
| | - Vincenzo Bramanti
- Division of Clinical Pathology, "Giovanni Paolo II" Hospital-A.S.P. Ragusa, 97100 Ragusa, Italy
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
30
|
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R, Scandura G, Dulcamare I, Bramanti V, Di Rosa M, Vicario N, Parenti R, Li Volti G, Tibullo D, Palumbo GA. Focus on Osteosclerotic Progression in Primary Myelofibrosis. Biomolecules 2021; 11:biom11010122. [PMID: 33477816 PMCID: PMC7832894 DOI: 10.3390/biom11010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoietic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis alterations are closely associated with modifications of the BM microenvironment, characterized by defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakaryocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage, are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with progressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth factors and bone marrow microenvironment resident cells have been linked to disease progression. Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines and chemokines release, in modulating functions of most of the bone marrow cell populations and in creating a complex network where impaired signaling strongly contributes to progression and disabilities.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Ilaria Dulcamare
- Department of General Surgery and Medical-Surgical Specialties, Division of Hematology, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy; (A.R.); (E.L.S.); (G.S.); (I.D.)
| | - Vincenzo Bramanti
- Division of Clinical Pathology, “Giovanni Paolo II” Hospital–A.S.P. Ragusa, 97100 Ragusa, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.V.); (R.P.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
- Correspondence: (G.L.V.); (G.A.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.); (L.L.); (R.A.); (D.T.)
| | - Giuseppe A. Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
- Correspondence: (G.L.V.); (G.A.P.)
| |
Collapse
|
31
|
De Martinis M, Ginaldi L, Sirufo MM, Bassino EM, De Pietro F, Pioggia G, Gangemi S. IL-33/Vitamin D Crosstalk in Psoriasis-Associated Osteoporosis. Front Immunol 2021; 11:604055. [PMID: 33488605 PMCID: PMC7819870 DOI: 10.3389/fimmu.2020.604055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased risk of developing osteoporosis (OP). It has been shown that OP is among the more common pathologies associated with Pso, mainly due to the well-known osteopenizing conditions coexisting in these patients. Pso and OP share common risk factors, such as vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2 axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor differentiation towards macrophage and dendritic cells and inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the expression of anti-osteoclastic genes. However, while the vitamin D protective functions in OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through hormonal influences and immune-mediated effects, as well as cellular and metabolic functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Wu D, Wu XD, Zhou X, Huang W, Luo C, Liu Y. Bone mineral density, osteopenia, osteoporosis, and fracture risk in patients with atopic dermatitis: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:40. [PMID: 33553333 PMCID: PMC7859773 DOI: 10.21037/atm-20-4708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The relationship between atopic dermatitis (AD) and abnormal bone metabolism remains unclear. We performed a systematic review and meta-analysis to determine whether patients with AD were associated with increased risks of low bone mineral density (BMD), osteopenia, osteoporosis, and related fractures. METHODS We searched PubMed, Embase, and the Cochrane Library through December 2019 to identify studies that investigated the association between AD and abnormal bone metabolism (including BMD, osteopenia, osteoporosis, and related fractures). The predefined primary outcome was related fractures; secondary outcomes included osteoporosis, osteopenia, and BMD. We calculated the summary odds ratios (ORs) and 95% confidence intervals (CIs) using a random-effects model. RESULTS Ten studies were included in this systematic review. In children and adolescents, four studies investigated the association between AD and BMD; three studies indicated that children and adolescents with AD were associated with an increased risk of low BMD; one study found similar BMD between AD and control groups. In adults, three studies assessed the risk of fracture and were included in the meta-analysis, comprising 562,405 AD patients among 3,171,268 participants. Adults with AD were associated with an increased risk of fracture (OR 1.13; 95% CI, 1.05-1.22; P=0.001). Three studies investigated the association between AD and osteoporosis, which suggested that patients with AD were associated with an increased risk of osteoporosis (OR 1.95; 95% CI, 1.18-3.23; P=0.009). Further, patients with AD were associated with increased risks of osteopenia (OR 1.90; 95% CI, 1.51-2.38; P<0.001) and low BMD at the femur and spine. CONCLUSIONS Patients with AD were associated with increased risks of low BMD, osteopenia, osteoporosis, and related fractures. Both clinical studies and basic research are needed to clarify the mechanisms of association between AD and abnormal bone metabolism.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang-Dong Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xi Zhou
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqi Luo
- Department of Orthopaedic Surgery, The Second People’s Hospital of Yibin, Yibin, China
| | - Yong Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
34
|
Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage Polarization and Osteoporosis: A Review. Nutrients 2020; 12:nu12102999. [PMID: 33007863 PMCID: PMC7601854 DOI: 10.3390/nu12102999] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Over 200 million people suffer from osteoporosis worldwide. Individuals with osteoporosis have increased rates of bone resorption while simultaneously having impaired osteogenesis. Most current treatments for osteoporosis focus on anti-resorptive methods to prevent further bone loss. However, it is important to identify safe and cost-efficient treatments that not only inhibit bone resorption, but also stimulate anabolic mechanisms to upregulate osteogenesis. Recent data suggest that macrophage polarization may contribute to osteoblast differentiation and increased osteogenesis as well as bone mineralization. Macrophages exist in two major polarization states, classically activated macrophages (M1) and alternatively activated macrophage (M2) macrophages. The polarization state of macrophages is dependent on molecules in the microenvironment including several cytokines and chemokines. Mechanistically, M2 macrophages secrete osteogenic factors that stimulate the differentiation and activation of pre-osteoblastic cells, such as mesenchymal stem cells (MSC’s), and subsequently increase bone mineralization. In this review, we cover the mechanisms by which M2 macrophages contribute to osteogenesis and postulate the hypothesis that regulating macrophage polarization states may be a potential treatment for the treatment of osteoporosis.
Collapse
|
35
|
Ruaro B, Casabella A, Paolino S, Alessandri E, Patané M, Gotelli E, Sulli A, Cutolo M. Trabecular Bone Score and Bone Quality in Systemic Lupus Erythematosus Patients. Front Med (Lausanne) 2020; 7:574842. [PMID: 33102506 PMCID: PMC7554588 DOI: 10.3389/fmed.2020.574842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Systemic lupus erythematosus (SLE) patients run a higher risk of having low bone mass due to multifactorial events that include physical inactivity, persistent inflammation, low vitamin D levels, and glucocorticoid treatment. This study aimed at obtaining a comparison between bone involvement in SLE patients and healthy matched subjects (HS). Methods: A total of 40 SLE females (average age 54.1 ± 16.3 years) and 40 age–gender matched HS (average age 54.2 ± 15.9 years) were enrolled after having obtained informed written consent. Bone mineral density (BMD, g/cm2) of the lumbar spine (L1–L4) was analyzed by a dual-energy X-ray absorptiometry (DXA) scan (GE, Lunar Prodigy). The lumbar spine trabecular bone score (TBS) was derived for each spine DXA examination by the TBS index (TBS iNsight Medimaps). Results: The lumbar spine TBS score was statistically significantly lower in SLE patients than in HS (0.797 ± 0.825 vs. 1.398 ± 0.207, p < 0.001, as was BMD (p < 0.001) in all areas examined. Conclusions: SLE is associated with significant low bone mass as evidenced by DXA and TBS. This study emphasizes the importance of using DXA and TBS in the evaluation of the different aspects of bone architecture.
Collapse
Affiliation(s)
- Barbara Ruaro
- Pulmonology Department, University Hospital of Trieste, Trieste, Italy
| | - Andrea Casabella
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy.,Osteoporosis, Bone and Joint Disease Research Center, CROPO, Department of Internal Medicine Di.M.I., University of Genoa, Genoa, Italy
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy.,Osteoporosis, Bone and Joint Disease Research Center, CROPO, Department of Internal Medicine Di.M.I., University of Genoa, Genoa, Italy
| | - Elisa Alessandri
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Massimo Patané
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Emanuele Gotelli
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy.,Lupus Clinic, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Alberto Sulli
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy.,Lupus Clinic, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine (Di.M.I.), IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| |
Collapse
|
36
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|
37
|
Sirufo MM, De Pietro F, Bassino EM, Ginaldi L, De Martinis M. Osteoporosis in Skin Diseases. Int J Mol Sci 2020; 21:E4749. [PMID: 32635380 PMCID: PMC7370296 DOI: 10.3390/ijms21134749] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is defined as a generalized skeletal disease characterized by low bone mass and an alteration of the microarchitecture that lead to an increase in bone fragility and, therefore, an increased risk of fractures. It must be considered today as a true public health problem and the most widespread metabolic bone disease that affects more than 200 million people worldwide. Under physiological conditions, there is a balance between bone formation and bone resorption necessary for skeletal homeostasis. In pathological situations, this balance is altered in favor of osteoclast (OC)-mediated bone resorption. During chronic inflammation, the balance between bone formation and bone resorption may be considerably affected, contributing to a net prevalence of osteoclastogenesis. Skin diseases are the fourth cause of human disease in the world, affecting approximately one third of the world's population with a prevalence in elderly men. Inflammation and the various associated cytokine patterns are the basis of both osteoporosis and most skin pathologies. Moreover, dermatological patients also undergo local or systemic treatments with glucocorticoids and immunosuppressants that could increase the risk of osteoporosis. Therefore, particular attention should be paid to bone health in these patients. The purpose of the present review is to take stock of the knowledge in this still quite unexplored field, despite the frequency of such conditions in clinical practice.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|
38
|
De Martinis M, Sirufo MM, Nocelli C, Fontanella L, Ginaldi L. Hyperhomocysteinemia is Associated with Inflammation, Bone Resorption, Vitamin B12 and Folate Deficiency and MTHFR C677T Polymorphism in Postmenopausal Women with Decreased Bone Mineral Density. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4260. [PMID: 32549258 PMCID: PMC7345373 DOI: 10.3390/ijerph17124260] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an age-related bone disease, affecting mainly postmenopausal women, characterized by decreased bone mineral density (BMD) and consequent risk of fractures. Homocysteine (Hcy), a sulfur-aminoacid whose serum level is regulated by methylenetrahydrofolate reductase (MTHFR) activity and vitamin B12 and folate as cofactors, is a risk factor for inflammatory diseases. Literature data concerning the link between Hcy and osteoporosis are still debated. The aim of our study was to assess the relationship among Hcy and BMD, inflammation, vitamin status and bone turnover in postmenopausal osteoporosis. In 252 postmenopausal women, BMD was measured by dual-energy X-ray absorptiometry (DXA). In addition to serum Hcy, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and bone turnover markers (bone alkaline phosphatase-BAP, osteocalcin-OC, C-terminal telopeptide of type I collagen (CTX), vitamin deficiencies and MTHFR-C677T polymorphism were evaluated. Hcy, inflammation, bone resorption markers and prevalence of C677T polymorphism were higher, whereas vitamin D, B12, folate, and bone formation markers were lower in women with decreased BMD compared to those with normal BMD. Our results suggest a significant association between Hcy, BMD and inflammation in postmenopausal osteoporosis. The regulation of Hcy overproduction and the modulation of the inflammatory substrate could represent additional therapeutic approaches for osteoporosis prevention.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| | | | - Lara Fontanella
- Department of Legal and Social Sciences, University of Chieti-Pescara, 65127 Pescara, Italy;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04, 64100 Teramo, Italy
| |
Collapse
|
39
|
De Martinis M, Sirufo MM, Viscido A, Ginaldi L. Food Allergy Insights: A Changing Landscape. Arch Immunol Ther Exp (Warsz) 2020; 68:8. [PMID: 32239297 DOI: 10.1007/s00005-020-00574-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
The panorama of food allergies (FA) has changed profoundly in recent years. In light of recent advances in knowledge of pathogenetic mechanisms and a greater attention to the multifaceted range of possible clinical manifestations, there is a need for a critical review of past classifications. Changes in nutrition, environment and lifestyles around the world are modifying the global FA epidemiology and new FA phenotypes are also emerging. Furthermore, both biotechnological advances in this field and recent personalized therapies have improved the diagnostic and therapeutic approach to FA. Consequently, both the prevention and clinical management of FA are rapidly changing and new therapeutic strategies are emerging, even revolutionizing the current medical practice. Given the significant increase in the prevalence of FA in recent years, the objective of this review is to provide an updated and complete overview of current knowledge in its etiopathogenesis, diagnostics and therapy, useful not only for a better understanding of this frequent and complex pathology but also for practical guidance in its clinical management.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy. .,Allergy and Clinical Immunology Unit, AUSL 04, Teramo, Italy.
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, AUSL 04, Teramo, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Allergy and Clinical Immunology Unit, AUSL 04, Teramo, Italy
| |
Collapse
|
40
|
De Martinis M, Ginaldi L, Sirufo MM, Pioggia G, Calapai G, Gangemi S, Mannucci C. Alarmins in Osteoporosis, RAGE, IL-1, and IL-33 Pathways: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030138. [PMID: 32204562 PMCID: PMC7142770 DOI: 10.3390/medicina56030138] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Alarmins are endogenous mediators released by cells following insults or cell death to alert the host’s innate immune system of a situation of danger or harm. Many of these, such as high-mobility group box-1 and 2 (HMGB1, HMGB2) and S100 (calgranulin proteins), act through RAGE (receptor for advanced glycation end products), whereas the IL-1 and IL-33 cytokines bind the IL-1 receptors type I and II, and the cellular receptor ST2, respectively. The alarmin family and their signal pathways share many similarities of cellular and tissue localization, functions, and involvement in various physiological processes and inflammatory diseases including osteoporosis. The aim of the review was to evaluate the role of alarmins in osteoporosis. A bibliographic search of the published scientific literature regarding the role of alarmins in osteoporosis was organized independently by two researchers in the following scientific databases: Pubmed, Scopus, and Web of Science. The keywords used were combined as follows: “alarmins and osteoporosis”, “RAGE and osteoporosis”, “HMGB1 and osteoporosis”, “IL-1 and osteoporosis”, “IL 33 and osteopororsis”, “S100s protein and osteoporosis”. The information was summarized and organized in the present review. We highlight the emerging roles of alarmins in various bone remodeling processes involved in the onset and development of osteoporosis, as well as their potential role as biomarkers of osteoporosis severity and progression. Findings of the research suggest a potential use of alarmins as pharmacological targets in future therapeutic strategies aimed at preventing bone loss and fragility fractures induced by aging and inflammatory diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L’Aquila, 6700 L’Aquila, Italy; (M.D.M.); (L.G.); (M.M.S.)
| | - Giovanni Pioggia
- National Research Council of Italy (CNR)-Institute for Biomedical Research and Innovation (IRIB), 98164 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-22-12-697
| |
Collapse
|
41
|
De Martinis M, Sirufo MM, Suppa M, Di Silvestre D, Ginaldi L. Sex and Gender Aspects for Patient Stratification in Allergy Prevention and Treatment. Int J Mol Sci 2020; 21:E1535. [PMID: 32102344 PMCID: PMC7073150 DOI: 10.3390/ijms21041535] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Allergies are rapidly worsening in recent decades, representing the most common immunological diseases. The mechanism of disorders such as asthma, rhinocongiuntivitis, urticaria, atopic dermatitis, food and drug allergies, and anaphylaxis still remain unclear and consequently treatments is mostly still symptomatic and aspecific while developments of new therapies are limited. A growing amount of data in the literature shows us how the prevalence of allergic diseases is different in both sexes and its changes over the course of life. Genes, hormones, environmental and immunological factors affect sex disparities associated with the development and control of allergic diseases, while they more rarely are considered and reported regarding their differences related to social, psychological, cultural, economic, and employment aspects. This review describes the available knowledge on the role of sex and gender in allergies in an attempt to improve the indispensable gender perspective whose potential is still underestimated while it represents a significant turning point in research and the clinic. It will offer insights to stimulate exploration of the many aspects still unknown in this relationship that could ameliorate the preventive, diagnostic, and therapeutic strategies in allergic diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Daniela Di Silvestre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|
42
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. New Perspectives in Food Allergy. Int J Mol Sci 2020; 21:E1474. [PMID: 32098244 PMCID: PMC7073187 DOI: 10.3390/ijms21041474] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
The improvement of the knowledge of the pathophysiological mechanisms underlying the tolerance and sensitization to food antigens has recently led to a radical change in the clinical approach to food allergies. Epidemiological studies show a global increase in the prevalence of food allergy all over the world and manifestations of food allergy appear increasingly frequent also in elderly subjects. Environmental and nutritional changes have partly changed the epidemiology of allergic reactions to foods and new food allergic syndromes have emerged in recent years. The deepening of the study of the intestinal microbiota has highlighted important mechanisms of immunological adaptation of the mucosal immune system to food antigens, leading to a revolution in the concept of immunological tolerance. As a consequence, new prevention models and innovative therapeutic strategies aimed at a personalized approach to the patient affected by food allergy are emerging. This review focuses on these new perspectives and their practical implications in the management of food allergy, providing an updated view of this complex pathology.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|
43
|
Sirufo MM, Suppa M, Ginaldi L, De Martinis M. Does Allergy Break Bones? Osteoporosis and Its Connection to Allergy. Int J Mol Sci 2020; 21:E712. [PMID: 31973226 PMCID: PMC7037724 DOI: 10.3390/ijms21030712] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
: Osteoporosis and allergic diseases are important causes of morbidity, and traditionally their coexistence has been attributed to causality, to independent processes, and they were considered unrelated. However, the increasing knowledge in the field of osteoimmunology and an increasing number of epidemiological and biological studies have provided support to a correlation between bone and allergy that share pathways, cells, cytokines and mediators. If the link between allergic pathology and bone alterations appears more subtle, there are conditions such as mastocytosis and hypereosinophilic or hyper-IgE syndromes characterized by the proliferation of cells or hyper-production of molecules that play a key role in allergies, in which this link is at least clinically more evident, and the diseases are accompanied by frank skeletal involvement, offering multiple speculation cues. The pathophysiological connection of allergy and osteoporosis is currently an intriguing area of research. The aim of this review is to summarize and bring together the current knowledge and pursue an opportunity to stimulate further investigation.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| |
Collapse
|