1
|
Zhou X, Sun Z, Huang Y, He D, Lu L, Wei M, Lin S, Luo W, Liao X, Jin S, Guo M, Hao L, Jiang Z. WRKY45 positively regulates salinity and osmotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109408. [PMID: 39721186 DOI: 10.1016/j.plaphy.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis. However, the involvement of WRKY45 in salinity and osmotic stress responses is unclear. Here, we report that WRKY45 plays a vital role in responding to salinity and osmotic stress. NaCl and sorbitol treatments upregulate WRKY45 expression. Furthermore, the overexpression of WRKY45 (WRKY45-OXs) may enhance the tolerance of Arabidopsis to salinity and osmotic stress. Moreover, the root length, fresh weight, chlorophyll, and proline content were significantly higher in WRKY45-OXs than in the wide type (WT) Col-0 plants after salt or PEG treatment, whereas malondialdehyde and reactive oxygen species (ROS) levels were significantly lower than in the WT plants. Correspondingly, the overexpression of WRKY45 modulated the expression of stress-responsive genes. Dual luciferase assay and electrophoretic mobility shift assay further confirmed that WRKY45 can activate the promoter of RD29A by directly binding to specific W-box cis-acting elements. Overall, our experimental evidence suggesting that WRKY45 mainly acts as a key regulator coordinating the response to high salinity and osmotic stress through mechanisms dependent on ABA signaling along with enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| | - Zhaofei Sun
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Yuanzhi Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Dan He
- Center for Quantitative Synthetic Biology, CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lu Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Mengting Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Shuangmei Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Wenxi Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Xiaozhen Liao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Songsong Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Manyuan Guo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Lingyun Hao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Jia S, Wang C, Sun W, Yan X, Wang W, Xu B, Guo G, Bi C. OsWRKY12 negatively regulates the drought-stress tolerance and secondary cell wall biosynthesis by targeting different downstream transcription factor genes in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108794. [PMID: 38850730 DOI: 10.1016/j.plaphy.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.
Collapse
Affiliation(s)
- Shuzhen Jia
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chunyue Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Wanying Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaofei Yan
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Weiting Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Bing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guangyan Guo
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Caili Bi
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Liu N, Li C, Wu F, Yang Y, Yu A, Wang Z, Zhao L, Zhang X, Qu F, Gao L, Xia T, Wang P. Genome-wide identification and expression pattern analysis of WRKY transcription factors in response to biotic and abiotic stresses in tea plants (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108670. [PMID: 38703501 DOI: 10.1016/j.plaphy.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.
Collapse
Affiliation(s)
- Nana Liu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Caiyun Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Feixue Wu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yi Yang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Antai Yu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Ziteng Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Lei Zhao
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Fengfeng Qu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Peiqiang Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
4
|
Wang W, Huang S, Wang Z, Cao P, Luo M, Wang F. Unraveling wheat's response to salt stress during early growth stages through transcriptomic analysis and co-expression network profiling. BMC Genom Data 2024; 25:36. [PMID: 38609855 PMCID: PMC11015659 DOI: 10.1186/s12863-024-01221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Soil salinization is one of the vital factors threatening the world's food security. To reveal the biological mechanism of response to salt stress in wheat, this study was conducted to resolve the transcription level difference to salt stress between CM6005 (salt-tolerant) and KN9204 (salt-sensitive) at the germination and seedling stage. RESULTS To investigate the molecular mechanism underlying salt tolerance in wheat, we conducted comprehensive transcriptome analyses at the seedling and germination stages. Two wheat cultivars, CM6005 (salt-tolerant) and KN9204 (salt-sensitive) were subjected to salt treatment, resulting in a total of 24 transcriptomes. Through expression-network analysis, we identified 17 modules, 16 and 13 of which highly correlate with salt tolerance-related phenotypes in the germination and seedling stages, respectively. Moreover, we identified candidate Hub genes associated with specific modules and explored their regulatory relationships using co-expression data. Enrichment analysis revealed specific enrichment of gibberellin-related terms and pathways in CM6005, highlighting the potential importance of gibberellin regulation in enhancing salt tolerance. In contrast, KN9204 exhibited specific enrichment in glutathione-related terms and activities, suggesting the involvement of glutathione-mediated antioxidant mechanisms in conferring resistance to salt stress. Additionally, glucose transport was found to be a fundamental mechanism for salt tolerance during wheat seedling and germination stages, indicating its potential universality in wheat. Wheat plants improve their resilience and productivity by utilizing adaptive mechanisms like adjusting osmotic balance, bolstering antioxidant defenses, accumulating compatible solutes, altering root morphology, and regulating hormones, enabling them to better withstand extended periods of salt stress. CONCLUSION Through utilizing transcriptome-level analysis employing WGCNA, we have revealed a potential regulatory mechanism that governs the response to salt stress and recovery in wheat cultivars. Furthermore, we have identified key candidate central genes that play a crucial role in this mechanism. These central genes are likely to be vital components within the gene expression network associated with salt tolerance. The findings of this study strongly support the molecular breeding of salt-tolerant wheat, particularly by utilizing the genetic advancements based on CM6005 and KN9204.
Collapse
Affiliation(s)
- Wei Wang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China.
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China.
| | - Sufang Huang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China
| | - Zhi Wang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China
| | - Pingping Cao
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China
| | - Meng Luo
- Shanghai Majorbio Bio-pharm Technology Co., Ltd, 200120, Shanghai, China
| | - Fengzhi Wang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China.
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China.
| |
Collapse
|
5
|
Ge M, Tang Y, Guan Y, Lv M, Zhou C, Ma H, Lv J. TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC PLANT BIOLOGY 2024; 24:27. [PMID: 38172667 PMCID: PMC10763432 DOI: 10.1186/s12870-023-04709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Wheat, a crucial food crop in China, is highly vulnerable to drought stress throughout its growth and development. WRKY transcription factors (TFs), being one of the largest families of TFs, play a vital role in responding to various abiotic stresses in plants. RESULTS Here, we cloned and characterized the TF TaWRKY31 isolated from wheat. This TF, belonging to the WRKY II family, contains a WRKYGQK amino acid sequence and a C2H2-type zinc finger structure. TaWRKY31 exhibits tissue-specific expression and demonstrates responsiveness to abiotic stresses in wheat. TaWRKY31 protein is localized in the nucleus and can function as a TF with transcription activating activity at the N-terminus. Results showed that the wheat plants with silenced strains (BSMV:TaWRKY31-1as and BSMV:TaWRKY31-2as) exhibited poor growth status and low relative water content when subjected to drought treatment. Moreover, the levels of O2·-, H2O2, and malondialdehyde (MDA) in the BSMV:TaWRKY31-induced wheat plants increased, while the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) decreased. Compared to control plants, BSMV:TaWRKY31-induced wheat plants exhibited lower expression levels of TaSOD (Fe), TaPOD, TaCAT, TaDREB1, TaP5CS, TaNCED1, TaSnRK2, TaPP2C, and TaPYL5.Under stress or drought treatment conditions, the overexpression of TaWRKY31 in Arabidopsis resulted in decreased levels of H2O2 and MDA, as well as reduced stomatal opening and water loss. Furthermore, an increase in resistance oxidase activity, germination rate, and root length in the TaWRKY31 transgenic Arabidopsis was observed. Lastly, overexpression of TaWRKY31 in Arabidopsis resulted in higher the expression levels of AtNCED3, AtABA2, AtSnRK2.2, AtABI1, AtABF3, AtP5CS1, AtSOD (Cu/Zn), AtPOD, AtCAT, AtRD29A, AtRD29B, and AtDREB2A than in control plants. CONCLUSIONS Our findings indicate that TaWRKY31 enhances drought resistance in plants by promoting the scavenging of reactive oxygen species, reducing stomatal opening, and increasing the expression levels of stress-related genes.
Collapse
Affiliation(s)
- Miaomiao Ge
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yijun Guan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meicheng Lv
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chunjv Zhou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huiling Ma
- College of Life Sciences, Northwest A&F University, Yangling, China.
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
6
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Li X, Wang L, Li W, Zhang X, Zhang Y, Dong S, Song X, Zhao J, Chen M, Yuan X. Genome-Wide Identification and Expression Profiling of Cytochrome P450 Monooxygenase Superfamily in Foxtail Millet. Int J Mol Sci 2023; 24:11053. [PMID: 37446233 DOI: 10.3390/ijms241311053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cytochrome P450 monooxygenases (CYP450) are the largest enzyme family in plant metabolism and widely involved in the biosynthesis of primary and secondary metabolites. Foxtail millet (Setaria italica (L.) P. Beauv) can respond to abiotic stress through a highly complex polygene regulatory network, in which the SiCYP450 family is also involved. Although the CYP450 superfamily has been systematically studied in a few species, the research on the CYP450 superfamily in foxtail millet has not been completed. In this study, three hundred and thirty-one SiCYP450 genes were identified in the foxtail millet genome by bioinformatics methods, which were divided into four groups, including forty-six subgroups. One hundred and sixteen genes were distributed in thirty-three tandem duplicated gene clusters. Chromosome mapping showed that SiCYP450 was distributed on seven chromosomes. In the SiCYP450 family of foxtail millet, 20 conserved motifs were identified. Cis-acting elements in the promoter region of SiCYP450 genes showed that hormone response elements were found in all SiCYP450 genes. Of the three hundred and thirty-one SiCYP450 genes, nine genes were colinear with the Arabidopsis thaliana genes. Two hundred SiCYP450 genes were colinear with the Setaria viridis genes, including two hundred and forty-five gene duplication events. The expression profiles of SiCYP450 genes in different organs and developmental stages showed that SiCYP450 was preferentially expressed in specific tissues, and many tissue-specific genes were identified, such as SiCYP75B6, SiCYP96A7, SiCYP71A55, SiCYP71A61, and SiCYP71A62 in the root, SiCYP78A1 and SiCYP94D9 in leaves, and SiCYP78A6 in the ear. The RT-PCR data showed that SiCYP450 could respond to abiotic stresses, ABA, and herbicides in foxtail millet. Among them, the expression levels of SiCYP709B4, SiCYP71A11, SiCYP71A14, SiCYP78A1, SiCYP94C3, and SiCYP94C4 were significantly increased under the treatment of mesotrione, florasulam, nicosulfuron, fluroxypyr, and sethoxydim, indicating that the same gene might respond to multiple herbicides. The results of this study will help reveal the biological functions of the SiCYP450 family in development regulation and stress response and provide a basis for molecular breeding of foxtail millet.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Linlin Wang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Weidong Li
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xin Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Yujia Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Xi'e Song
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Juan Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
8
|
Shen QQ, Wang TJ, Wang JG, He LL, Zhao TT, Zhao XT, Xie LY, Qian ZF, Wang XH, Liu LF, Chen SY, Zhang SZ, Li FS. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107706. [PMID: 37119548 DOI: 10.1016/j.plaphy.2023.107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.
Collapse
Affiliation(s)
- Qing-Qing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Tian-Ju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, Yunnan, 675000, People's Republic of China
| | - Jun-Gang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Li-Lian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Xue-Ting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lin-Yan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zhen-Feng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Xian-Hong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lu-Feng Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Ying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China.
| | - Fu-Sheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China; Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
9
|
Khan N, Zhang Y, Wang J, Li Y, Chen X, Yang L, Zhang J, Li C, Li L, Ur Rehman S, Reynolds MP, Zhang L, Zhang X, Mao X, Jing R. TaGSNE, a WRKY transcription factor, overcomes the trade-off between grain size and grain number in common wheat and is associated with root development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6678-6696. [PMID: 35906966 DOI: 10.1093/jxb/erac327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/26/2022] [Indexed: 05/28/2023]
Abstract
Wheat is one of the world's major staple food crops, and breeding for improvement of grain yield is a priority under the scenarios of climate change and population growth. WRKY transcription factors are multifaceted regulators in plant growth, development, and responses to environmental stimuli. In this study, we identify the WRKY gene TaGSNE (Grain Size and Number Enhancer) in common wheat, and find that it has relatively high expression in leaves and roots, and is induced by multiple abiotic stresses. Eleven single-nucleotide polymorphisms were identified in TaGSNE, forming two haplotypes in multiple germplasm collections, named as TaGSNE-Hap-1 and TaGSNE-Hap-2. In a range of different environments, TaGSNE-Hap-2 was significantly associated with increases in thousand-grain weight (TGW; 3.0%) and spikelet number per spike (4.1%), as well as with deeper roots (10.1%) and increased root dry weight (8.3%) at the mid-grain-filling stage, and these were confirmed in backcross introgression populations. Furthermore, transgenic rice lines overexpressing TaGSNE had larger panicles, more grains, increased grain size, and increased grain yield relative to the wild-type control. Analysis of geographic and temporal distributions revealed that TaGSNE-Hap-2 is positively selected in China and Pakistan, and TaGSNE-Hap-1 in Europe. Our findings demonstrate that TaGSNE overcomes the trade-off between TGW/grain size and grain number, leading us to conclude that these elite haplotypes and their functional markers could be utilized in marker-assisted selection for breeding high-yielding varieties.
Collapse
Affiliation(s)
- Nadia Khan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Genetics, University of Karachi, Pakistan
| | - Yanfei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuying Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shoaib Ur Rehman
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | | | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
PsnWRKY70 Negatively Regulates NaHCO3 Tolerance in Populus. Int J Mol Sci 2022; 23:ijms232113086. [DOI: 10.3390/ijms232113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important afforestation and ornamental tree species in Northeast China. The distribution area of saline-alkali land is approximately 765 hm2 in Northeast China. The breeding of saline-alkali-resistant transgenic trees could be an effective method of afforestation in saline-alkali land. WRKY transcription factors play a crucial role in abiotic stress. In this study, we analyzed the genetic stability of the two-year-old PsnWRKY70 transgenic poplars. The results showed that PsnWRKY70 of transgenic poplars had been expressed stably and normally at the mRNA level. The gene interference expression (RE) lines had no significant effect on the growth of PsnWRKY70 under NaHCO3 stress, and the alkali damage index of RE lines was significantly lower than that of WT and overexpression (OE) lines at day 15 under NaHCO3 stress. POD activity was significantly higher in RE lines than in WT. The MDA content of the RE line was lower than that of the WT line. Transcriptome analysis showed that RE lines up-regulated genes enriched in cell wall organization or biogenesis pathway-related genes such as EXPA8, EXPA4, EXPA3, EXPA1, EXPB3, EXP10, PME53, PME34, PME36, XTH9, XTH6, XTH23, CESA1, CESA3, CES9; FLA11, FLA16 and FLA7 genes. These genes play an important role in NaHCO3 stress. Our study showed that the interference expression of the PsnWRKY70 gene can enhance the tolerance of NaHCO3 in poplar.
Collapse
|
11
|
Lv M, Luo W, Ge M, Guan Y, Tang Y, Chen W, Lv J. A Group I WRKY Gene, TaWRKY133, Negatively Regulates Drought Resistance in Transgenic Plants. Int J Mol Sci 2022; 23:ijms231912026. [PMID: 36233327 PMCID: PMC9569464 DOI: 10.3390/ijms231912026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
WRKYs are one of the largest transcription factor (TF) families and play an important role in plant resistance to various stresses. TaWRKY133, a group I WRKY protein, responds to a variety of abiotic stresses, including PEG treatment. The TaWRKY133 protein is located in the nucleus of tobacco epidermal cells, and both its N-terminal and C-terminal domains exhibit transcriptional activation activity. Overexpression of TaWRKY133 reduced drought tolerance in Arabidopsis thaliana, as reflected by a lower germination rate, shorter roots, higher stomatal aperture, poorer growth and lower antioxidant enzyme activities under drought treatment. Moreover, expression levels of stress-related genes (DREB2A, RD29A, RD29B, ABF1, ABA2, ABI1, SOD (Cu/Zn), POD1 and CAT1) were downregulated in transgenic Arabidopsis under drought stress. Gene silencing of TaWRKY133 enhanced the drought tolerance of wheat, as reflected in better growth, higher antioxidant enzyme activities, and higher expression levels of stress-related genes including DREB1, DREB3, ABF, ERF3, SOD (Fe), POD, CAT and P5CS. In conclusion, these results suggest that TaWRKY133 might reduce drought tolerance in plants by regulating the expression of stress-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Weimin Chen
- Correspondence: (W.C.); (J.L.); Tel.: +86-180-0924-4163 (W.C.); +86-135-7219-6187 (J.L.)
| | - Jinyin Lv
- Correspondence: (W.C.); (J.L.); Tel.: +86-180-0924-4163 (W.C.); +86-135-7219-6187 (J.L.)
| |
Collapse
|
12
|
Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BIOTECH 2022; 11:biotech11030043. [PMID: 36134917 PMCID: PMC9497085 DOI: 10.3390/biotech11030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to successive stress cycles can result in a variety of memory response patterns in several plant species. We have investigated a group of these patterns at both the transcriptional and physiological memory levels in durum wheat. The data revealed huge discrepancies between investigated durum wheat cultivars, which presumably are all drought tolerant. It was possible to generate a consensus memory response pattern for each cultivar, where Hourani 27 was the most tolerant followed by Balikh 2 and then Omrabi 5. When durum wheat homologs from rice and maize were compared, only 18% gave similar memory response patterns. The data would indicate the presence of potentially divergent memory mechanisms in different plant species and genotypes. Ultimately, a thorough examination is required for each genotype before giving solid memory-based conclusions that can be applied in plant breeding and agricultural management practices.
Collapse
|
13
|
Zhang J, Huang D, Zhao X, Zhang M, Wang Q, Hou X, Di D, Su B, Wang S, Sun P. Drought-responsive WRKY transcription factor genes IgWRKY50 and IgWRKY32 from Iris germanica enhance drought resistance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:983600. [PMID: 36147225 PMCID: PMC9486095 DOI: 10.3389/fpls.2022.983600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Drought greatly affects the growth and development of garden plants and affects their ornamental value. WRKY transcription factors make up one of the largest transcription factor families in plants and they play an important role in the plant response to drought stress. However, the function of the WRKY gene in response to drought stress in Iris germanica, which is commonly used in landscaping, has not been studied. In this study, we isolated two WRKY transcription factor genes from Iris germanica, IgWRKY50 and IgWRKY32, which belong to Group II and Group III of the WRKY family, respectively. IgWRKY50 and IgWRKY32 could be induced by PEG-6000, high temperature and ABA in Iris germanica. IgWRKY50 and IgWRKY32 could quickly respond to drought and they peaked at 3 h after PEG-6000 treatment (19.93- and 23.32-fold). The fusion proteins IgWRKY50-GFP and IgWRKY32-GFP were located in the nucleus of mesophyll protoplasts of Arabidopsis. The overexpression of the IgWRKY50 and IgWRKY32 genes improved the osmotic tolerance of transgenic Arabidopsis, mainly exhibited by the transgenic plants having a higher germination rate and a longer total root length on 1/2 MS medium containing mannitol. Under PEG-6000 stress, the transgenic plants had higher stomatal closure than the wild type (WT). Under natural drought stress, the water loss rate of the isolated leaves of transgenic Arabidopsis was lower than that of WT, the contents of proline (Pro) and soluble protein (SP) and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in the transgenic plants were higher, but the content of malondialdehyde (MDA) was lower. Furthermore, the expression of several stress-related genes (RD29A, DREB2A, PP2CA, and ABA2) was significantly increased in IgWRKY50- and IgWRKY32- overexpressing transgenic Arabidposis plants after drought treatment. These results suggest that IgWRKY50 and IgWRKY32, as two positive regulators, enhance the drought resistance of transgenic Arabidopsis by mediating the ABA signal transduction pathway. IgWRKY50 and IgWRKY32 can be used as candidate genes for molecular breeding of drought resistance in Iris.
Collapse
Affiliation(s)
- Jingwei Zhang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaojie Zhao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Man Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Qian Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xueyan Hou
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Dongliu Di
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Beibei Su
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Shaokun Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Pai Sun
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
14
|
Yang F, Lv G. Characterization of the gene expression profile response to drought stress in Haloxylon using PacBio single-molecule real-time and Illumina sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:981029. [PMID: 36051288 PMCID: PMC9424927 DOI: 10.3389/fpls.2022.981029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum are important drought-tolerant plants in northwest China. The whole-genome sequencing of H. ammodendron and H. persicum grown in their natural environment is incomplete, and their transcriptional regulatory network in response to drought environment remains unclear. To reveal the transcriptional responses of H. ammodendron and H. persicum to an arid environment, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing. In total, 20,246,576 and 908,053 subreads and 435,938 and 210,334 circular consensus sequencing (CCS) reads were identified by SMRT sequencing of H. ammodendron and H. persicum, and 15,238 and 10,135 unigenes, respectively, were successfully obtained. In addition, 9,794 and 7,330 simple sequence repeats (SSRs) and 838 and 71 long non-coding RNAs were identified. In an arid environment, the growth of H. ammodendron was restricted; plant height decreased significantly; basal and branch diameters became thinner and hydrogen peroxide (H2O2) content and peroxidase (POD) activity were increased. Under dry and wet conditions, 11,803 and 15,217 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum, respectively. There were 319 and 415 DEGs in the signal transduction pathways related to drought stress signal perception and transmission, including the Ca2+ signal pathway, the ABA signal pathway, and the MAPK signal cascade. In addition, 217 transcription factors (TFs) and 398 TFs of H. ammodendron and H. persicum were differentially expressed, including FAR1, MYB, and AP2/ERF. Bioinformatic analysis showed that under drought stress, the expression patterns of genes related to active oxygen [reactive oxygen species (ROS)] scavenging, functional proteins, lignin biosynthesis, and glucose metabolism pathways were altered. Thisis the first full-length transcriptome report concerning the responses of H. ammodendron and H. persicum to drought stress. The results provide a foundation for further study of the adaptation to drought stress. The full-length transcriptome can be used in genetic engineering research.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| |
Collapse
|
15
|
Zhou Y, Liu J, Guo J, Wang Y, Ji H, Chu X, Xiao K, Qi X, Hu L, Li H, Hu M, Tang W, Yan J, Yan H, Bai X, Ge L, Lyu M, Chen J, Xu Z, Chen M, Ma Y. GmTDN1 improves wheat yields by inducing dual tolerance to both drought and low-N stress. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1606-1621. [PMID: 35514029 PMCID: PMC9342622 DOI: 10.1111/pbi.13836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/12/2023]
Abstract
Genetically enhancing drought tolerance and nutrient use efficacy enables sustainable and stable wheat production in drought-prone areas exposed to water shortages and low soil fertility, due to global warming and declining natural resources. In this study, wheat plants, exhibiting improved drought tolerance and N-use efficacy, were developed by introducing GmTDN1, a gene encoding a DREB-like transcription factor, into two modern winter wheat varieties, cv Shi4185 and Jimai22. Overexpressing GmTDN1 in wheat resulted in significantly improved drought and low-N tolerance under drought and N-deficient conditions in the greenhouse. Field trials conducted at three different locations over a period of 2-3 consecutive years showed that both Shi4185 and Jimai22 GmTDN1 transgenic lines were agronomically superior to wild-type plants, and produced significantly higher yields under both drought and N-deficient conditions. No yield penalties were observed in these transgenic lines under normal well irrigation conditions. Overexpressing GmTDN1 enhanced photosynthetic and osmotic adjustment capacity, antioxidant metabolism, and root mass of wheat plants, compared to those of wild-type plants, by orchestrating the expression of a set of drought stress-related genes as well as the nitrate transporter, NRT2.5. Furthermore, transgenic wheat with overexpressed NRT2.5 can improve drought tolerance and nitrogen (N) absorption, suggesting that improving N absorption in GmTDN1 transgenic wheat may contribute to drought tolerance. These findings may lead to the development of new methodologies with the capacity to simultaneously improve drought tolerance and N-use efficacy in cereal crops to ensure sustainable agriculture and global food security.
Collapse
Affiliation(s)
- Yongbin Zhou
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jun Liu
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jinkao Guo
- Shijiazhuang Academy of Agricultural and Forestry SciencesResearch Center of Wheat Engineering Technology of HebeiShijiazhuangChina
| | - Yanxia Wang
- Shijiazhuang Academy of Agricultural and Forestry SciencesResearch Center of Wheat Engineering Technology of HebeiShijiazhuangChina
| | - Hutai Ji
- Institute of Wheat ResearchShanxi Academy of Agricultural SciencesLinfenChina
| | - Xiusheng Chu
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
| | - Kai Xiao
- College of AgronomyAgricultural University of Hebei ProvinceBaodingChina
| | - Xueli Qi
- Wheat Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lin Hu
- Wheat Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hui Li
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Mengyun Hu
- Hebei Laboratory of Crop Genetics and BreedingHebei Academy of Agriculture and Forestry SciencesInstitute for Cereal and Oil CropsShijiazhuangChina
| | - Wensi Tang
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jiji Yan
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Huishu Yan
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Xinxuan Bai
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Linhao Ge
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Mingjie Lyu
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Jun Chen
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Zhaoshi Xu
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Ming Chen
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| | - Youzhi Ma
- Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijingChina
| |
Collapse
|
16
|
A WRKY Protein, MfWRKY40, of Resurrection Plant Myrothamnus flabellifolia Plays a Positive Role in Regulating Tolerance to Drought and Salinity Stresses of Arabidopsis. Int J Mol Sci 2022; 23:ijms23158145. [PMID: 35897721 PMCID: PMC9330732 DOI: 10.3390/ijms23158145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
WRKY transcription factors (TFs), one of the largest transcription factor families in plants, play an important role in abiotic stress responses. The resurrection plant, Myrothamnus flabellifolia, has a strong tolerance to dehydration, but only a few WRKY proteins related to abiotic stress response have been identified and functionally characterized in M. flabellifolia. In this study, we identified an early dehydration-induced gene, MfWRKY40, of M. flabellifolia. The deduced MfWRKY40 protein has a conserved WRKY motif but lacks a typical zinc finger motif in the WRKY domain and is localized in the nucleus. To investigate its potential roles in abiotic stresses, we overexpressed MfWRKY40 in Arabidopsis and found that transgenic lines exhibited better tolerance to both drought and salt stresses. Further detailed analysis indicated that MfWRKY40 promoted primary root length elongation and reduced water loss rate and stomata aperture (width/length) under stress, which may provide Arabidopsis the better water uptake and retention abilities. MfWRKY40 also facilitated osmotic adjustment under drought and salt stresses by accumulating more osmolytes, such as proline, soluble sugar, and soluble protein. Additionally, the antioxidation ability of transgenic lines was also significantly enhanced, represented by higher chlorophyll content, less malondialdehyde and reactive oxygen species accumulations, as well as higher antioxidation enzyme activities. All these results indicated that MfWRKY40 might positively regulate tolerance to drought and salinity stresses. Further investigation on the relationship of the missing zinc finger motif of MfWRKY40 and its regulatory role is necessary to obtain a better understanding of the mechanism underlying the excellent drought tolerance of M. flabellifolia.
Collapse
|
17
|
Dong L, Wang M, Zhang X, Liu J, Zhang S. Genome-wide identification, phylogeny and expression analyses of group III WRKY genes in cotton ( Gossypium hirsutum). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Lijun Dong
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Meng Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Xue Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Jianfeng Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Shuling Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| |
Collapse
|
18
|
Genome-Wide Analysis of the WRKY Gene Family in Malus domestica and the Role of MdWRKY70L in Response to Drought and Salt Stresses. Genes (Basel) 2022; 13:genes13061068. [PMID: 35741830 PMCID: PMC9222762 DOI: 10.3390/genes13061068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
The WRKY transcription factors are unique regulatory proteins in plants, which are important in the stress responses of plants. In this study, 113 WRKY genes were identified from the apple genome GDDH13 and a comprehensive analysis was performed, including chromosome mapping, and phylogenetic, motif and collinearity analysis. MdWRKYs are expressed in different tissues, such as seeds, flowers, stems and leaves. We analyzed seven WRKY proteins in different groups and found that all of them were localized in the nucleus. Among the 113 MdWRKYs, MdWRKY70L was induced by both drought and salt stresses. Overexpression of it in transgenic tobacco plants conferred enhanced stress tolerance to drought and salt. The malondialdehyde content and relative electrolyte leakage values were lower, while the chlorophyll content was higher in transgenic plants than in the wild-type under stressed conditions. In conclusion, this study identified the WRKY members in the apple genome GDDH13, and revealed the function of MdWRKY70L in the response to drought and salt stresses.
Collapse
|
19
|
Genome-wide identification and expression analysis response to GA 3 stresses of WRKY gene family in seed hemp (Cannabis sativa L). Gene 2022; 822:146290. [PMID: 35176429 DOI: 10.1016/j.gene.2022.146290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
WRKY transcription factor is one of the largest transcription factor families in higher plants. However, the investigations of the WRKY gene family have not yet been reported in seed hemp. In the present study, we identified 39 CasWRKYs at the genome-wide level and analyzed phylogenetic relationship, chromosome location, cis-acting elements, gene structure, conserved motif, and expression pattern. Based on the gene structure and phylogenetic analyses, CasWRKY proteins were divided into 3 groups and 7 subgroups. The gene duplication investigation revealed that 6 and 5 pairs of CasWRKY genes underwent tandem and segmental duplication events, respectively. These events may contribute to the diversity and expansion of the CasWRKY gene family. The regulatory elements in the promoter regions of CasWRKYs contained diverse cis-regulatory elements, among which P-box cis-regulatory elements showed high frequency, indicating that CasWRKYs can respond to the regulation of gibberellin. The expression profiles derived from RNA-seq and qRT-PCR showed that 13 CasWRKY genes could respond to GA3 stress and affect fiber development, as well as play significant roles in stem growth and development. This study will serve as molecular basis and practical reference for further exploring the genetic evolution and biological function of CasWRKY genes in seed hemp.
Collapse
|
20
|
Lee FC, Yeap WC, Appleton DR, Ho CL, Kulaveerasingam H. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments. BMC Genomics 2022; 23:164. [PMID: 35219299 PMCID: PMC8882277 DOI: 10.1186/s12864-022-08378-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The ability of plants to withstand and thrive in an adverse environment is crucial to ensure their survivability and yield performance. The WRKY transcription factors (TFs) have crucial roles in plant growth, development and stress response, particularly drought stress. In oil palm, drought is recognized as one of the major yield limiting factors. However, the roles of WRKY TFs in the drought response of oil palm is unclear. RESULTS Herein, we studied the transcriptome of drought treated oil palm leaf and identified 40 differentially expressed genes (DEGs) of WRKY TFs, of which 32 DEGs were upregulated and 8 DEGs were downregulated in response to drought stress in oil palm. They were categorized into Groups I to IV based on the numbers of WRKY domain and the structural difference in the zinc finger domain. Multiple stress- and hormone-responsive cis-regulatory elements were detected in the drought responsive oil palm EgWRKY (Dro-EgWRKY) genes. Fourteen of the 15 selected oil palm WRKY (EgWRKY) genes demonstrated a tissue-specific expression profile except for EgWRKY28 (Group I), which was expressed in all tissues tested. The expression levels of 15 candidate EgWRKYs were upregulated upon salinity and heat treatments, while several genes were also inducible by abscisic acid, methyl jasmonate, salicylic acid and hydrogen peroxide treatments. Members of the Group III WRKY TFs including EgWRKY07, 26, 40, 52, 59, 73 and 81 displayed multiple roles in drought- and salinity-response under the modulation of phytohormones. CONCLUSIONS EgWRKY TFs of oil palm are involved in phytohormones and abiotic stress responses including drought, salinity and heat. EgWRKY07, 26, 59 and 81 from Group III maybe important regulators in modulating responses of different abiotic stresses. Further functional analysis is required to understand the underlying mechanism of WRKY TFs in the regulatory network of drought stress.
Collapse
Affiliation(s)
- Fong Chin Lee
- Sime Darby Plantation Technology Centre Sdn. Bhd, 43400, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Wan Chin Yeap
- Sime Darby Plantation Technology Centre Sdn. Bhd, 43400, Serdang, Selangor, Malaysia
| | - David Ross Appleton
- Sime Darby Plantation Technology Centre Sdn. Bhd, 43400, Serdang, Selangor, Malaysia
| | - Chai-Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | |
Collapse
|
21
|
Liu X, Wang X, Liu P, Bao X, Hou X, Yang M, Zhen W. Rehydration Compensation of Winter Wheat Is Mediated by Hormone Metabolism and De-Peroxidative Activities Under Field Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:823846. [PMID: 35283926 PMCID: PMC8908233 DOI: 10.3389/fpls.2022.823846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Water deficit and rehydration frequently occur during wheat cultivation. Previous investigations focused on the water deficit and many drought-responsive genes have been identified in winter wheat. However, the hormone-related metabolic responses and de-peroxidative activities associated with rehydration are largely unknown. In this study, leaves of two winter wheat cultivars, "Hengguan35" (HG, drought-tolerant cultivar) and "Shinong086" (SN, drought-sensitive cultivar), were used to investigate water deficit and the post-rehydration process. Rehydration significantly promoted wheat growth and postponed spike development. Quantifications of antioxidant enzymes, osmotic stress-related substances, and phytohormones revealed that rehydration alleviated the peroxidation and osmotic stress caused by water deficit in both cultivars. The wheat cultivar HG showed a better rehydration-compensation phenotype than SN. Phytohormones, including abscisic acid, gibberellin (GA), jasmonic acid (JA), and salicylic acid (SA), were detected using high-performance liquid chromatography and shown to be responsible for the rehydration process. A transcriptome analysis showed that differentially expressed genes related to rehydration were enriched in hormone metabolism- and de-peroxidative stress-related pathways. Suppression of genes associated with abscisic acid signaling transduction were much stronger in HG than in SN upon rehydration treatment. HG also kept a more balanced expression of genes involved in reactive oxygen species pathway than SN. In conclusion, we clarified the hormonal changes and transcriptional profiles of drought-resistant and -sensitive winter wheat cultivars in response to drought and rehydration, and we provided insights into the molecular processes involved in rehydration compensation.
Collapse
Affiliation(s)
- Xuejing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaodong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyuan Bao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
22
|
He H, Zhang Y, Wen B, Meng X, Wang N, Sun M, Zhang R, Zhao X, Tan Q, Xiao W, Li D, Fu X, Chen X, Li L. PpNUDX8, a Peach NUDIX Hydrolase, Plays a Negative Regulator in Response to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:831883. [PMID: 35251068 PMCID: PMC8888663 DOI: 10.3389/fpls.2021.831883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Drought stress is a serious abiotic stress source that affects the growth and fruit quality of peach trees. However, the molecular mechanism of the NUDIX hydrolase family in peaches in response to drought stress is still unclear. Here, we isolated and identified the PpNUDX8 (Prupe.5G062300.1) gene from the peach NUDIX hydrolase family, and found that PpNUDX8 has a typical NUDIX hydrolase domain. In this study, we performed 15% PEG6000 drought treatment on peach seedlings, and qRT-PCR analysis showed that 15% PEG6000 induced the transcription level of PpNUDX8. Overexpression of PpNUDX8 reduced the tolerance of calli to 4% PEG6000 treatment. Compared with wild-type apple calli, PpNUDX8 transgenic apple calli had a lower fresh weight and higher MDA content. After 15% PEG6000 drought treatment, PpNUDX8 transgenic tobacco had a greater degree of wilting and shorter primary roots than Under control conditions. The chlorophyll, soluble protein, and proline contents in the transgenic tobacco decreased, and the MDA content and relative conductivity increased. At the same time, PpNUDX8 negatively regulated ABA signal transduction and reduced the transcriptional expression of stress response genes. In addition, PpNUDX8 was not sensitive to ABA, overexpression of PpNUDX8 reduced the expression of the ABA synthesis-related gene NCED6 and increases the expression of the ABA decomposition-related gene CYP1 in tobacco, which in turn leads to a decrease in the ABA content in tobacco. In addition, Under control conditions, overexpression of PpNUDX8 destroyed the homeostasis of NAD and reduced nicotinamide adenine dinucleotide (NADH) in tobacco. After 15% PEG6000 drought treatment, the changes in NAD and NADH in PpNUDX8 transgenic tobacco were more severe than those in WT tobacco. In addition, PpNUDX8 also interacted with PpSnRk1γ (Prupe.6G323700.1).
Collapse
Affiliation(s)
- HuaJie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - YuZheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - BinBin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiangGuang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - MingYun Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XueHui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - QiuPing Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
- College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - DongMei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiLing Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiuDe Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| |
Collapse
|
23
|
Zhang T, Xu Y, Ding Y, Yu W, Wang J, Lai H, Zhou Y. Identification and Expression Analysis of WRKY Gene Family in Response to Abiotic Stress in Dendrobium catenatum. Front Genet 2022; 13:800019. [PMID: 35186030 PMCID: PMC8850645 DOI: 10.3389/fgene.2022.800019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrobium catenatum has become a rare and endangered medicinal plant due to habitat loss in China. As one of the most important and largest transcription factors, WRKY plays a critical role in response to abiotic stresses in plants. However, little is known regarding the functions of the WRKY family in D. catenatum. In this study, a total of 62 WRKY genes were identified from the D. catenatum genome. Phylogenetic analysis revealed that DcWRKY proteins could be divided into three groups, a division supported by the conserved motif compositions and intron/exon structures. DcWRKY gene expression and specific responses under drought, heat, cold and salt stresses were analyzed through RNA-seq data and RT-qPCR assay. The results showed that these genes had tissue-specificity and displayed different expression patterns in response to abiotic stresses. The expression levels of DcWRKY22, DcWRKY36 and DcWRKY45 were up-regulated by drought stress. Meanwhile, DcWRKY22 was highly induced by heat in roots, and DcWRKY45 was significantly induced by cold stress in leaves. Furthermore, DcWRKY27 in roots and DcWRKY58 in leaves were extremely induced under salt treatment. Finally, we found that all the five genes may function in ABA- and SA-dependent manners. This study identified candidate WRKY genes with possible roles in abiotic stress and these findings not only contribute to our understanding of WRKY family genes, but also provide valuable information for stress resistance development in D. catenatum.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Ying Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yadan Ding
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Hanggui Lai
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, School of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Yang Zhou, ; Hanggui Lai,
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- *Correspondence: Yang Zhou, ; Hanggui Lai,
| |
Collapse
|
24
|
Sun S, Li X, Gao S, Nie N, Zhang H, Yang Y, He S, Liu Q, Zhai H. A Novel WRKY Transcription Factor from Ipomoea trifida, ItfWRKY70, Confers Drought Tolerance in Sweet Potato. Int J Mol Sci 2022; 23:686. [PMID: 35054868 PMCID: PMC8775875 DOI: 10.3390/ijms23020686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 μM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.
Collapse
Affiliation(s)
- Sifan Sun
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Nan Nie
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Yufeng Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou 450000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (S.S.); (X.L.); (S.G.); (N.N.); (H.Z.); (Y.Y.); (S.H.); (Q.L.)
| |
Collapse
|
25
|
Zhou T, Yang X, Wang G, Cao F. Molecular cloning and expression analysis of a WRKY transcription factor gene, GbWRKY20, from Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2021; 16:1930442. [PMID: 34024256 PMCID: PMC8331020 DOI: 10.1080/15592324.2021.1930442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/17/2023]
Abstract
WRKY transcription factors are important regulators of diverse plant life processes. Our aim was to clone and characterize GbWRKY20, a WRKY gene of group IIc, derived from Ginkgo biloba. The cDNA sequence of GbWRKY20 was 818 bp long, encoding a 271-amino acid proteins and containing two introns and three exons. The proteinic molecular weight was 30.99 kDa, with a relevant theoretical isoelectric point of 8.15. Subcellular localization analysis confirmed that the GbWRKY20 protein localized to the nucleus. In total, 75 cis-regulatory elements of 19 different types were identified in the GbWRKY20 promoter sequence, including some elements involved in light responsiveness, anaerobic induction and circadian control, low-temperature responsiveness, as well as salicylic acid (SA) and auxin responsiveness. Expression pattern analysis of plant samples from different developmental stages and tissue types, revealed differential GbWRKY20 expression. The GbWRKY20 transcript was downregulated 12 h after heat treatment and at 4-12 h after drought treatment, but was upregulated 12 h after NaCl, cold and methyl jasmonate treatments. For abscisic acid and SA treatments, the GbWRKY20 transcript was upregulated at 24 h. In summary, GbWRKY20 encoded a newly cloned WRKY transcription factor of G. biloba that might be involved in plant growth and plant responses to abiotic stresses and hormones treatments.
Collapse
Affiliation(s)
- Tingting Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiaoming Yang
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, Nanjing, China
- CONTACT Fuliang Cao Co-Innovation Center for Sustainable Forestry in Southern China; College of Forestry, Nanjing Forestry University, NanjingChina
| |
Collapse
|
26
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Wani SH, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. PLANT CELL REPORTS 2021; 40:1071-1085. [PMID: 33860345 DOI: 10.1007/s00299-021-02691-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/28/2021] [Indexed: 05/24/2023]
Abstract
WRKY transcription factors are among the largest families of transcriptional regulators. In this review, their pivotal role in modulating various signal transduction pathways during biotic and abiotic stresses is discussed. Transcription factors (TFs) are important constituents of plant signaling pathways that define plant responses against biotic and abiotic stimuli besides playing a role in response to internal signals which coordinate different interacting partners during developmental processes. WRKY TFs, deriving their nomenclature from their signature DNA-binding sequence, represent one of the largest families of transcriptional regulators found exclusively in plants. By modulating different signal transduction pathways, these TFs contribute to various plant processes including nutrient deprivation, embryogenesis, seed and trichome development, senescence as well as other developmental and hormone-regulated processes. A growing body of research suggests transcriptional regulation of WRKY TFs in adapting plant to a variety of stressed environments. WRKY TFs can regulate diverse biological functions from receptors for pathogen triggered immunity, modulator of chromatin for specific interaction and signal transfer through a complicated network of genes. Latest discoveries illustrate the interaction of WRKY proteins with other TFs to form an integral part of signaling webs that regulate several seemingly disparate processes and defense-related genes, thus establishing their significant contributions to plant immune response. The present review starts with a brief description on the structural characteristics of WRKY TFs followed by the sections that present recent evidence on their roles in diverse biological processes in plants. We provide a comprehensive overview on regulatory crosstalks involving WRKY TFs during multiple stress responses in plants and future prospects of WRKY TFs as promising molecular diagnostics for enhancing crop improvement.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Sher‑e‑Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192101, India
| | - Shruti Anand
- Mountain Research Centre for Field Crops, Sher‑e‑Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192101, India
| | - Balwant Singh
- National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
28
|
Ye H, Qiao L, Guo H, Guo L, Ren F, Bai J, Wang Y. Genome-Wide Identification of Wheat WRKY Gene Family Reveals That TaWRKY75-A Is Referred to Drought and Salt Resistances. FRONTIERS IN PLANT SCIENCE 2021; 12:663118. [PMID: 34149760 PMCID: PMC8212938 DOI: 10.3389/fpls.2021.663118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
It is well known that WRKY transcription factors play essential roles in plants' response to diverse stress responses, especially to drought and salt stresses. However, a full comprehensive analysis of this family in wheat is still missing. Here we used in silico analysis and identified 124 WRKY genes, including 294 homeologous copies from a high-quality reference genome of wheat (Triticum aestivum). We also found that the TaWRKY gene family did not undergo gene duplication rather than gene loss during the evolutionary process. The TaWRKY family members displayed different expression profiles under several abiotic stresses, indicating their unique functions in the mediation of particular responses. Furthermore, TaWRKY75-A was highly induced after polyethylene glycol and salt treatments. The ectopic expression of TaWRKY75-A in Arabidopsis enhanced drought and salt tolerance. A comparative transcriptome analysis demonstrated that TaWRKY75-A integrated jasmonic acid biosynthetic pathway and other potential metabolic pathways to increase drought and salt resistances in transgenic Arabidopsis. Our study provides valuable insights into the WRKY family in wheat and will generate a useful genetic resource for improving wheat breeding.
Collapse
Affiliation(s)
- Hong Ye
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Linyi Qiao
- College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Haoyu Guo
- College of Life Science, Capital Normal University, Beijing, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Fei Ren
- School of Agricultural Science and Engineering, Shaoguan University, Shaoguan, China
| | - Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Jianfang Bai,
| | - Yukun Wang
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Jianfang Bai,
| |
Collapse
|
29
|
Kumar S, Ayachit G, Sahoo L. Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:229-238. [PMID: 33129069 DOI: 10.1016/j.plaphy.2020.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Mungbean, is a widely cultivated pulse crop in India, experiences severe drought stress during the cultivation period. The mechanism of drought tolerance in mungbean is not well understood. In this presents study we screened 7 widely cultivated mungbean genotypes towards their drought sensitivity at seedling stage and transcriptome sequencing of drought-tolerant and susceptible genotype to understand the drought tolerance mechanism. Our physiological data such as increase in root length, shoot length, fresh weight, dry weight, relative water content (RWC), proline content, MDA content and molecular data in terms of quantitative expression of drought stress responsive genes under 3-d drought stress in mungbean suggests that, K851 seems to be most drought tolerant and PDM-139 as drought susceptible genotype. The transcriptomic study between K-851 and PDM-139 revealed 22,882 differentially expressed genes (DEGs) which were identified under drought stress, and they were mainly mapped to phytohormone signal transduction, carbon metabolism and flavonoid biosynthesis. Out of these, 10,235 genes were up-regulated and 12,647 genes were down-regulated. Furthermore, we found that, the DEGs related to, phytohormone signal transduction, carbon metabolism and flavonoid biosynthesis and they were more induced in K-851. Our data suggested that, the drought tolerant genotype K-851, scavenges the damage of drought stress by producing more amount of osmolytes, ROS scavengers and sugar biosynthesis.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahai, Guwahati, 781039, India.
| | - Garima Ayachit
- Department of Botany, Bioinformatics and Climate Change, Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahai, Guwahati, 781039, India.
| |
Collapse
|
30
|
Zhang L, Zhang H, Yang S. Cytosolic TaGAPC2 Enhances Tolerance to Drought Stress in Transgenic Arabidopsis Plants. Int J Mol Sci 2020; 21:ijms21207499. [PMID: 33053684 PMCID: PMC7590034 DOI: 10.3390/ijms21207499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022] Open
Abstract
Drought is a major natural disaster that seriously affects agricultural production, especially for winter wheat in boreal China. As functional proteins, the functions and mechanisms of glyceraldehyde-3-phosphate dehydrogenase in cytoplasm (GAPCs) have remained little investigated in wheat subjected to adverse environmental conditions. In this study, we cloned and characterized a GAPC isoform TaGAPC2 in wheat. Over-expression of TaGApC2-6D in Arabidopsis led to enhanced root length, reduced reactive oxygen species (ROS) production, and elevated drought tolerance. In addition, the dual-luciferase assays showed that TaWRKY28/33/40/47 could positively regulate the expression of TaGApC2-6A and TaGApC2-6D. Further results of the yeast two-hybrid system and bimolecular fluorescence complementation assay (BiFC) demonstrate that TaPLDδ, an enzyme producing phosphatidic acid (PA), could interact with TaGAPC2-6D in plants. These results demonstrate that TaGAPC2 regulated by TaWRKY28/33/40/47 plays a crucial role in drought tolerance, which may influence the drought stress conditions via interaction with TaPLDδ. In conclusion, our results establish a new positive regulation mechanism of TaGAPC2 that helps wheat fine-tune its drought response.
Collapse
|