1
|
Maccaferri M, Pisciotta A, Carnevale G, Salvarani C, Pignatti E. Human dental pulp stem cells modulate pro-inflammatory macrophages both through cell-to-cell contact and paracrine signaling. Front Immunol 2024; 15:1440974. [PMID: 39450172 PMCID: PMC11499095 DOI: 10.3389/fimmu.2024.1440974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Macrophages play a key role in most of the inflammatory diseases such as Rheumatoid Arthritis (RA), but the mechanism underlying their pathogenesis is still under study. Among stem cells, human dental pulp stem cells (hDPSCs) have attracted attention due to their easy accessibility and immunomodulatory properties, making them a promising adjuvant therapy. In this study, we aimed to evaluate the capacity of hDPSCs to modulate the phenotypes of primary human macrophages. Additionally, we sought to observe the differences induced on macrophages when cultured directly with hDPSCs or through a cell culture insert, mimicking the paracrine communication pathway. Methods Monocytes, isolated from buffy coats, were differentiated into pro-inflammatory M1 and anti-inflammatory M2 macrophages. Subsequently, they were cultured with hDPSCs either directly or via a cell-culture insert for 48 hours. Finally, they were analyzed for protein, gene expression, cytokines levels and immunofluorescence. Results In our study, we have demonstrated that, hDPSCs, even without priming, can reduce TNFα levels and enhancing IL-10 release in pro-inflammatory macrophages, both through direct contact and paracrine signaling. Furthermore, we found that their effects are more pronounced when in cell-to-cell contact through the decrease of NF-kB and COX-2 expression and of CD80/PD-L1 colocalization. HDPSCs, when in contact with macrophages, showed enhanced expression of NF-kB, COX-2, ICAM-1, PD-L1, FAS-L, TNFα and IFNγ. Conclusion We showed that hDPSCs exert immunomodulatory effects on pro-inflammatory macrophages, with cell-to-cell contact yielding a more pronounced outcome compared to paracrine signaling. Our work highlights the immunomodulatory properties of hDPSCs on activated pro-inflammatory macrophages and the potential therapeutic role in inflamed tissue.
Collapse
Affiliation(s)
- Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCCS) di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
2
|
Pan Y, Li J, Wu J, Yang C, Wu S, Yang K, Yang X, Chen Q, Fu G, Liu C. Hyperbaric oxygen therapy enhances osteointegration of reimplanted cranial flap by regulating osteogenesis-angiogenesis coupling. J Orthop Res 2024; 42:2197-2209. [PMID: 38751166 DOI: 10.1002/jor.25875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024]
Abstract
Craniectomy is a lifesaving procedure to alleviate dangerously high intracranial pressure by removing a bone flap from the calvarium. However, the osteointegration of reimplanted bone flap with the existing bone tissue is still a clinical challenge. Hyperbaric oxygen (HBO) therapy has shown efficacy in promoting bone repair and could be a promising treatment for accelerating postoperative recovery. However, the specific cell types that are responsive to HBO treatment are not well understood. In this study, we created a murine model of craniectomy, with reimplantation of the cranial flap after 1 week. The effects of HBO treatment on bone formation and blood vessel formation around reimplanted bone were examined by micro-computed tomography, histological staining, and immunofluorescence staining. Single-cell RNA sequencing (scRNAseq) was utilized to identify key cell subtypes and signaling pathways after HBO treatment. We found that HBO treatment increased bone volume around reimplanted cranial flaps. HBO also increased the volume of Osterix-expressing cells and type H vessels. scRNAseq data showed more mature osteoblasts and endothelial cells, with higher expressions of adhesion and migration-related genes after HBO treatment. Cell-cell interaction analysis revealed a higher expression level of genes between mature osteoblasts and endothelial cells from the angiopoietin 2-integrin α5β1 pathway. Taken together, HBO therapy promotes the healing process of craniectomy by regulating the crosstalk between vascular endothelial cells and osteogenic cells. These findings provide evidence in a preclinical model that HBO therapy enhances osteointegration by regulating angiogenesis-osteogenesis coupling, providing a scientific basis for utilizing HBO therapy for accelerating postoperative recovery after craniectomy.
Collapse
Affiliation(s)
- Yonghao Pan
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jianqun Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Siying Wu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Kunhua Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xue Yang
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Qian Chen
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Guibing Fu
- Shenzhen Children's Hospital, Shenzhen, Futian District, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone Regeneration Revolution: Pulsed Electromagnetic Field Modulates Macrophage-Derived Exosomes to Attenuate Osteoclastogenesis. Int J Nanomedicine 2024; 19:8695-8707. [PMID: 39205866 PMCID: PMC11352519 DOI: 10.2147/ijn.s470901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction In the process of bone regeneration, a prominent role is played by macrophages involved in both the initial inflammation and the regeneration/vascularization phases, due to their M2 anti-inflammatory phenotype. Together with osteoclasts, they participate in the degradation of the bone matrix if the inflammatory process does not end. In this complex scenario, recently, much attention has been paid to extracellular communication mediated by nanometer-sized vesicles, with high information content, called exosomes (EVs). Considering these considerations, the purpose of the present work is to demonstrate how the presence of a pulsed electromagnetic field (PEMF) can positively affect communication through EVs. Methods To this aim, macrophages and osteoclasts were treated in vitro with PEMF and analyzed through molecular biology analysis and by electron microscopy. Moreover, EVs produced by macrophages were characterized and used to verify their activity onto osteoclasts. Results The results confirmed that PEMF not only reduces the inflammatory activity of macrophages and the degradative activity of osteoclasts but that the EVS produced by macrophages, obtained from PEMF treatment, positively affect osteoclasts by reducing their activity. Discussion The co-treatment of PEMF with M2 macrophage-derived EVs (M2-EVs) decreased osteoclastogenesis to a greater degree than separate treatments.
Collapse
Affiliation(s)
- Martina Trentini
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Luca Lovatti
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Autonoma de Chile, Santiago de Chile, 7500912, Chile
| | | | | | | | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
4
|
Tatullo M. Editorial: Coordinated regulation of the balance between stem cell self-renewal and differentiation. Front Cell Dev Biol 2024; 12:1391626. [PMID: 38510178 PMCID: PMC10951057 DOI: 10.3389/fcell.2024.1391626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience (DIBRAIN), University of Bari Aldo Moro, Bari, Italy
- School of Dentistry, University of Dundee, Dundee, United Kingdom
- Medical Institute for Regeneration and Repairing and Organ Replacement (MIRROR), Interdepartmental Center, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Imerb N, Thonusin C, Pratchayasakul W, Chanpaisaeng K, Aeimlapa R, Charoenphandhu N, Chattipakorn N, Chattipakorn SC. Hyperbaric oxygen therapy exerts anti-osteoporotic effects in obese and lean D-galactose-induced aged rats. FASEB J 2023; 37:e23262. [PMID: 37855727 DOI: 10.1096/fj.202301197rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.
Collapse
Affiliation(s)
- Napatsorn Imerb
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krittikan Chanpaisaeng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratchaneevan Aeimlapa
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Tölle J, Koch A, Schlicht K, Finger D, Kaehler W, Höppner M, Graetz C, Dörfer C, Schulte DM, Fawzy El-Sayed K. Effect of Hyperbaric Oxygen and Inflammation on Human Gingival Mesenchymal Stem/Progenitor Cells. Cells 2023; 12:2479. [PMID: 37887323 PMCID: PMC10605813 DOI: 10.3390/cells12202479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The present study explores for the first time the effect of hyperbaric oxygen (HBO) on gingival mesenchymal stem cells' (G-MSCs) gene expression profile, intracellular pathway activation, pluripotency, and differentiation potential under an experimental inflammatory setup. G-MSCs were isolated from five healthy individuals (n = 5) and characterized. Single (24 h) or double (72 h) HBO stimulation (100% O2, 3 bar, 90 min) was performed under experimental inflammatory [IL-1β (1 ng/mL)/TNF-α (10 ng/mL)/IFN-γ (100 ng/mL)] and non-inflammatory micro-environment. Next Generation Sequencing and KEGG pathway enrichment analysis, G-MSCs' pluripotency gene expression, Wnt-/β-catenin pathway activation, proliferation, colony formation, and differentiation were investigated. G-MSCs demonstrated all mesenchymal stem/progenitor cells' characteristics. The beneficial effect of a single HBO stimulation was evident, with anti-inflammatory effects and induction of differentiation (TLL1, ID3, BHLHE40), proliferation/cell survival (BMF, ID3, TXNIP, PDK4, ABL2), migration (ABL2) and osteogenic differentiation (p < 0.05). A second HBO stimulation at 72 h had a detrimental effect, significantly increasing the inflammation-induced cellular stress and ROS accumulation through HMOX1, BHLHE40, and ARL4C amplification and pathway enrichment (p < 0.05). Results outline a positive short-term single HBO anti-inflammatory, regenerative, and differentiation stimulatory effect on G-MSCs. A second (72 h) stimulation is detrimental to the same properties. The current results could open new perspectives in the clinical application of short-termed HBO induction in G-MSCs-mediated periodontal reparative/regenerative mechanisms.
Collapse
Affiliation(s)
- Johannes Tölle
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Andreas Koch
- German Naval Medical Institute, 24119 Kiel, Germany; (A.K.); (W.K.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein, 24105 Kiel, Germany; (K.S.); (D.M.S.)
| | - Dirk Finger
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Wataru Kaehler
- German Naval Medical Institute, 24119 Kiel, Germany; (A.K.); (W.K.)
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University, 24105 Kiel, Germany;
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein, 24105 Kiel, Germany; (K.S.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Karim Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University, 24105 Kiel, Germany; (J.T.); (D.F.); (C.G.); (C.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
7
|
Oley MH, Oley MC, Langi FLFG, Flapper W, Islam AA, Hatta M, Laidding SR, Limarga N, Faruk M. Serum BMP-2 and osteocalcin levels, and CT Hounsfield unit post hyperbaric oxygen therapy in patients with cleft lip and palate post alveolar bone graft: A case study. Heliyon 2023; 9:e19955. [PMID: 37809437 PMCID: PMC10559552 DOI: 10.1016/j.heliyon.2023.e19955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Background This study investigated the levels of bone morphogenetic protein 2 (BMP-2), osteocalcin, and 3D CT Hounsfield units following hyperbaric oxygen therapy (HBOT) in patients with cleft lip and palate (CLP) undergoing alveolar bone grafts to provide a pilot evaluation of the role of HBOT in osteogenesis. Methods This prospective, quasi-experimental, pre-post-intervention study evaluated seven patients with CLP receiving HBOT after single-stage reconstructions with alveolar bone grafts. The outcomes included the serum levels of BMP-2 and osteocalcin and the 3D CT Hounsfield units obtained before and after the surgery, and after the five HBOT sessions, to a total of 12 measurements. The data were analyzed with linear mixed-effects models using the intervention stage (pre-surgery, pre-HBOT, first to fifth HBOT sessions) as covariates and adjusting for several baseline factors. Results A significant difference was found in outcome measures across time (ANOVA p < 0.001 for BMP-2 and osteocalcin, p = 0.01 for Hounsfield units), with mean values appearing to steadily increase once HBOT began. Regression analyses indicated that the effect of HBOT was evident in serum osteocalcin after the 1st HBOT session (adjusted b = 1.32; 95% CI 0.39, 2.25) and in serum BMP-2 after the third session (adjusted b = 6.61; 95% CI 1.93, 11.28). After the fifth session, the HBOT effect was fairly pronounced on the two outcomes: the adjusted increase compared to the baseline was 28.06 ng/mL for BMP-2 and 6.27 ng/mL for osteocalcin. Our mixed-effect models also showed a post-HBOT increase in Hounsfield units. Conclusion We found an increase of BMP-2, osteocalcin, and Hounsfield units following the HBOT intervention. These may suggest an effect of HBOT on osteogenesis.
Collapse
Affiliation(s)
- Mendy Hatibie Oley
- Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, R. D. Kandou Hospital, Manado, Indonesia
- Hyperbaric Centre Siloam Hospital, Manado, Indonesia
| | - Maximillian Christian Oley
- Hyperbaric Centre Siloam Hospital, Manado, Indonesia
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Division of Neurosurgery, Department of Surgery, R. D. Kandou Hospital, Manado, Indonesia
| | - Fima Lanra Fredrik G. Langi
- Department Epidemiology and Biostatistics, Public Health Faculty, Sam Ratulangi University, Manado, Indonesia
| | - Walter Flapper
- Cleft and Craniofacial South Australia, University of Adelaide, Australia
| | - Andi Asadul Islam
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Sachraswaty R. Laidding
- Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nidia Limarga
- Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Institute for Research and Community Services, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
8
|
Peng X, Gao B, Wang X, Qin X, Peng M, Zeng X. Hyperbaric oxygen and treadmill exercise partially prevented bone loss and bone microarchitecture deterioration in ovariectomized rats. Diving Hyperb Med 2023; 53:111-119. [PMID: 37365128 PMCID: PMC10584393 DOI: 10.28920/dhm53.2.111-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Previous studies have demonstrated the beneficial effects of treadmill exercise (EX) on osteoporosis, and of hyperbaric oxygen (HBO) on osteoblast and osteoclast formation in vitro. We investigated the effects of HBO and the combination of HBO and EX on osteoporosis in ovariectomized rats. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into 5 groups (n = 8): a sham control group (Control); an ovariectomy group; an ovariectomy with treadmill exercise treatment group; an ovariectomy with HBO treatment group; and an ovariectomy with HBO treatment combined with treadmill exercise group. The HBO exposures were 203 kPa, 85-90% O₂, 90 min and the exercise regimen was 20 m·min⁻¹, 40 min·day¹, 5° slope. Both treatments were administered once daily, five days a week for 12 weeks until the rats were sacrificed. RESULTS All three treatments (HBO, exercise, and both combined) significantly promoted the expression of the osteoblast-related gene and oxidative metabolism-related gene (PGC-1α). They also exerted significant inhibitory effects on the osteoclast-related mRNA expression (RANKL) and bone resorption marker CTX-I. Additionally, exercise and the combination exercise-HBO treatment increased serum superoxide dysmutase (SOD) and sclerostin expression. No significant between-group difference was observed. CONCLUSIONS Hyperbaric oxygen, exercise, and the combination ameliorated bone microarchitecture deterioration and ovariectomy-induced bone loss in rats, and these inhibitory effects may be associated with the increased SOD and up-regulated PGC-1α.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, People's Republic of China
| | - Binli Gao
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, People's Republic of China
| | - Xiangxiu Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaohong Qin
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Peng
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, People's Republic of China
| | - Xianrong Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, People's Republic of China
- Corresponding author: Professor Xianrong Zeng, 32# W. Sec 2, 1st Ring Rd, Chengdu City, Sichuan Province, People's Republic of China,
| |
Collapse
|
9
|
Han X, He Y, Yuan X, Sun N, Liu X. Hyperbaric oxygen therapy for patients with fibromyalgia: a systematic review protocol. BMJ Open 2023; 13:e071092. [PMID: 37316317 DOI: 10.1136/bmjopen-2022-071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Fibromyalgia (FM) is an unexplained chronic condition characterised by generalised pain, sleep disturbances, autonomic disturbances, anxiety, fatigue and cognitive impairment. FM is a prevalent chronic disease worldwide that imposes a significant burden on individuals and society. Emerging evidence suggests that environmental interventions, such as exposure to hyperbaric oxygen therapy (HBOT), can relieve pain and improve the quality of life in patients with FM. This study will systematically and comprehensively assess the effectiveness and safety of HBOT in patients with FM and provide evidence to support its implementation. We hope that the final review will be helpful in supporting the decision-making processes related to treatment programmes. METHODS AND ANALYSIS This protocol is reported in accordance with the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols guidelines. Ten key databases, Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE (Excerpt Medica Database), PsycINFO, CINAHL (Cumulative Index to Nursing and Allied Health Literature), PEDro, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, WANFANG and VIP (Chinese Scientific Journal Database), will be searched from inception through December 2022 to identify relevant randomised controlled trials examining the effectiveness of HBOT in patients with FM published in English or Chinese. Two reviewers will independently complete the study screening, selection, and data extraction and assess the risk of bias in the included studies using the 0-10 PEDro Scale. Narrative or quantitative syntheses will be performed and a systematic review and meta-analysis will be performed using Review Manager V.5.3 statistical software. ETHICS AND DISSEMINATION Ethical approval was not required for this protocol. The results of the final review will be disseminated in a peer--reviewed journal. PROSPERO REGISTRATION NUMBER CRD42022363672.
Collapse
Affiliation(s)
- Xiaochai Han
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangnan Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nianyi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Rehabilitation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Jeyaraman M, Sami A, Nallakumarasamy A, Jeyaraman N, Jain VK. Hyperbaric Oxygen Therapy in Orthopaedics: An Adjunct Therapy with an Emerging Role. Indian J Orthop 2023; 57:748-761. [PMID: 37128570 PMCID: PMC10147865 DOI: 10.1007/s43465-023-00837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Introduction Hyperbaric oxygen therapy (HBOT) has emerged as an adjunct treatment modality in various orthopedic and rheumatological conditions. Undersea and Hyperbaric Medical Society (UHMS) defined the minimum number of HBOT cycles, dose, and frequency for various diseases. UHMS laid the 14 absolute indications for HBOT. This article deals with the mechanism of actions of HBOT and evidence of various musculoskeletal disorders where HBOT was utilized to accelerate the healing process of the diseases. Materials and methods The review literature search was conducted by using PubMed, SCOPUS, and other database of medical journals for identifying, reviewing, and evaluating the published clinical trial data, research study, and review articles for the use of HBOT in musculoskeletal disorders. Results Various clinical researchers documented cellular and biochemical advantages of HBOT which possess allodynic effects, anti-inflammatory, and prooxygenatory effects in patients with musculoskeletal conditions. Studies on the usage of HBOT in avascular necrosis and wound healing provide a platform for exploring the plausible uses of HBOT in other musculoskeletal conditions. Literature evidence states the complications associated with HBOT therapy. Conclusion The existing HBOT protocols have to be optimized for various musculoskeletal disorders. Large scale blinded RCTs have to be performed for demonstrating the level of evidence in the usage of HBOT in various musculoskeletal clinical scenarios.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600056 India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
| | - Abdus Sami
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001 India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Rathimed Specialty Hospital, Chennai, Tamil Nadu 600040 India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001 India
| |
Collapse
|
11
|
Zafari J, Jouni FJ, Nikzad F, Esmailnasab S, Javan ZA, Karkehabadi H. Combination of Dental-Capping Agents with Low Level Laser Therapy Promotes Proliferation of Stem Cells from Apical Papilla. Photobiomodul Photomed Laser Surg 2023; 41:3-9. [PMID: 36577035 DOI: 10.1089/photob.2022.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Direct pulp capping is a vital pulp therapy, which stimulates differentiation of stem cells from apical papilla (SCAPs). SCAPs have multipotential capacity to differentiate into types of cells, contributing to the regeneration of tissues. Objective: Considering the promising effects of dental-capping materials, we aim to investigate the effect of dental dressing materials combined with laser therapy on the percentage of SCAP viability and the consequent dental regeneration capacity. Methods: We collected two immature third molar teeth and isolated SCAPs through collagenase type I enzymatic activity. Isolated SCAPs were then cultured with Dulbecco's modified Eagle's medium and α-minimum essential medium enriched with 15% and 10% fetal bovine serum, respectively. After reaching 70-80% confluency, cells were seeded in a 96-well plate and then treated with mineral trioxide aggregate (MTA), enamel matrix derivative (EMD), biodentine, and low level laser therapy (LLLT) alone and in combination for 24, 48, and 168 h. After that, cell survival rate was assessed using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. Results: We found that combination of MTA, EMD, and LLLT as well as that of biodentine, EMD, and LLLT could lead to significant increase of SCAP viability as compared with other treatment groups. Combination of MTA and biodentine with EMD could also show increased level of SCAP proliferation and viability. However, MTA and biodentine alone reduced SCAP survival rate in all time points. Conclusions: Our conclusion is that LLLT can serve as an enhancer of SCAP proliferation and differentiation rate when added to dental-capping agents such as MTA, EMD, and biodentine. Thus, LLLT combination with effective capping materials will serve as a promising option for dental tissue repair.
Collapse
Affiliation(s)
- Jaber Zafari
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Forough Nikzad
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Sogand Esmailnasab
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Zahra Abbasi Javan
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental School, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
12
|
PEEK and Hyaluronan-Based 3D Printed Structures: Promising Combination to Improve Bone Regeneration. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248749. [PMID: 36557882 PMCID: PMC9787780 DOI: 10.3390/molecules27248749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Hybrid bone substitute made up of a 3D printed polyetheretherketone (PEEK) scaffold coated with methacrylated hyaluronic acid (MeHA)-hydroxyapatite (HAp) hydrogel is the objective of the present work. Development and characterization of the scaffold and of the MeHA-HAp after its infiltration and UV photocrosslinking have been followed by analyses of its biological properties using human mesenchymal stem cells (MSCs). Interconnected porous PEEK matrices were produced by fused deposition modeling (FDM) characterized by a reticular pattern with 0°/90° raster orientation and square pores. In parallel, a MeHA-HAp slurry has been synthesized and infiltrated in the PEEK scaffolds. The mechanical properties of the coated and pure PEEK scaffold have been evaluated, showing that the inclusion of MeHA-HAp into the lattice geometry did not significantly change the strength of the PEEK structure with Young's modulus of 1034.9 ± 126.1 MPa and 1020.0 ± 63.7 MPa for PEEK and PEEK-MeHA-HAp scaffolds, respectively. Human MSCs were seeded on bare and coated scaffolds and cultured for up to 28 days to determine the adhesion, proliferation, migration and osteogenic differentiation. In vitro results showed that the MeHA-HAp coating promotes MSCs adhesion and proliferation and contributes to osteogenic differentiation and extracellular matrix mineralization. This study provides an efficient solution for the development of a scaffold combining the great mechanical performances of PEEK with the bioactive properties of MeHA and HAp, having high potential for translational clinical applications.
Collapse
|
13
|
Razavi P, Jafari A, Vescovi P, Fekrazad R. Efficacy of Adjunctive Photobiomodulation in the Management of Medication-Related Osteonecrosis of the Jaw: A Systematic Review. Photobiomodul Photomed Laser Surg 2022; 40:777-791. [PMID: 36507770 DOI: 10.1089/photob.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Medication-related osteonecrosis of the jaw (MRONJ) is a severe adverse medication response that manifests as progressive bone necrosis in the craniofacial area. There is still no clear treatment protocol for the management of MRONJ. The purpose of this study was to conduct a systematic review to assess the efficacy of photobiomodulation (PBM) as an adjunct to MRONJ therapy. Methods: In line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, a literature search was performed on PubMed/MEDLINE, Scopus, Web of Science, and Cochrane databases. Two examiners examined eligibility and risk of bias separately before extracting data. Results: Two hundred sixty-nine articles were found through electronic search, out of which only 11 met the inclusion criteria and were included in qualitative synthesis (9 retrospectives, 1 prospective, and 1 case series). A total number of 759 patients and a mean age ranging from 54 to 74 years were reviewed. Females were the most frequent gender in all of the selected studies (72% females to 28% males), and the most frequent stage in the studies mentioned above was stage II (66%). Most of the studies had shown a significant improvement when PBM was used as an adjunctive treatment. Conclusions: Based on the results of this study, PBM as an adjuvant therapy can significantly improve the outcomes of each treatment plan. However, surgical intervention for the complete healing of the lesions is suggested.
Collapse
Affiliation(s)
- Pouyan Razavi
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aryan Jafari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paolo Vescovi
- Unit of Oral Medicine, Oral Surgery and Laser therapy, Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photo Medicine and Photodynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
Han MJ, An JA, Kim JM, Heo DN, Kwon IK, Park KM. Calcium peroxide-mediated bioactive hydrogels for enhanced angiogenic paracrine effect and osteoblast proliferation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Gao Y, Dong J, Qi S, Zhou X, Wu X, Wang W, Wen L, Fu W, Tang F. Establishment and characterization of adult human gastric epithelial progenitor‐like cell lines. Cell Prolif 2022:e13355. [PMID: 36331058 DOI: 10.1111/cpr.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuan Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
- Beijing Advanced Innovation Center for Genomics Ministry of Education Key Laboratory of Cell Proliferation and Differentiation Beijing China
| | - Ji Dong
- Guangzhou Laboratory Guangzhou China
| | - Shuyue Qi
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Beijing Advanced Innovation Center for Genomics Ministry of Education Key Laboratory of Cell Proliferation and Differentiation Beijing China
| | - Xin Zhou
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Peking University Third Hospital Cancer Center Peking University Third Hospital Beijing China
| | - Xinglong Wu
- College of Animal Science and Technology Hebei Agricultural University Baoding Hebei China
| | - Wendong Wang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Peking University Third Hospital Cancer Center Peking University Third Hospital Beijing China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Beijing Advanced Innovation Center for Genomics Ministry of Education Key Laboratory of Cell Proliferation and Differentiation Beijing China
| | - Wei Fu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Peking University Third Hospital Cancer Center Peking University Third Hospital Beijing China
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Department of General Surgery Third Hospital, Peking University Beijing China
- Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
- Beijing Advanced Innovation Center for Genomics Ministry of Education Key Laboratory of Cell Proliferation and Differentiation Beijing China
| |
Collapse
|
16
|
The effect of hypergravity, hyperbaric pressure, and hypoxia on osteogenic differentiation of adipose stem cells. Tissue Cell 2022; 78:101886. [PMID: 35985248 DOI: 10.1016/j.tice.2022.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
|
17
|
In Vitro Model for the Evaluation of Innovative Transcatheter Debridement Device (TDD): Pericardium-Based Scaffold and Stem Cells to Reproduce Calcificated Valves. Biomedicines 2022; 10:biomedicines10102352. [DOI: 10.3390/biomedicines10102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic valve stenosis has become the most common valvular disease in elderly patients. Several treatments are available such as surgical aortic valve replacement and transcatheter aortic valve implantation. To date, however, there is a need to discover alternative treatments that can delay the disease progression and, therefore, the implant of a prosthetic valve. In this regard, a decalcification procedure based on the use of ultrasonic waves could represent an innovative solution in transcatheter cardiovascular therapies. In this article, we describe an innovative transcatheter debridement device (TDD) that uses low-intensity ultrasound shock waves for calcium ablation from the native aortic valve and bioprosthetic valve. Mesenchymal stem cells were seeded onto pericardium-based scaffolds and committed into an osteogenic phenotype. After treatment with TDD, cell proliferation was analyzed, as well as lactate dehydrogenase release and cell morphology. The release of calcium and inflammation events were detected. The results confirmed that the TDD was able to induce a safe decalcification without any adverse inflammatory events.
Collapse
|
18
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
19
|
Nardulli P, Hall GG, Quarta A, Fruscio G, Laforgia M, Garrisi VM, Ruggiero R, Scacco S, De Vito D. Antibiotic Abuse and Antimicrobial Resistance in Hospital Environment: A Retrospective Observational Comparative Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091257. [PMID: 36143934 PMCID: PMC9505554 DOI: 10.3390/medicina58091257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Antimicrobial resistance represents a serious problem, and it may be life-threatening in the case of severe hospital-acquired infections (HAI). Antibiotic abuse and multidrug resistance (MDR) have significantly increased this burden in the last decades. The aim of this study was to investigate the distribution and susceptibility rates of five selected bacterial species (E. coli, K. pneumoniae, P. aeruginosa, S. aureus and E. faecium) in two healthcare settings located in the Apulia region (Italy). Materials and Methods: Setting n.1 was a university hospital and setting n.2 was a research institute working on oncological patients. All the enrolled patients were diagnosed for bacterial HAI. The observation period was between August and September 2021. Clinical samples were obtained from several biological sources, in different hospital wards. Bacterial identification and susceptibility were tested by using the software VITEC 2 Single system. Results: In this study, a higher incidence of multi-drug-resistant K. pneumoniae was reported (42,2% in setting n.1 and 50% in setting n.2), with respect to the Italian 2019 statistics report (30.3%). All the isolates of E. faecium and S. aureus were susceptible to linezolid. All the bacterial isolates of P. aeruginosa and most of K. pneumoniae were susceptible to ceftazidime–avibactam. Amikacin and nitrofurantoin represented a good option for treating E. coli infections. Multidrug-resistant (MDR) P. aeruginosa, methicillin-resistant S. aureus (MRSA) and vancomycin-resistantE. faecium (VRE) had a lower incidence in the clinical setting, with respect to E. coli and K. pneumoniae. Conclusions: The data obtained in this study can support clinicians towards a rational and safe use of antibiotics for treating the infections caused by these resistant strains, to enhance the overall efficacy of the current antibiotic protocols used in the main healthcare environments.
Collapse
Affiliation(s)
| | - Gabriel Gustafsson Hall
- Visby Hospital, Section of Clinical Microbiology and Infectious Diseases, Department of Medical Sciences, 62156 Visby, Sweden
| | - Alessandro Quarta
- DLV System s.r.l., Research Section, Viale della Resistenza, 19, 87036 Quattromiglia, Italy
| | - Giovanni Fruscio
- Energent s.p.a., Research Section, Via Cristoforo Colombo, 112, 00154 Roma, Italy
| | | | | | | | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70100 Bari, Italy
| | - Danila De Vito
- School of Medicine, University of Bari “Aldo Moro”, 70100 Bari, Italy
- Correspondence:
| |
Collapse
|
20
|
Luo L, Xing Z, Liao X, Li Y, Luo Y, Ai Y, He Y, Ye Q. Dental pulp stem cells-based therapy for the oviduct injury via immunomodulation and angiogenesis in vivo. Cell Prolif 2022; 55:e13293. [PMID: 35822247 PMCID: PMC9528759 DOI: 10.1111/cpr.13293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES As a result of the current limitation of therapeutic strategies, the repair and regeneration of oviduct injuries required an alternative treatment. We present a novel approach to treat oviduct injuries through a dental pulp stem cells (DPSCs)-based therapy. MATERIALS AND METHODS In vitro and in vivo models have been established. Immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to investigate the features and angiogenic properties of DPSCs, as well as their impact on macrophages, in vitro. For the in vivo experiment with female SD rat model, immunohistochemical staining and ELISA analysis were used to assess the effects of DPSCs on the repair and regeneration of damaged oviducts. RESULTS The present data showed that intraperitoneal injection of DPSCs reduced the expression of IL-6 and TNF-α to inhibit the immunoreaction in injured sites, as well as increased the expression of VEGF to promote the in situ formation of vessel-like structures, thus the repair and recovery process could be initiated. CONCLUSIONS We concluded that DPSCs-based therapy could be a novel potential technique for restoring the structure and function of damaged oviduct by enhancing immuno-regulated effect and promoting angiogenic property.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China.,Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Juskovic A, Nikolic M, Ljujic B, Matic A, Zivkovic V, Vucicevic K, Milosavljevic Z, Vojinovic R, Jovicic N, Zivanovic S, Milivojevic N, Jakovljevic V, Bolevich S, Miletic Kovacevic M. Effects of Combined Allogenic Adipose Stem Cells and Hyperbaric Oxygenation Treatment on Pathogenesis of Osteoarthritis in Knee Joint Induced by Monoiodoacetate. Int J Mol Sci 2022; 23:ijms23147695. [PMID: 35887046 PMCID: PMC9317268 DOI: 10.3390/ijms23147695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023] Open
Abstract
The beneficial effects of HBO in inflammatory processes make it an attractive type of treatment for chronic arthritis. In addition, the effects of combination therapy based on adipose stem cells and HBO on OA progression have not been fully investigated. The current study explored the efficacy of intra-articular injection of allogeneic adipose-derived mesenchymal stem cells (ADMSCs) combined with hyperbaric oxygenation treatment (HBO) in a rat osteoarthritis (OA) model. The rat OA model was induced by intra-articular injection of monoiodoacetate (MIA) and 7 days after application of MIA rats were divided into five groups: healthy control (CTRL), osteoarthritis (OA), ADMSCs (ADS), the HBO+ADS21day and HBO+ADS28day groups. A single dose of 1 × 106 allogeneic ADMSCs suspended in sterile saline was injected into the knee joint alone or in combination with HBO treatment. Rats were sacrificed at 3 or 4 weeks after MIA injection. Treatment outcomes were evaluated by radiographic, morphological and histological analysis and by specific staining of articular cartilage. We also measured the level of inflammatory and pro/antioxidative markers. We confirmed that combined treatment of ADMSCs and HBO significantly improved the regeneration of cartilage in the knee joint. Rtg score of knee joint damage was significantly decreased in the HBO+ADS21day and HBO+ADS28day groups compared to the OA. However, the positive effect in the HBO+ADS28day group was greater than the HBO+ADS21day group. The articular cartilage was relatively normal in the HBO+ADS28day group, but moderate degeneration was observed in the HBO+ADS21day compared to the OA group. These findings are in line with the histopathological results. A significantly lower level of O2−. was observed in the HBO+ADS28day group but a higher NO level compared to the HBO+ADS21day group. Moreover, in the HBO+ADS28day group significantly higher concentrations of IL-10 were observed but there was no significant difference in proinflammatory cytokine in serum samples. These results indicate that a single intra-articular injection of allogeneic ADMSCs combined with HBO efficiently attenuated OA progression after 28 days with greater therapeutic effect compared to alone ADMSCs or after 3 weeks of combined treatment. Combined treatment might be an effective treatment for OA in humans.
Collapse
Affiliation(s)
- Aleksandar Juskovic
- Department of Orthopaedic Surgery, Clinical Centre of Montenegro, 81110 Podgorica, Montenegro;
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (V.Z.); (V.J.)
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Correspondence: ; Tel.: +381-343-06800
| | - Aleksandar Matic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- University Clinical Center, 34000 Kragujevac, Serbia;
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (V.Z.); (V.J.)
- Department of Pharmacology of the Institute of Biodesign and Complex System Modelling, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia
| | - Ksenija Vucicevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Zoran Milosavljevic
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.M.); (N.J.); (M.M.K.)
| | - Radisa Vojinovic
- University Clinical Center, 34000 Kragujevac, Serbia;
- Department of Radiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.M.); (N.J.); (M.M.K.)
| | - Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Nevena Milivojevic
- Laboratory for Bioengineering, Institute of Information Technologies Kragujevac, Department of Natural and Mathematical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.N.); (V.Z.); (V.J.)
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia;
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, 119991 Moscow, Russia;
| | - Marina Miletic Kovacevic
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.M.); (N.J.); (M.M.K.)
| |
Collapse
|
22
|
Fu Q, Duan R, Sun Y, Li Q. Hyperbaric oxygen therapy for healthy aging: From mechanisms to therapeutics. Redox Biol 2022; 53:102352. [PMID: 35649312 PMCID: PMC9156818 DOI: 10.1016/j.redox.2022.102352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT), a technique through which 100% oxygen is provided at a pressure higher than 1 atm absolute (ATA), has become a well-established treatment modality for multiple conditions. The noninvasive nature, favorable safety profile, and common clinical application of HBOT make it a competitive candidate for several new indications, one of them being aging and age-related diseases. In fact, despite the conventional wisdom that excessive oxygen accelerates aging, appropriate HBOT protocols without exceeding the toxicity threshold have shown great promise in therapies against aging. For one thing, an extensive body of basic research has expanded our mechanistic understanding of HBOT. Interestingly, the therapeutic targets of HBOT overlap considerably with those of aging and age-related diseases. For another, pre-clinical and small-scale clinical investigations have provided validated information on the efficacy of HBOT against aging from various aspects. However, a generally applicable protocol for HBOT to be utilized in therapies against aging needs to be defined as a subsequent step. It is high time to look back and summarize the recent advances concerning biological mechanisms and therapeutic implications of HBOT in promoting healthy aging and shed light on prospective directions. Here we provide the first comprehensive overview of HBOT in the field of aging and geriatric research, which allows the scientific community to be aware of the emerging tendency and move beyond conventional wisdom to scientific findings of translational value.
Collapse
|
23
|
Zhou O, You J, Xu X, Liu J, Qiu H, Hao C, Zou W, Wu W, Fu Z, Tian D, Zou L. Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance Alveolar Type II Cell Proliferation and Attenuate Lung Inflammation in a Rat Model of Bronchopulmonary Dysplasia. Stem Cells Int 2022; 2022:8465294. [PMID: 35795773 PMCID: PMC9252687 DOI: 10.1155/2022/8465294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/08/2023] Open
Abstract
Although it is known that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) alleviate hyperoxic lung injury of bronchopulmonary dysplasia (BPD) in animal models, the role of microvesicles (MVs) derived from hUCMSCs in BPD is poorly defined. Furthermore, antenatal inflammation has been linked to high risk of BPD in preterm infants. The purpose of this study was to explore whether MVs derived from hUCMSCs can preserve lung structure and function in an antenatal lipopolysaccharide- (LPS-) induced BPD rat model and to clarify the underlying mechanism. We demonstrate that antenatal LPS induced alveolar simplification, altered lung function, and dysregulated pulmonary vasculature, which restored by hUCMSCs and MVs treatment. Furthermore, MVs were large vesicles with a diameter of 100-900 nanometers and mostly uptaken by alveolar epithelial type II cells (AT2) and macrophages. Compared with the LPS-exposed group, MVs restored the AT2 cell number and SP-C expression in vivo and promoted the proliferation of AT2 cells in vitro. MVs also restored the level of IL-6 and IL-10 in lung homogenate. Additionally, PTEN/AKT and MAPK pathways were associated with the protection of MVs. Taken together, this study suggests MVs derived from hUCMSCs improve lung architecture and function in an antenatal LPS-induced BPD rat model by promoting AT2 cell proliferation and attenuating lung inflammation; thus, MVs provide a promising therapeutic vehicle for BPD treatment.
Collapse
Affiliation(s)
- Ou Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Jingyi You
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Xiaochuan Xu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Jiang Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Huijun Qiu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Chang Hao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Wenjing Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Wenjie Wu
- Department of Pediatrics, Chongqing Youyoubaobei Women and Children's Hospital, Chongqing 401122, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Daiyin Tian
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - Lin Zou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Center of Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Clinical Research Unit, Children's Hospital of Shanghai Jiaotong University, Shanghai 200062, China
| |
Collapse
|
24
|
Association between Vitamin D Receptor Gene Polymorphisms and Periodontal Bacteria: A Clinical Pilot Study. Biomolecules 2022; 12:biom12060833. [PMID: 35740958 PMCID: PMC9221517 DOI: 10.3390/biom12060833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Periodontitis is an inflammatory disease caused by microorganisms involving the supporting tissues of the teeth. Gene variants may influence both the composition of the biofilm in the oral cavity and the host response. The objective of the study was to investigate the potential correlations between the disease susceptibility, the presence and the quantity of periodontopathogenic oral bacterial composition and the VDR gene polymorphisms. Methods: Fifty (50) unrelated periodontal patients and forty-one (41) healthy controls were selected for genomic DNA extraction. DNA concentration was measured and analyzed. The periodontopathogenic bacterial species were identified and quantified using a Real Time PCR performed with species-specific primers and probes. Results: Genotype distribution showed a different distribution between the groups for BsmI rs1544410 genotypes (p = 0.0001) with a prevalence of the G(b) allele in periodontal patients (p = 0.0003). Statistical significance was also found for VDR TaqI rs731236 (p ≤ 0.00001) with a prevalence of the T(T) allele in periodontal patients (p ≤ 0.00001). The average bacterial copy count for the periodontitis group was significantly higher than that of control group. Dividing patients into two groups based on high or low bacterial load, FokI rs2228570 T allele (f) was statistically more represented in patients with high bacterial load. Conclusions: The findings of the study suggest the involvement of the VDR gene BsmI and TaqI polymorphisms in periodontal disease, while FokI and BsmI may be involved in determining an increased presence of periodontopathogens.
Collapse
|
25
|
Brunello G, Zanotti F, Trentini M, Zanolla I, Pishavar E, Favero V, Favero R, Favero L, Bressan E, Bonora M, Sivolella S, Zavan B. Exosomes Derived from Dental Pulp Stem Cells Show Different Angiogenic and Osteogenic Properties in Relation to the Age of the Donor. Pharmaceutics 2022; 14:pharmaceutics14050908. [PMID: 35631496 PMCID: PMC9146046 DOI: 10.3390/pharmaceutics14050908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Craniofacial tissue reconstruction still represents a challenge in regenerative medicine. Mesenchymal stem cell (MSC)-based tissue engineering strategies have been introduced to enhance bone tissue repair. However, the risk of related complications is limiting their usage. To overcome these drawbacks, exosomes (EXOs) derived from MSCs have been recently proposed as a cell-free alternative to MSCs to direct tissue regeneration. It was hypothesized that there is a correlation between the biological properties of exosomes derived from the dental pulp and the age of the donor. The aim of the study was to investigate the effect of EXOs derived from dental pulp stem cells of permanent teeth (old donor group) or exfoliated deciduous teeth (young donor group) on MSCs cultured in vitro. Proliferation potential was evaluated by doubling time, and commitment ability by gene expression and biochemical quantification for tissue-specific factors. Results showed a well-defined proliferative influence for the younger donor aged group. Similarly, a higher commitment ability was detected in the young group. In conclusion, EXOs could be employed to promote bone regeneration, likely playing an important role in neo-angiogenesis in early healing phases.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
- Department of Oral Surgery, University Hospital of Düsseldorf, 40225 Dusseldorf, Germany
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Ilaria Zanolla
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Vittorio Favero
- Unit of Maxillofacial Surgery and Dentistry, University of Verona, 37129 Verona, Italy;
| | - Riccardo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Lorenzo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Eriberto Bressan
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Massimo Bonora
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Sivolella
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
- Correspondence:
| |
Collapse
|
26
|
Fat Grafting: Basic Science, Techniques, and Patient Management. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e3987. [PMID: 35317456 PMCID: PMC8932485 DOI: 10.1097/gox.0000000000003987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
In this review, a summary of the rich history of autologous fat grafting is provided, and a comprehensive summary of the science and theory behind autologous adipocyte transplantation, as well as the techniques commonly used is described. These include recipient site preparation, harvesting, processing, and engraftment. In addition, important considerations for preoperative and postoperative management are discussed to maximize graft retention. Special considerations in grafting to the breast, face, and buttocks are also summarized.
Collapse
|
27
|
Sun L, Ma J, Chen J, Pan Z, Li L. Bioinformatics-Guided Analysis Uncovers AOX1 as an Osteogenic Differentiation-Relevant Gene of Human Mesenchymal Stem Cells. Front Mol Biosci 2022; 9:800288. [PMID: 35295843 PMCID: PMC8920545 DOI: 10.3389/fmolb.2022.800288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background: The available therapeutic options of bone defects, fracture nonunion, and osteoporosis remain limited, which are closely related to the osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs). Thus, there remains an urgent demand to develop a prediction method to infer osteogenic differentiation–related genes in BMSCs. Method: We performed differential expression analysis between hBMSCs and osteogenically induced samples. Association analysis, co-expression analysis, and PPI analysis are then carried out to identify potential osteogenesis-related regulators. GO enrichment analysis and GSEA are performed to identify significantly enriched pathways associated with AOX1. qRT-PCR and Western blotting were employed to investigate the expression of genes on osteogenic differentiation, and plasmid transfection was used to overexpress the gene AOX1 in hBMSCs. Result: We identified 25 upregulated genes and 17 downregulated genes. Association analysis and PPI network analysis among these differentially expressed genes show that AOX1 is a potential regulator of osteogenic differentiation. GO enrichment analysis and GSEA show that AOX1 is significantly associated with osteoblast-related pathways. The experiments revealed that AOX1 level was higher and increased gradually in differentiated BMSCs compared with undifferentiated BMSCs, and AOX1 overexpression significantly increased the expression of osteo-specific genes, thereby clearly indicating that AOX1 plays an important role in osteogenic differentiation. Moreover, our method has ability in discriminating genes with osteogenic differentiation properties and can facilitate the process of discovery of new osteogenic differentiation–related genes. Conclusion: These findings collectively demonstrate that AOX1 is an osteogenic differentiation-relevant gene and provide a novel method established with a good performance for osteogenic differentiation-relevant genes prediction.
Collapse
Affiliation(s)
- Lingtong Sun
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfei Ma
- Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| | - Lijun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| |
Collapse
|
28
|
Clinical Assessment of the Hyperbaric Oxygen Therapy Efficacy in Mild to Moderate Periodontal Affections: A Simple Randomised Trial. Medicina (B Aires) 2022; 58:medicina58020234. [PMID: 35208561 PMCID: PMC8875551 DOI: 10.3390/medicina58020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Objectives: Gum disease represents the condition due to the dental plaque and dental calculus deposition on the surfaces of the teeth, followed by ulterior destruction of the periodontal tissues through the host reaction to the pathogenic microorganisms. The aim of study was to present aspects regarding the efficacy of hyperbaric oxygen therapy (HBOT) as an adjuvant therapy for the treatment of periodontal disease, started from the already certified benefits of HBOT in the general medicine specialties. Materials and Methods: The participant patients in this study (71) required and benefited from specific periodontal disease treatments. All patients included in the trial benefited from the conventional therapy of full-mouth scaling and root planing (SRP) within 24 h. HBOT was performed on the patients of the first group (31), in 20 sessions, of one hour. The patients of the control group (40) did not benefit from HBO therapy. Results: At the end of study, the included patients in HBOT group presented significantly better values of oral health index (OHI-S), sulcus bleeding index (SBI), dental mobility (DM), and periodontal pocket depth (PD) than the patients of the control group. Conclusions: HBOT had beneficial effects on the oral and general health of all patients, because in addition to the positive results in periodontal therapy, some individual symptoms of the patients diminished or disappeared upon completion of this adjuvant therapy.
Collapse
|
29
|
Ferroni L, De Francesco F, Pinton P, Gardin C, Zavan B. Methods to isolate adipose tissue-derived stem cells. Methods Cell Biol 2022; 171:215-228. [DOI: 10.1016/bs.mcb.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Rehabilitation of the Completely Edentulous Mandible by All-on-Four Treatment Concept: A Retrospective Cohort Study with Up to 10 Years Follow-Up. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010010. [PMID: 35056317 PMCID: PMC8779431 DOI: 10.3390/medicina58010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023]
Abstract
(1) Background and Objectives. Currently, there are no definitive long-term data about clinically significant difference in the failure of prosthesis and implant or marginal bone loss related to the rehabilitation of the completely edentulous mandible by all-on-four treatment concept. The main aim of present investigation was to report the long-term outcomes (10-years follow-up) of complete-arch mandibular rehabilitations based on the all-on-four concept. (2) Materials and Methods. Patients in need of extractions of teeth due to the occurrence of caries and/or severe periodontal disease and patients presented with edentulous mandibles were enrolled to the study. A total of 96 participants (mean follow-up period after intervention of 3185.2 days) were enrolled in the study. Participants were evaluated at the first visit, 10 days after intervention and every year after the intervention. Implant and prosthesis survival, bone loss and both local biological and mechanical complications were evaluated during the follow-up period. (3) Results. An implants’ survival rate of 97.9% was observed at the end of the follow-up period. Biological complications were reported in 19.8% of patients, whereas mechanical complications were reported in 27.1% of cases. The average marginal bone level at baseline was −0.03 mm. A significant marginal bone loss was observed after 10-years follow-up (2.5 mm). Binary logistic regression analysis showed significant association between smoke and both marginal bone loss and local biological complications. Lastly, a significant association was observed between bruxism and mechanical complications. (4) Conclusions. The high implant and prosthesis survival rate and the moderate incidence of biological and mechanical complications observed in present investigation can be associated to several factors such as high implant primary stability, prosthetic design, and control of the occlusal forces.
Collapse
|
31
|
Biological Characterization of Human Autologous Pericardium Treated with the Ozaki Procedure for Aortic Valve Reconstruction. J Clin Med 2021; 10:jcm10173954. [PMID: 34501402 PMCID: PMC8432048 DOI: 10.3390/jcm10173954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Background: The Ozaki procedure is an innovative surgical technique aiming at reconstructing aortic valves with human autologous pericardium. Even if this procedure is widely used, a comprehensive biological characterization of the glutaraldehyde (GA)-fixed pericardial tissue is still missing. Methods: Morphological analysis was performed to assess the general organization of pericardium subjected to the Ozaki procedure (post-Ozaki) in comparison to native tissue (pre-Ozaki). The effect of GA treatment on cell viability and nuclear morphology was then investigated in whole biopsies and a cytotoxicity assay was executed to assess the biocompatibility of pericardium. Finally, human umbilical vein endothelial cells were seeded on post-Ozaki samples to evaluate the influence of GA in modulating the endothelialization ability in vitro and the production of pro-inflammatory mediators. Results: The Ozaki procedure alters the arrangement of collagen and elastic fibers in the extracellular matrix and results in a significant reduction in cell viability compared to native tissue. GA treatment, however, is not cytotoxic to murine fibroblasts as compared to a commercially available bovine pericardium membrane. In addition, in in vitro experiments of endothelial cell adhesion, no difference in the inflammatory mediators with respect to the commercial patch was found. Conclusions: The Ozaki procedure, despite alteration of ECM organization and cell devitalization, allows for the establishment of a noncytotoxic environment in which endothelial cell repopulation occurs.
Collapse
|
32
|
Chachques JC, Gardin C, Lila N, Ferroni L, Migonney V, Falentin-Daudre C, Zanotti F, Trentini M, Brunello G, Rocca T, Gasbarro V, Zavan B. Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage. Biomedicines 2021; 9:824. [PMID: 34356888 PMCID: PMC8301323 DOI: 10.3390/biomedicines9070824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration.
Collapse
Affiliation(s)
- Juan Carlos Chachques
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University of Paris, 75015 Paris, France; (J.C.C.); (N.L.)
| | - Chiara Gardin
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Nermine Lila
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University of Paris, 75015 Paris, France; (J.C.C.); (N.L.)
| | - Letizia Ferroni
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Veronique Migonney
- Department of UMR, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (V.M.); (C.F.-D.)
| | - Celine Falentin-Daudre
- Department of UMR, University Sorbonne Paris Nord, 93430 Villetaneuse, France; (V.M.); (C.F.-D.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| | - Martina Trentini
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| | - Giulia Brunello
- Department of Neurosciences, University of Padova, 35133 Padova, Italy;
| | - Tiberio Rocca
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
| | - Vincenzo Gasbarro
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
- Department of Medical Sciences, University of Ferrara, 44123 Ferrara, Italy
| | - Barbara Zavan
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy; (F.Z.); (M.T.)
| |
Collapse
|
33
|
Zavan B, Gardin C, Guarino V, Rocca T, Cruz Maya I, Zanotti F, Ferroni L, Brunello G, Chachques JC, Ambrosio L, Gasbarro V. Electrospun PCL-Based Vascular Grafts: In Vitro Tests. NANOMATERIALS 2021; 11:nano11030751. [PMID: 33809791 PMCID: PMC8002398 DOI: 10.3390/nano11030751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Electrospun fibers have attracted a lot of attention from researchers due to their several characteristics, such as a very thin diameter, three-dimensional topography, large surface area, flexible surface, good mechanical characteristics, suitable for widespread applications. Indeed, electro-spinning offers many benefits, such as great surface-to-volume ratio, adjustable porosity, and the ability of imitating the tissue extra-cellular matrix. METHODS we processed Poly ε-caprolactone (PCL) via electrospinning for the production of bilayered tubular scaffolds for vascular tissue engineering application. Endothelial cells and fibroblasts were seeded into the two side of the scaffolds: endothelial cells onto the inner side composed of PCL/Gelatin fibers able to mimic the inner surface of the vessels, and fibroblasts onto the outer side only exposing PCL fibers. Extracellular matrix production and organization has been performed by means of classical immunofluorescence against collagen type I fibers, Scanning Electron-Microscopy (SEM) has been performed in order to evaluated ultrastructural morphology, gene expression by means gene expression has been performed to evaluate the phenotype of endothelial cells and fibroblasts. RESULTS AND CONCLUSION results confirmed that both cells population are able to conserve their phenotype colonizing the surface supporting the hypothesis that PCL scaffolds based on electrospun fibers should be a good candidate for vascular surgery.
Collapse
Affiliation(s)
- Barbara Zavan
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy;
- Correspondence:
| | - Chiara Gardin
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy; (V.G.); (I.C.M.); (L.A.)
| | - Tiberio Rocca
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
| | - Iriczalli Cruz Maya
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy; (V.G.); (I.C.M.); (L.A.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy;
| | - Letizia Ferroni
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Giulia Brunello
- Department of Neurosciences, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Juan-Carlos Chachques
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University Paris Descartes, 75015 Paris, France;
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy; (V.G.); (I.C.M.); (L.A.)
| | - Vincenzo Gasbarro
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
- Department of Medical Sciences, Ferrara University, 44123 Ferrara, Italy
| |
Collapse
|
34
|
Paderno E, Zanon V, Vezzani G, Giacon TA, Bernasek TL, Camporesi EM, Bosco G. Evidence-Supported HBO Therapy in Femoral Head Necrosis: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062888. [PMID: 33808951 PMCID: PMC7999152 DOI: 10.3390/ijerph18062888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
Although many studies have shown that hyperbaric oxygen (HBO) therapy can significantly improve symptoms and quality of life of patients affected by femoral head necrosis, this therapy is not worldwide approved yet. This meta-analysis was performed to evaluate its clinical effect. Relevant studies published before May 2020 were systematically searched using terms related to HBO and femoral head necrosis. Fixed and random-effects models were used to estimate the odds ratio (OR) with 95% confidence intervals (CI). Subgroup analyses and publication bias tests were carried out to explore potential study heterogeneity and bias. Ten studies involving 353 controls and 368 HBO-treated cases were included, most of which were conducted on Asian population. The clinical effect in the HBO therapy group was 3.84 times higher than in the control group (OR = 3.84, 95% CI (2.10, 7.02), p < 0.00001). Subgroup analyses showed that the clinical effect of HBO therapy was statistically significant in the Asian subpopulation which represented most of the subjects (OR = 3.53, 95% CI (1.87, 6.64), p < 0.00001), but not in the non-Asian subpopulation, probably because of insufficient numerosity (OR = 7.41, 95% CI (0.73, 75.71), p = 0.09). The results of this meta-analysis suggest that patients with femoral head necrosis treated with HBO therapy can achieve a significant clinical improvement.
Collapse
Affiliation(s)
- Emma Paderno
- Environmental and Respiratory Physiology Lab and II Level Master in Diving and Hyperbaric Medicine, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (E.P.); (G.V.); (G.B.)
- DHMU at ICCB, Istituti Ospedalieri Bresciani, GSD—University and Research Hospitals, 25128 Brescia, Italy
| | - Vincenzo Zanon
- Environmental and Respiratory Physiology Lab and II Level Master in Diving and Hyperbaric Medicine, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (E.P.); (G.V.); (G.B.)
- DHMU at ICCB, Istituti Ospedalieri Bresciani, GSD—University and Research Hospitals, 25128 Brescia, Italy
- Correspondence: (V.Z.); (T.A.G.)
| | - Giuliano Vezzani
- Environmental and Respiratory Physiology Lab and II Level Master in Diving and Hyperbaric Medicine, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (E.P.); (G.V.); (G.B.)
| | - Tommaso Antonio Giacon
- Environmental and Respiratory Physiology Lab and II Level Master in Diving and Hyperbaric Medicine, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (E.P.); (G.V.); (G.B.)
- Correspondence: (V.Z.); (T.A.G.)
| | - Thomas L. Bernasek
- Adult Reconstruction, Florida Orthopaedic Institute, Tampa, FL 33625, USA;
| | | | - Gerardo Bosco
- Environmental and Respiratory Physiology Lab and II Level Master in Diving and Hyperbaric Medicine, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (E.P.); (G.V.); (G.B.)
| |
Collapse
|
35
|
Xue Q, Wang Y. Impact of Hyperbaric Oxygen on Nano-hydroxyapatite/Carboxymethyl Chitosan/Zoledronic Acid Biocomposite for Bone Tissue Engineering. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Yegorov YE, Poznyak AV, Nikiforov NG, Starodubova AV, Orekhov AN. Role of Telomeres Shortening in Atherogenesis: An Overview. Cells 2021; 10:395. [PMID: 33671887 PMCID: PMC7918954 DOI: 10.3390/cells10020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
It is known that the shortening of the telomeres leads to cell senescence, accompanied by acquiring of pro-inflammatory phenotype. The expression of telomerase can elongate telomeres and resist the onset of senescence. The initiation of atherosclerosis is believed to be associated with local senescence of the endothelial cells of the arteries in places with either low or multidirectional oscillatory wall shear stress. The process of regeneration of the artery surface that has begun does not lead to success for several reasons. Atherosclerotic plaques are formed, which, when developed, lead to fatal consequences, which are the leading causes of death in the modern world. The pronounced age dependence of the manifestations of atherosclerosis pushes scientists to try to link the development of atherosclerosis with telomere length. The study of the role of telomere shortening in atherosclerosis is mainly limited to measuring the telomeres of blood cells, and only in rare cases (surgery or post-mortem examination) are the telomeres of local cells available for measurement. The review discusses the basic issues of cellular aging and the interpretation of telomere measurement data in atherosclerosis, as well as the prospects for the prevention and possible treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow 121552, Russia
- Institute of Gene Biology, Center of Collective Usage, Moscow 119334, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow 109240, Russia;
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Institute of Human Morphology, Moscow 117418, Russia
| |
Collapse
|
37
|
Agarwal T, Kazemi S, Costantini M, Perfeito F, Correia CR, Gaspar V, Montazeri L, De Maria C, Mano JF, Vosough M, Makvandi P, Maiti TK. Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111896. [PMID: 33641899 DOI: 10.1016/j.msec.2021.111896] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Manufacturing macroscale cell-laden architectures is one of the biggest challenges faced nowadays in the domain of tissue engineering. Such living constructs, in fact, pose strict requirements for nutrients and oxygen supply that can hardly be addressed through simple diffusion in vitro or without a functional vasculature in vivo. In this context, in the last two decades, a substantial amount of work has been carried out to develop smart materials that could actively provide oxygen-release to contrast local hypoxia in large-size constructs. This review provides an overview of the currently available oxygen-releasing materials and their synthesis and mechanism of action, highlighting their capacities under in vitro tissue cultures and in vivo contexts. Additionally, we also showcase an emerging concept, herein termed as "living materials as releasing systems", which relies on the combination of biomaterials with photosynthetic microorganisms, namely algae, in an "unconventional" attempt to supply the damaged or re-growing tissue with the necessary supply of oxygen. We envision that future advances focusing on tissue microenvironment regulated oxygen-supplying materials would unlock an untapped potential for generating a repertoire of anatomic scale, living constructs with improved cell survival, guided differentiation, and tissue-specific biofunctionality.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Sara Kazemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Francisca Perfeito
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Clara R Correia
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Vítor Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Pooyan Makvandi
- Center for MicroBioRobotics (CMBR), Istituto Italiano di Tecnologia, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
38
|
Giacon TA, Giancola F, Paganini M, Tiengo C, Camporesi EM, Bosco G. Hyperbaric Oxygen Therapy and A-PRF Pre-Treated Implants in Severe Periodontitis: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E413. [PMID: 33430249 PMCID: PMC7825644 DOI: 10.3390/ijerph18020413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Implantation is currently the best option for tooth replacement in periodontitis. Some major contraindications for the immediate implant are acute periodontitis and active infection. We present the case of a 51-year-old female patient with the highest grade and stage periodontitis treated with advanced platelet-rich fibrin-enriched zirconia implants and with hyperbaric oxygen therapy (HBOT). In particular, HBOT before and after implantation promoted bone regeneration and implant integration, also providing an antiseptic effect. After six months, the implants were well established and fully healed from periodontal disease within 14 months. Further research could confirm a new indication for HBOT in treating periodontitis and dental implantation.
Collapse
Affiliation(s)
- Tommaso Antonio Giacon
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131 Padova, Italy;
| | - Franco Giancola
- Clinica Europea Implantologia Ceramica, Domus Medica, 47890 Città di San Marino, San Marino;
| | - Matteo Paganini
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131 Padova, Italy;
| | - Cesare Tiengo
- Clinic of Plastic Reconstructive and Aesthetic Surgery, Padova University Hospital, 35128 Padova, Italy;
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, Environmental and Respiratory Physiology, University of Padova, Via Marzolo 3, 35131 Padova, Italy;
| |
Collapse
|
39
|
Huang D, Li K, Zheng X, Liu L. Hyperbaric Oxygen Therapy: An Effective Auxiliary Treatment Method for Large Jaw Cysts. Int J Med Sci 2021; 18:3692-3696. [PMID: 34790041 PMCID: PMC8579307 DOI: 10.7150/ijms.57360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background: To evaluate hyperbaric oxygen therapy (HBOT) on infection rates and repair rates during the treatment of large jaw cysts. Methods: A prospective randomized, non-blinded, controlled clinical trial included 90 patients with jaw cysts, randomly divided into three groups. Patients were treated with enucleations and bone substitute was used in the experimental and control groups. The experimental group received HBOT. The primary predictor variable was HBOT. The infection rate, repair rate, preoperative volume of the jaw cysts, age, and sex were statistically analyzed. The Fisher exact test was used to compare the infection rate and postoperative complications. The repair rate of the bone defects was analyzed using the repeated-measures analysis of variance and the least significant difference tests. The Kendall's coefficient of concordance and Kappa statistics were calculated to evaluate the consistency between the two investigators. Results: The infection rate was 3.4% in the experimental group, 14.3% in the blank group, and 32.1% in the control group (P<0.05). The repair rate in the experimental group was significantly higher than in the control and blank groups at 1, 3 and 6 months after surgery (P<0.05). Conclusion: The results showed that HBOT reduced the postoperative infection rate following the enucleation of large jaw cysts with bone substitute filling, and it also improved the bone repair rate.
Collapse
Affiliation(s)
| | | | | | - Lei Liu
- ✉ Corresponding author: Dr Lei Liu, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China. E-mail: . Telephone: +86 28 85501456; Fax: +86 28 85582167
| |
Collapse
|
40
|
Turova EA, Shchikota AM, Pogonchenkova IV, Golovach AV, Tagirova DI, Gusakova EV. [Hyperbaric oxygenation in outpatient rehabilitation of COVID-19 convalescents]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2021; 98:16-21. [PMID: 34965691 DOI: 10.17116/kurort20219806116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED Searching for drug and non-drug modalities for the rehabilitation of patients with the post-COVID syndrome is an urgent public health challenge during the COVID-19 pandemic. Hyperbaric oxygenation is a promising method as a part of complex rehabilitation after COVID-19 due to its antihypoxic, anti-inflammatory, antioxidant and anticoagulant effects. OBJECTIVE To study the effect of hyperbaric oxygenation as a part of comprehensive outpatient rehabilitation on clinical and functional parameters in COVID-19 convalescents. MATERIAL AND METHODS The effect of hyperbaric oxygenation on clinical and functional parameters of 45 COVID-19 convalescents was studied: 22 males and 23 females aged 40-60 years. Patients were divided into three groups of 15 subjects each, depending on the CT stage of COVID-associated pneumonia (CT-0, CT-1, and CT-2-3). RESULTS Patients in group 3 (CT-2-3) were on average in the older age group, had a higher body weight and a higher percentage of fat mass according to bioimpedance measurements, compared to the other groups. Most clinical-functional and laboratory parameters in this group were within normal or subnormal ranges. In addition, high cholesterol levels (total cholesterol 6.5±1.2 mmol/L) and subnormal levels of C-reactive protein (9.3 mg/L) were noted in group 3 patients. After comprehensive rehabilitation, an increase in the distance walked in the 6-minute walking test with a significant trend in the CT-0 (467.9±37.7→531.5±44.3 m; p<0.01) and CT-1 (533.9±74.3→570.1±57.8 m; p<0.05) groups was observed. A significant decrease in norepinephrine level in the group of COVID-19 convalescents with CT-2-3 (Δ 13%), and a decrease in glutathione peroxidase in all three groups (6465.0±1637.3→5101.0±1353.3, 6587.8±1919.3→5418.1±1289.7, 7699.5±1747.9→6620.1±1702.1 units/L in groups 1, 2 and 3, respectively; p<0.05) were recorded. CONCLUSION The use of hyperbaric oxygenation in comprehensive outpatient rehabilitation of COVID-19 convalescents was associated with benefits, given the improvement of functional parameters, laboratory signs of limiting low-grade inflammation, sympathoadrenal activity, and oxidative stress.
Collapse
Affiliation(s)
- E A Turova
- Moscow Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - A M Shchikota
- Moscow Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - I V Pogonchenkova
- Moscow Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - A V Golovach
- Moscow Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - D I Tagirova
- Moscow Centre for Research & Practice in Medical Rehabilitation, Restorative and Sports Medicine, Moscow, Russia
| | - E V Gusakova
- Central State Medical Academy of the Department of Presidential Affairs of the Russian Federation, Moscow, Russia
| |
Collapse
|
41
|
Gardin C, Ferroni L, Chachques JC, Zavan B. Could Mesenchymal Stem Cell-Derived Exosomes Be a Therapeutic Option for Critically Ill COVID-19 Patients? J Clin Med 2020; 9:E2762. [PMID: 32858940 PMCID: PMC7565764 DOI: 10.3390/jcm9092762] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic viral disease originated in Wuhan, China, in December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The severe form of the disease is often associated with acute respiratory distress syndrome (ARDS), and most critically ill patients require mechanical ventilation and support in intensive care units. A significant portion of COVID-19 patients also develop complications of the cardiovascular system, primarily acute myocardial injury, arrhythmia, or heart failure. To date, no specific antiviral therapy is available for patients with SARS-CoV-2 infection. Exosomes derived from mesenchymal stem cells (MSCs) are being explored for the management of a number of diseases that currently have limited or no therapeutic options, thanks to their anti-inflammatory, immunomodulatory, and pro-angiogenic properties. Here, we briefly introduce the pathogenesis of SARS-CoV-2 and its implications in the heart and lungs. Next, we describe some of the most significant clinical evidence of the successful use of MSC-derived exosomes in animal models of lung and heart injuries, which might strengthen our hypothesis in terms of their utility for also treating critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Juan Carlos Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015 Paris, France;
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
42
|
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020; 10:biom10060958. [PMID: 32630465 PMCID: PMC7355982 DOI: 10.3390/biom10060958] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels (hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by hypoxia, and the cascade of events triggered by the HHP.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel;
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
- Correspondence: ; Tel.: +972-544707381; Fax: +972-8-9779748
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel;
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
43
|
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules 2020; 10:biom10060958. [PMID: 32630465 DOI: 10.3390/biom1006095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023] Open
Abstract
Effective metabolism is highly dependent on a narrow therapeutic range of oxygen. Accordingly, low levels of oxygen, or hypoxia, are one of the most powerful inducers of gene expression, metabolic changes, and regenerative processes, including angiogenesis and stimulation of stem cell proliferation, migration, and differentiation. The sensing of decreased oxygen levels (hypoxia) or increased oxygen levels (hyperoxia), occurs through specialized chemoreceptor cells and metabolic changes at the cellular level, which regulate the response. Interestingly, fluctuations in the free oxygen concentration rather than the absolute level of oxygen can be interpreted at the cellular level as a lack of oxygen. Thus, repeated intermittent hyperoxia can induce many of the mediators and cellular mechanisms that are usually induced during hypoxia. This is called the hyperoxic-hypoxic paradox (HHP). This article reviews oxygen physiology, the main cellular processes triggered by hypoxia, and the cascade of events triggered by the HHP.
Collapse
Affiliation(s)
- Amir Hadanny
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Shai Efrati
- The Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf-Harofeh) Medical Center, Zerifin 70300, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
44
|
Paganini M, Bosco G, Perozzo FAG, Kohlscheen E, Sonda R, Bassetto F, Garetto G, Camporesi EM, Thom SR. The Role of Hyperbaric Oxygen Treatment for COVID-19: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1289:27-35. [PMID: 32696443 DOI: 10.1007/5584_2020_568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic produced high and excessive demands for hospitalizations and equipment with depletion of critical care resources. The results of these extreme therapeutic efforts have been sobering. Further, we are months away from a robust vaccination effort, and current therapies provide limited clinical relief. Therefore, several empirical oxygenation support initiatives have been initiated with intermittent hyperbaric oxygen (HBO) therapy to overcome the unrelenting and progressive hypoxemia during maximum ventilator support in intubated patients, despite high FiO2. Overall, few patients have been successfully treated in different locations across the globe. More recently, less severe patients at the edge of impending hypoxemia were exposed to HBO preventing intubation and obtaining the rapid resolution of symptoms. The few case descriptions indicate large variability in protocols and exposure frequency. This summary illustrates the biological mechanisms of action of increased O2 pressure, hoping to clarify more appropriate protocols and more useful application of HBO in COVID-19 treatment.
Collapse
Affiliation(s)
- Matteo Paganini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Filippo A G Perozzo
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, Padova, Italy
| | - Eva Kohlscheen
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, Padova, Italy
| | - Regina Sonda
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, Padova, Italy
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, Padova University Hospital, Padova, Italy
| | | | - Enrico M Camporesi
- Teamhealth Anesthesia Attending, Emeritus Professor of Surgery, USA, Tampa, FL, USA
| | - Stephen R Thom
- Emergency Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|