1
|
Chen G, Qi H, Jiang L, Sun S, Zhang J, Yu J, Liu F, Zhang Y, Du S. Integrating single-cell RNA-Seq and machine learning to dissect tryptophan metabolism in ulcerative colitis. J Transl Med 2024; 22:1121. [PMID: 39707393 DOI: 10.1186/s12967-024-05934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent inflammatory bowels disease (IBD) characterized by immune response dysregulation and metabolic disruptions. Tryptophan metabolism has been believed as a significant factor in UC pathogenesis, with specific metabolites influencing immune modulation and gut microbiota interactions. However, the precise regulatory mechanisms and key genes involved remain unclear. METHODS AUCell, Ucell, and other functional enrichment algorithms were utilized to determine the activation patterns of tryptophan metabolism at the UC cell level. Differential analysis identified key genes associated with tryptophan metabolism. Five machine learning algorithms, including Random Forest, Boruta algorithm, LASSO, SVM-RFE, and GBM were integrated to identify and categorize disease-specific characteristic genes. RESULTS We observed significant heterogeneity in tryptophan metabolism activity across cell types in UC, with the highest activity levels in macrophages and fibroblasts. Among the key tryptophan metabolism-related genes, CTSS, S100A11, and TUBB were predominantly expressed in macrophages and significantly upregulated in UC, highlighting their involvement in immune dysregulation and inflammation. Cross-analysis with bulk RNA data confirmed the consistent upregulation of these genes in UC samples, highly indicating their relevance in UC pathology and potential as targets for therapeutic intervention. CONCLUSIONS This study is the first to reveal the heterogeneity of tryptophan metabolism at the single-cell level in UC, with macrophages emerging as key contributors to inflammatory processes. The identification of CTSS, S100A11, and TUBB as key regulators of tryptophan metabolism in UC underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Guorong Chen
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hongying Qi
- Department of Spleen and Stomach Diseases of Traditional Chinese Medicine, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China
| | - Li Jiang
- Department of Endocrinology, Aviation General Hospital, Beijing, 100025, China
| | - Shijie Sun
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China
| | - Junhai Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China
| | - Jiali Yu
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China
| | - Fang Liu
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China.
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China.
| |
Collapse
|
2
|
Huang J, Li Y, Pan X, Wei J, Xu Q, Zheng Y, Chen P, Chen J. Construction of a Wilms tumor risk model based on machine learning and identification of cuproptosis-related clusters. BMC Med Inform Decis Mak 2024; 24:325. [PMID: 39497055 PMCID: PMC11536559 DOI: 10.1186/s12911-024-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Cuproptosis, a recently identified type of programmed cell death triggered by copper, has mechanisms in Wilms tumor (WT) that are not yet fully understood. This research focuses on examining the link between WT and Cuproptosis-related genes (CRGs), with the goal of developing a predictive model for WT. METHODS Four gene expression datasets related to WT were sourced from the GEO database. Subsequently, expression profiles of CRGs were extracted for differential analysis and immune infiltration studies. Utilizing 105 WT samples, clusters related to Cuproptosis were identified. This involved analyzing associated immune cell infiltration and conducting functional enrichment analysis. Disease-characteristic genes were pinpointed using weighted gene co-expression network analysis. Finally, the WT risk prediction model was constructed by four machine learning methods: random forest, support vector machine (SVM), generalized linear and extreme gradient strength model. The best-performing machine learning model was chosen, and a nomogram was created. The effectiveness of this predictive model was validated using methods such as the calibration curve, decision curve analysis, and by appiying it to the TARGET-GTEx dataset. RESULTS Thirteen differentially expressed Cuproptosis-related genes were identified. The infiltration level of CD8 + T cells in WT children was lower than that in Normal tissue (NT) children, and the level of M0 infiltration of macrophages and T follicular helper cells was higher than that in NT children. In addition, two clusters of cuproptosis-related WT were identified. Enrichment analysis results indicated that genes in cluster 2 were primarily involved in cell division, nuclear division regulation, DNA biosynthesis process, ubiquitin-mediated proteolysis. The SVM model was judged to be the optimal model using 5 genes. Its accuracy was confirmed through a calibration curve and decision curve analysis, demonstrating satisfactory performance on the TARGET-GTEx validation dataset. Additional analysis revealed that these five genes exhibited high expression in both the TARGET-GTEx validation dataset and sequencing data. CONCLUSION This research established a link between WT and Cuproptosis. It developed a predictive model for assessing the risk of WT and pinpointed five key genes associated with the disease.
Collapse
Affiliation(s)
- Jingru Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China
| | - Yong Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China
| | - Xiaotan Pan
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China
| | - Jixiu Wei
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China
| | - Qiongqian Xu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, No. 107, Wenhua West Road, Jinan, Shandong Province, 250012, China
| | - Yin Zheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China
| | - Peng Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China.
| | - Jiabo Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, No. 6, Shuangyong Road, Nanning, 530022, China.
| |
Collapse
|
3
|
Zeng Y, Ding H, Qi Y, Yang C, Yu L, Liu L, Li Q, Yin A. Two fetuses of hereditary tubulinopathies with TUBB deficiency. QJM 2024; 117:744-746. [PMID: 38902939 DOI: 10.1093/qjmed/hcae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Y Zeng
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - H Ding
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - Y Qi
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - C Yang
- Medical Imaging Department, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - L Yu
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - L Liu
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - Q Li
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| | - A Yin
- Medical Genetics Center, , Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, China
| |
Collapse
|
4
|
Guo A, Wang B, Ding J, Zhao L, Wang X, Huang C, Guo B. Serum proteomic analysis uncovers novel serum biomarkers for depression. Front Psychiatry 2024; 15:1346151. [PMID: 38895030 PMCID: PMC11184055 DOI: 10.3389/fpsyt.2024.1346151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Objective The identification of depression primarily relies on the clinical symptoms and psychiatric evaluation of the patient, in the absence of objective and quantifiable biomarkers within clinical settings. This study aimed to explore potential serum biomarkers associated with depression. Methods Serum samples from a training group comprising 48 depression patients and 48 healthy controls underwent proteomic analysis. Magnetic bead-based weak cation exchange (MB-WCX) and MALDI-TOF-MS were used in combination. To screen the differential peaks, ClinProTools software was employed. The proteins were identified using LC-MS/MS. ELISA was employed to confirm the expression of entire protein in the serum of the verification cohort, which encompassed 48 individuals who had been diagnosed with Depression and 48 healthy controls who were collected prospectively. Subsequently, logistic regression analysis was conducted to determine the diagnostic efficacy of the aforementioned predictors. Results Five potential biomarker peaks indicating depression were identified in serum samples (peak 1, m/z: 1868.21; peak 2, m/z: 1062.35; peak 3, m/z: 1452.12; peak 4, m/z: 1208.72; peak 5, m/z: 1619.58). All of these peaks had higher expression in the pre-therapy group and were confirmed to be Tubulin beta chain (TUBB), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), Complement component 3 (C3), and Complement C4A precursor (C4A) by ELISA validation. Multivariate logistic regression analysis revealed that serum levels of TUBB, ITIH4, C3, and C4A were significant independent risk factors for the development of depression. Conclusion Depression is a prevalent psychiatric condition. Timely detection is challenging, resulting in poor prognoses for patients. Our study on plasma proteomics for depression demonstrated that TUBB, ITIH4, C3, and C4A differentiate between depression patients and healthy controls. The proteins that were identified could potentially function as biomarkers for the diagnosis of depression. Pinpointing these biomarkers could enable early identification of depression, which would advance precise treatment.
Collapse
Affiliation(s)
- Aihong Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, China
| | - Bingju Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, China
- Department of Neurology, Rugao Hospital of Shenzhen Jingcheng Medical Group, Rugao, China
| | - Jiangbo Ding
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, China
| | - Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, China
| | - Bo Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Ebru H, Dahan MH, Sezer O, Başbuğ A, Kaan H, Güngör ND, Baltacı V, Tan SL, Şafak H. TUBB8 mutations as a cause of oocyte maturation abnormalities: presentation of oocyte and embryo profiles and novel mutations. Reprod Biomed Online 2023; 47:103257. [PMID: 37672871 DOI: 10.1016/j.rbmo.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 09/08/2023]
Abstract
RESEARCH QUESTION What are the embryonic profiles and oocyte maturation dynamics in patients with tubulin beta eight class VIII (TUBB8) mutations leading to oocyte maturation abnormalities (OMAS), and are pregnancies possible in this population? DESIGN A prospective cohort study was undertaken in a private fertility clinic between January 2019 and December 2022. Whole-exome genomic studies (WES) were performed to detect mutation types. In-vitro maturation (IVM) was compared in 18 subjects: nine with TUBB8 mutations, and nine without TUBB8 mutations to act as the control group. The distributions of oocyte maturation and embryonic development profiles were recorded. IVF and IVM outcomes of the 18 cases were evaluated. The primary outcomes were the embryonic profiles and maturation dynamics of oocytes derived from IVF or IVM in women as related to TUBB8 mutations. RESULTS Mutations were detected in 52 of 89 (58.4%) women who underwent WES analysis. Twelve TUBB8 mutations were detected in nine women (10.1%) with OMAS. Seven novel TUBB8 mutations were noted. Two pregnancies were obtained in women with c.535 G>A TUBB8 mutations. When comparing IVM outcomes between women with and without TUBB8 mutations, there were no differences in oocyte, embryo or pregnancy parameters (P>0.05 in all cases). CONCLUSIONS It is clear that further TUBB8 mutations which cause oocyte or embryonic arrest will be detected in future. Although biochemical or ectopic pregnancies may be possible in some of these women, no live births or ongoing pregnancies have been reported to date.
Collapse
Affiliation(s)
| | - Michael H Dahan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada; OriginElle Fertility Centre, OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Ozlem Sezer
- Department of Medical Genetics, Faculty of Medicine, Samsun University, Samsun, Turkey
| | - Alper Başbuğ
- Department of Obstetrics and Gynaecology, Düzce University, Düzce, Turkey
| | - Hatirnaz Kaan
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuzmayıs University, Samsun, Turkey
| | - Nur Dokuzeylül Güngör
- Department of Obstetrics and Gynaecology, BAU Medikalpark Göztepe Hospital, Istanbul, Turkey
| | - Volkan Baltacı
- Medical Genetics, School of Medicine, Yüksek Ihtisas University, Ankara, Turkey; Microgen Genetic Diagnosis Centre, Ankara, Turkey
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada; OriginElle Fertility Centre, OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
6
|
Zocchi R, Bellacchio E, Piccione M, Scardigli R, D’Oria V, Petrini S, Baranano K, Bertini E, Sferra A. Novel loss of function mutation in TUBA1A gene compromises tubulin stability and proteostasis causing spastic paraplegia and ataxia. Front Cell Neurosci 2023; 17:1162363. [PMID: 37435044 PMCID: PMC10332271 DOI: 10.3389/fncel.2023.1162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Microtubules are dynamic cytoskeletal structures involved in several cellular functions, such as intracellular trafficking, cell division and motility. More than other cell types, neurons rely on the proper functioning of microtubules to conduct their activities and achieve complex morphologies. Pathogenic variants in genes encoding for α and β-tubulins, the structural subunits of microtubules, give rise to a wide class of neurological disorders collectively known as "tubulinopathies" and mainly involving a wide and overlapping range of brain malformations resulting from defective neuronal proliferation, migration, differentiation and axon guidance. Although tubulin mutations have been classically linked to neurodevelopmental defects, growing evidence demonstrates that perturbations of tubulin functions and activities may also drive neurodegeneration. In this study, we causally link the previously unreported missense mutation p.I384N in TUBA1A, one of the neuron-specific α-tubulin isotype I, to a neurodegenerative disorder characterized by progressive spastic paraplegia and ataxia. We demonstrate that, in contrast to the p.R402H substitution, which is one of the most recurrent TUBA1A pathogenic variants associated to lissencephaly, the present mutation impairs TUBA1A stability, reducing the abundance of TUBA1A available in the cell and preventing its incorporation into microtubules. We also show that the isoleucine at position 384 is an amino acid residue, which is critical for α-tubulin stability, since the introduction of the p.I384N substitution in three different tubulin paralogs reduces their protein level and assembly into microtubules, increasing their propensity to aggregation. Moreover, we demonstrate that the inhibition of the proteasome degradative systems increases the protein levels of TUBA1A mutant, promoting the formation of tubulin aggregates that, as their size increases, coalesce into inclusions that precipitate within the insoluble cellular fraction. Overall, our data describe a novel pathogenic effect of p.I384N mutation that differs from the previously described substitutions in TUBA1A, and expand both phenotypic and mutational spectrum related to this gene.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michela Piccione
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Raffaella Scardigli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini,” Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Kristin Baranano
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Grzybkowska A, Anczykowska K, Antosiewicz J, Olszewski S, Dzitkowska-Zabielska M, Tomczyk M. Identification of Optimal Reference Genes for qRT-PCR Normalization for Physical Activity Intervention and Omega-3 Fatty Acids Supplementation in Humans. Int J Mol Sci 2023; 24:ijms24076734. [PMID: 37047706 PMCID: PMC10094777 DOI: 10.3390/ijms24076734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The quantitative polymerase chain reaction (qRT-PCR) technique gives promising opportunities to detect and quantify RNA targets and is commonly used in many research fields. This study aimed to identify suitable reference genes for physical exercise and omega-3 fatty acids supplementation intervention. Forty healthy, physically active men were exposed to a 12-week eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation and standardized endurance training protocol. Blood samples were collected before and after the intervention and mRNA levels of six potential reference genes were tested in the leukocytes of 18 eligible participants using the qRT-PCR method: GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), ACTB (Beta actin), TUBB (Tubulin Beta Class I), RPS18 (Ribosomal Protein S18), UBE2D2 (Ubiquitin-conjugating enzyme E2 D2), and HPRT1 (Hypoxanthine Phosphoribosyltransferase 1). The raw quantification cycle (Cq) values were then analyzed using RefFinder, an online tool that incorporates four different algorithms: NormFinder, geNorm, BestKeeper, and the comparative delta-Ct method. Delta-Ct, NormFinder, BestKeeper, and RefFinder comprehensive ranking have found GAPDH to be the most stably expressed gene. geNorm has identified TUBB and HPRT as the most stable genes. All algorithms have found ACTB to be the least stably expressed gene. A combination of the three most stably expressed genes, namely GAPDH, TUBB, and HPRT, is suggested for obtaining the most reliable results.
Collapse
Affiliation(s)
- Agata Grzybkowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Katarzyna Anczykowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Szczepan Olszewski
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Magdalena Dzitkowska-Zabielska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
- Center of Translational Medicine, Medical University of Gdansk, 80-952 Gdansk, Poland
| | - Maja Tomczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
8
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
9
|
Janakiraman V, Sudhan M, Alzahrani KJ, Alshammeri S, Ahmed SSSJ, Patil S. Dynamics of TUBB protein with five majorly occurring natural variants: a risk of cortical dysplasia. J Mol Model 2023; 29:100. [PMID: 36928665 DOI: 10.1007/s00894-023-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Beta-tubulin (TUBB) protein is one of the components of the microtubule cytoskeleton that plays a critical role in the central nervous system. Genetic variants of TUBB cause cortical dysplasia, a developmental brain defect implicated in axonal guidance and the neuron migration. In this study, we assess pathogenic variants (Q15K, Y222F, M299V, V353I, and E401K) of TUBB protein and compared with non-pathogenic variant G235S to determine their impact on protein dynamic to cause cortical dysplasia. Among the analyzed variants, Q15K, Y222F, M299V, and E401K were noticed to have deleterious effect. Then, variant structures were modeled and their affinity with their known cofactor Guanosine-5'-triphosphate (GTP) was assessed which showed diverse binding energies ranged between (-7.436 to -6.950 kcal/mol) for the variants compared to wild-type (-7.428 kcal/mol). Finally, the molecular dynamics simulation of each variant was investigated which showed difference in trajectory between the pathogenic and non-pathogenic variant. Our analysis suggests change in amino acid residue of TUBB structure has notably affects the protein flexibility and their interactions with known cofactor. Overall, our findings provide insight on the relationship between TUBB variants and their structural dynamics that may cause diverse effects leading to cortical dysplasia.
Collapse
Affiliation(s)
- V Janakiraman
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - M Sudhan
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saleh Alshammeri
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| |
Collapse
|
10
|
Li M, Peng L, Wang Z, Liu L, Cao M, Cui J, Wu F, Yang J. Roles of the cytoskeleton in human diseases. Mol Biol Rep 2023; 50:2847-2856. [PMID: 36609753 DOI: 10.1007/s11033-022-08025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/12/2022] [Indexed: 01/08/2023]
Abstract
Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.
Collapse
Affiliation(s)
- Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China.
| |
Collapse
|
11
|
Shah YB, Lin P, Chen S, Zheng A, Alcaraz W, Towne MC, Gabriel C, Bhoj EJ, Lambert MP, Olson TS, Frank DM, Ellis CA, Babushok DV. Inherited bone marrow failure with macrothrombocytopenia due to germline tubulin beta class I (TUBB) variant. Br J Haematol 2023; 200:222-228. [PMID: 36207145 PMCID: PMC10989998 DOI: 10.1111/bjh.18491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Germline mutations in tubulin beta class I (TUBB), which encodes one of the β-tubulin isoforms, were previously associated with neurological and cutaneous abnormalities. Here, we describe the first case of inherited bone marrow (BM) failure, including marked thrombocytopenia, morphological abnormalities, and cortical dysplasia, associated with a de novo p.D249V variant in TUBB. Mutant TUBB had abnormal cellular localisation in transfected cells. Following interferon/ribavirin therapy administered for transfusion-acquired hepatitis C, severe pancytopenia and BM aplasia ensued, which was unresponsive to immunosuppression. Acquired chromosome arm 6p loss of heterozygosity was identified, leading to somatic loss of the mutant TUBB allele.
Collapse
Affiliation(s)
- Yash B. Shah
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ping Lin
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Stone Chen
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Zheng
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Courtney Gabriel
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J. Bhoj
- Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele P. Lambert
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy S. Olson
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dale M. Frank
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin A. Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daria V. Babushok
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Yu H, Tang D, Wu H, Li C, Lu Y, He F, Zhang X, Yang Y, Shi W, Hu W, Zeng Z, Dai W, Ou M, Dai Y. Integrated single-cell analyses decode the developmental landscape of the human fetal spine. iScience 2022; 25:104679. [PMID: 35832888 PMCID: PMC9272381 DOI: 10.1016/j.isci.2022.104679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The spine has essential roles in supporting body weight, and passaging the neural elements between the body and the brain. In this study, we used integrated single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing analyses to reveal the cellular heterogeneity, lineage, and transcriptional regulatory network of the developing human spine. We found that EPYC + HAPLN1+ fibroblasts with stem cell characteristics could differentiate into chondrocytes by highly expressing the chondrogenic markers SOX9 and MATN4. Neurons could originate from neuroendocrine cells, and MEIS2 may be an essential transcription factor that promotes spinal neural progenitor cells to selectively differentiate into neurons during early gestation. Furthermore, the interaction of NRP2_SEMA3C and CD74_APP between macrophages and neurons may be essential for spinal cord development. Our integrated map provides a blueprint for understanding human spine development in the early and midgestational stages at single-cell resolution and offers a tool for investigating related diseases. scRNA-seq and scATAC-seq analyses reveal the developmental landscape of the fetal spine Chondrocytes may originate from EPYC + HAPLN1+ fibroblasts with stem cell characteristics Neurons may originate from neuroendocrine cells with regulation by MEIS2
Collapse
Affiliation(s)
- Haiyan Yu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Pharmacy, Shenzhen Pingshan District People's Hospital, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Hongwei Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Chunhong Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yongping Lu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Fang He
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Xiaogang Zhang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen 518000, Guangdong, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wenlong Hu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX 78721, USA
| | - Minglin Ou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Lingui District, Guilin 541000, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
13
|
Chun Fang G, Kaiwei D, Lingkong Z, Xuwei T. Diaphragmatic paralysis in a neonate with circumferential skin creases Kunze type. Mol Genet Genomic Med 2022; 10:e2003. [PMID: 35747986 PMCID: PMC9482402 DOI: 10.1002/mgg3.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022] Open
Abstract
Background A range of clinical features have been confirmed with heterozygous mutations in Beta Tubulin (TUBB), including skin creases, facial deformities, abnormal cerebral structures, and intellectual disability, and were defined as Circumferential Skin Creases Kunze type (CSC‐KT). Methods Clinical information was obtained retrospectively on a neonate hospitalized in the Neonatal Intensive Care Unit, Wuhan Children’s Hospital. Genomic DNA was extracted from circulating leukocytes of the proband according to standard procedures. Results The neonate presented dyspnea resulting from diaphragmatic paralysis, accompanied by other typical features of CSC‐KT. Additionally, exome sequencing confirmed a new variant (NM_178,014. 4: c. 1114 A > G) in TUBB. We also summarized features described in previous cases, thus representing phenotype extension of CSC‐KT. Conclusion Our report is the youngest confirmed case, which could extend the current phenotype of CSC‐KT as well as the clinical diagnostic approach.
Collapse
Affiliation(s)
- Gao Chun Fang
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ding Kaiwei
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zeng Lingkong
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tao Xuwei
- Department of Neonatology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
14
|
Liu CX, Yin RX, Cao XL, Shi ZH, Huang F, Wei BL, Deng GX, Zheng PF, Guan YZ. EHBP1, TUBB, and WWOX SNPs, Gene-Gene and Gene-Environment Interactions on Coronary Artery Disease and Ischemic Stroke. Front Genet 2022; 13:843661. [PMID: 35559044 PMCID: PMC9086287 DOI: 10.3389/fgene.2022.843661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
The associations among the EH domain-binding protein 1 (EHBP1), tubulin beta class I (TUBB), and WW domain-containing oxidoreductase (WWOX) single nucleotide polymorphisms (SNPs) and coronary artery disease (CAD) and ischemic stroke (IS) are not yet understood. This study aimed to detect the associations of these SNPs, gene-gene and gene-environment interactions and CAD and IS in the Guangxi Han population. A total of 1853 unrelated subjects were recruited into normal control (n = 638), CAD (n = 622), and IS (n = 593) groups. Related genotypes were determined by high-throughput sequencing. The genotypic and minor allelic frequencies of rs2278075 were different between the CAD and control groups, and those of rs2710642, rs3130685, and rs2278075 were also different between the IS and control groups. The rs2278075T allele, rs3130685-rs2222896-rs2278075, rs3130685-rs2222896-diabetes, rs3130685-rs2222896-drinking, and haplotype rs2710642A-rs10496099C-diabetes interactions were associated with increased risk, while G-T-G-C-G-A and G-T-T-T-G-T-drinking were associated with reduced risk of CAD. The rs2278075T and rs2710642G alleles, rs2710642G-rs10496099C haplotype, rs3130685-rs2278075-rs2222896, and rs2710642-rs2278075-hypertension interactions aggravated the association with IS, whereas the rs3130685T allele, rs2710642A-rs10496099C haplotype and the interactions of H1 (s2710642A-rs10496099C)-H2 (rs2710642G-rs10496099C)-drinking and I1 (A-C-G-C-A-A)-I3 (A-C-G-T-A-A)-I4 (A-C-G-T-G-A)-I5 (G-T-G-C-G-A) diminished the association with IS. Carrying WWOX rs2278075T was strongly associated with CAD or IS, while EHBP1 rs2710642 and TUBB rs3130685 might alter the association of IS by modifying the serum lipid profile. This study demonstrates that the EHBP1, TUBB, and WWOX SNPs, gene-gene and gene-environment interactions are associated with the risk of CAD and IS in the Guangxi Han population.
Collapse
Affiliation(s)
- Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Li Cao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zong-Hu Shi
- Department of Prevention and Health Care, The Fourth Affiliated Hospital, Guangxi Medical University, Liuzhou, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Genetic disorders of cellular trafficking. Trends Genet 2022; 38:724-751. [DOI: 10.1016/j.tig.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
16
|
Heras-Romero Y, Morales-Guadarrama A, Santana-Martínez R, Ponce I, Rincón-Heredia R, Poot-Hernández AC, Martínez-Moreno A, Urrieta E, Bernal-Vicente BN, Campero-Romero AN, Moreno-Castilla P, Greig NH, Escobar ML, Concha L, Tovar-Y-Romo LB. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles. Mol Ther 2022; 30:798-815. [PMID: 34563674 PMCID: PMC8821969 DOI: 10.1016/j.ymthe.2021.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.
Collapse
Affiliation(s)
- Yessica Heras-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Departmento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico; National Center for Medical Imaging and Instrumentation Research, Mexico City, Mexico
| | - Ricardo Santana-Martínez
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Ponce
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Augusto César Poot-Hernández
- Bioinformatics Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Araceli Martínez-Moreno
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Esteban Urrieta
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice N Bernal-Vicente
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Neurocognitive Aging, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design & Development Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martha L Escobar
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Concha
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Luis B Tovar-Y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
17
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
18
|
Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K, Kato M, Saitsu H. Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet 2021; 66:1193-1197. [PMID: 34211110 DOI: 10.1038/s10038-021-00956-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022]
Abstract
Heterozygous variants in TUBB encoding one of β-tubulin isotypes are known to cause two overlapping developmental brain disorders, complex cortical dysplasia with other brain malformations (CDCBM) and congenital symmetric circumferential skin creases (CSCSC). To date, six cases of CSCSC and eight cases of CDCBM caused by nine heterozygous variants have been reported. Here we report two cases with novel de novo missense TUBB variants (NM_178014.4:c.863A>G, p.(Glu288Gly) and c.869C>T, p.(Thr290Ile)). Case 1 presented brain malformations consistent with tubulinopathies including abnormalities in cortex, basal ganglia, corpus callosum, brain stem, and cerebellum along with other systemic features such as coloboma, facial dysmorphisms, vesicoureteral reflux, hypoplastic kidney, and cutis laxa-like mild skin loosening. Another case presented abnormalities of the corpus callosum, brain stem, and cerebellum along with facial dysmorphisms. We reviewed previous literature and suggest the diversity of clinical findings of TUBB-related disorders.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Aichi Developmental Disability Center Central Hospital, Kasugai, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
19
|
Liu CX, Yin RX, Shi ZH, Zheng PF, Deng GX, Guan YZ, Wei BL. Associations between TUBB-WWOX SNPs, their haplotypes, gene-gene, and gene-environment interactions and dyslipidemia. Aging (Albany NY) 2021; 13:5906-5927. [PMID: 33612478 PMCID: PMC7950260 DOI: 10.18632/aging.202514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 04/21/2023]
Abstract
In this study, we investigated associations between single nucleotide polymorphisms (SNPs) in the tubulin beta class I (TUBB) and WW domain-containing oxidoreductase (WWOX) genes, gene-gene interactions, and gene-environment interactions and dyslipidemia in the Chinese Maonan ethnic group. Four SNPs (rs3132584, rs3130685, rs2222896, and rs2548861) were genotyped in unrelated subjects with normal lipid levels (864) or dyslipidemia (1129). While 5.0% of Maonan subjects carried the rs3132584TT genotype, none of the Chinese Han in Beijing subjects did. Allele and genotype frequencies differed between the normal and dyslipidemia groups for three SNPs (rs3132584, rs3130685, and rs2222896). rs2222896G allele carriers in the normal group had higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol levels. The rs3132584GG, rs3130685CC+TT, and rs2222896GG genotypes as well as the rs2222896G-rs2548861G and rs2222896G-rs2548861T haplotypes were associated with an elevated risk of dyslipidemia; the rs2222896A-rs2548861T and rs2222896A-rs2548861G haplotypes were associated with a reduced risk of dyslipidemia. Among the thirteen TUBB-WWOX interaction types identified, rs3132584T-rs3130685T-rs2222896G-rs2548861T increased the risk of dyslipidemia 1.371-fold. Fourteen two- to four-locus optimal interactive models for SNP-SNP, haplotype-haplotype, gene-gene, and gene-environment interactions exhibited synergistic or contrasting effects on dyslipidemia. Finally, the interaction between rs3132584 and rs2222896 increased the risk of dyslipidemia 2.548-fold and predicted hypertension.
Collapse
Affiliation(s)
- Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning 530021, Guangxi, People’s Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People’s Republic of China
| | - Zong-Hu Shi
- Department of Prevention and Health Care, The Fourth Affiliated Hospital, Guangxi Medical University, Liuzhou 545005, Guangxi, People’s Republic of China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| |
Collapse
|
20
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|