1
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
2
|
Sathiyaseelan A, Lu Y, Ryu S, Zhang L, Wang MH. Synthesis of cytocompatible gum Arabic-encapsulated silver nitroprusside nanocomposites for inhibition of bacterial pathogens and food safety applications. ENVIRONMENTAL RESEARCH 2024; 263:120246. [PMID: 39481791 DOI: 10.1016/j.envres.2024.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Silver nitroprusside (AgN) exhibits significant antibacterial activity; however, its inherent toxicity poses a major concern. This study synthesized AgN with enhanced antibacterial properties while minimizing toxicity. Gum Arabic (GA), a natural polysaccharide widely utilized in food and biomedical applications owing to its exceptional cytocompatibility, was selected for encapsulating AgN to mitigate toxicity while preserving or enhancing its biological activity. The resulting composite material, GA-AgN nanocomposites (NCs), was systematically characterized using various analytical techniques. Transmission electron microscopy analysis revealed that GA-AgN NCs exhibited a rectangular morphology, with an average size of 230.13 ± 62.8 nm. The zeta potential of GA-AgN NCs was measured at -29.3 ± 0.70 mV. Furthermore, GA-AgN NCs demonstrated stability over diverse storage durations, incubation periods, and pH conditions by maintaining its size and surface charge. X-ray diffraction results indicated a reduction in the crystallinity of AgN when incorporated into the amorphous GA matrix, while Fourier-transform infrared spectroscopy analysis confirmed that the functional properties of both AgN and GA were preserved in the NCs. The release of Ag and Fe ions from the NCs was observed to be time- and pH-dependent. Importantly, the incorporation of GA did not compromise the antibacterial or antibiofilm efficacy of AgN against bacterial pathogens. Additionally, GA significantly mitigated the cytotoxic effects of AgN on NIH3T3 cells and red blood cells. Furthermore, GA-AgN NCs effectively extended the shelf-life of Salmonella enterica-infected green grapes. Thus, this study illustrates that GA-fabricated AgN NCs exhibit potential as an antibacterial agent in food preservation applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Naveed M, Mahmood S, Aziz T, Azeem A, Rajpoot Z, Rehman SU, Al-Asmari F, Alahmari AS, Saleh O, Sameeh MY, Alhomrani M, Alamri AS, Alshareef SA. Green-synthesis of silver nanoparticles AgNPs from Podocarpus macrophyllus for targeting GBM and LGG brain cancers via NOTCH2 gene interactions. Sci Rep 2024; 14:25489. [PMID: 39461989 PMCID: PMC11513944 DOI: 10.1038/s41598-024-75820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Brain tumors, particularly Glioblastoma Multiforme (GBM) and Low-Grade Gliomas (LGG), present significant clinical challenges due to their aggressive nature and resistance to conventional treatments. Traditional therapies such as surgery, chemotherapy, and radiation are often limited in efficacy, necessitating novel therapeutic strategies. Nanotechnology, particularly the use of silver nanoparticles (Ag NPs), offers a targeted and potentially more effective approach. This study focuses on the green synthesis of Ag NPs using Podocarpus macrophyllus leaf extract as a reducing agent. The synthesized Ag NPs were characterized for their physicochemical properties, demonstrating a controlled particle size of 13 nm as determined by scanning electron microscopy (SEM). Fourier-transform infrared (FTIR) spectroscopy confirmed the presence of functional groups, and energy-dispersive X-ray (EDX) spectroscopy revealed that silver constituted approximately 90% of the nanoparticle composition. The Ag NPs exhibited promising biological activity, including 90% free radical scavenging (antioxidant) activity, 99.15% inhibition of protein denaturation (anti-inflammatory activity), and 90.56% inhibition of alpha-amylase (anti-diabetic activity). Additionally, the nanoparticles displayed significant anti-hemolytic (89.9% inhibition) and antimicrobial activities, with a 20 mm inhibition zone against Staphylococcus species. Computational analyses further indicated that the NOTCH2 gene, which is upregulated in LGG and GBM, may interact with Ag NPs, suggesting their potential in brain cancer therapy. The green synthesis approach offers a sustainable and bioactive method for producing Ag NPs, underscoring their therapeutic promise for treating GBM and LGG.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan.
| | - Sarmad Mahmood
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, University of Ioannina, Arta, 47100, Greece.
| | - Arooj Azeem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Zeerwah Rajpoot
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Shafiq Ur Rehman
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Amirah S Alahmari
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ohud Saleh
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry Al, Leith University College Umm Al Qura University Makkah, Mecca, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
5
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
6
|
Liu X, Li T, Cui X, Tao R, Gao Z. Antifungal mechanism of nanosilver biosynthesized with Trichoderma longibrachiatum and its potential to control muskmelon Fusarium wilt. Sci Rep 2024; 14:20242. [PMID: 39215137 PMCID: PMC11364820 DOI: 10.1038/s41598-024-71282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Fusarium oxysporum (Schl.) f.sp. melonis, which causes muskmelon wilt disease, is a destructive filamentous fungal pathogen, attracting more attention to the search for effective fungicides against this pathogen. In particular, Silver nanoparticles (AgNPs) have strong antimicrobial properties and they are not easy to develop drug resistance, which provides new ideas for the prevention and control of muskmelon Fusarium wilt (MFW). This paper studied the effects of AgNPs on the growth and development of muskmelon, the control efficacy on Fusarium wilt of muskmelon and the antifungal mechanism of AgNPs to F. oxysporum. The results showed that AgNPs could inhibit the growth of F. oxysporum on the PDA and in the PDB medium at 100-200 mg/L and the low concentration of 25 mg/L AgNPs could promote the seed germination and growth of muskmelon seedlings and reduce the incidence of muskmelon Fusarium wilt. Further studies on the antifungal mechanism showed that AgNPs could impair the development, damage cell structure, and interrupt cellular metabolism pathways of this fungus. TEM observation revealed that AgNPs treatment led to damage to the cell wall and membrane and accumulation of vacuoles and vessels, causing the leakage of intracellular contents. AgNPs treatment significantly hampered the growth of mycelia in the PDB medium, even causing a decrease in biomass. Biochemical properties showed that AgNPs treatment stimulated the generation of reactive oxygen species (ROS) in 6 h, subsequently producing malondialdehyde (MDA) and increasing protective enzyme activity. After 6 h, the protective enzyme activity decreased. These results indicated that AgNPs destroy the cell structure and affect the metabolisms, eventually leading to the death of fungus.
Collapse
Affiliation(s)
- Xian Liu
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tong Li
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohui Cui
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Tao
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Jangid H, Singh S, Kashyap P, Singh A, Kumar G. Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Front Pharmacol 2024; 15:1438227. [PMID: 39175537 PMCID: PMC11338803 DOI: 10.3389/fphar.2024.1438227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction: Silver nanoparticles (AgNPs) have gained significant attention in biomedical applications due to their unique physicochemical properties. This review focuses on the roles of AgNPs in antimicrobial activity, anticancer therapy, and wound healing, highlighting their potential to address critical health challenges. Methods: A bibliometric analysis was conducted using publications from the Scopus database, covering research from 2002 to 2024. The study included keyword frequency, citation patterns, and authorship networks. Data was curated with Zotero and analyzed using Bibliometrix R and VOSviewer for network visualizations. Results: The study revealed an increasing trend in research on AgNPs, particularly in antimicrobial applications, leading to 8,668 publications. Anticancer and wound healing applications followed, with significant contributions from India and China. The analysis showed a growing focus on "green synthesis" methods, highlighting a shift towards sustainable production. Key findings indicated the effectiveness of AgNPs in combating multidrug-resistant bacteria, inducing apoptosis in cancer cells, and promoting tissue regeneration in wound healing. Discussion: The widespread research and applications of AgNPs underscore their versatility in medical interventions. The study emphasizes the need for sustainable synthesis methods and highlights the potential risks, such as long-term toxicity and environmental impacts. Future research should focus on optimizing AgNP formulations for clinical use and further understanding their mechanisms of action. Conclusion: AgNPs play a pivotal role in modern medicine, particularly in addressing antimicrobial resistance, cancer treatment, and wound management. Ongoing research and international collaboration are crucial for advancing the safe and effective use of AgNPs in healthcare.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Sudhakar Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Piyush Kashyap
- School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), Adama, Ethiopia
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| |
Collapse
|
8
|
Ahmad N, Malik MA, Wani AH, Bhat MY. Biogenic silver nanoparticles from fungal sources: Synthesis, characterization, and antifungal potential. Microb Pathog 2024; 193:106742. [PMID: 38879139 DOI: 10.1016/j.micpath.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Nano-biotechnology is quickly developing as an important field of modern research, generating the most promising applications in medicine and agriculture. Biosynthesis of silver nanoparticles using biogenic or green approach provide ecofriendly, clean and effective way out for the synthesis of nanoparticles. The main aim of the study was to synthesize silver nanoparticles (AgNPs) from Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum using a green approach and to test the antifungal activity of these synthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (Fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). The investigation confirmed the creation of AgNPs by the fungi Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum, as evidenced by prominent plasmon absorbance bands at 420 and 450 nm.The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Agar well diffusion method was performed to evaluate the antifungal activity of AgNPs against various plant pathogenic fungi. An efficient and strong antifungal activity was shown by these biosynthesized nanoparticles against serious plant pathogenic fungi, viz. Aspergillus terreus, Fusarium oxysporum, Penicillium citrinum, Rhizopus stolonifer and Mucor mucedo. The biosynthesized AgNPs at various concentrations caused significant zone of inhibition in the test fungal pathogens. Silver nanoparticles (AgNPs) biosynthesized from Aspergillus niger at highest concentrations showed maximum zone of inhibition against Penicillium citrinum (19.33 ± 0.57 mm) followed by Rhizopus stolonifer (17.66 ± 0.57), Aspergillus terreus (16.33 ± 1.54 mm), Fusarium oxysporum (14.00 ± 1.00 mm) and Mucor mucedo (13.33 ± 1.15 mm) respectively. Therefore, the findings clearly indicate that silver nanoparticles could play a significant role in managing diverse plant diseases caused by fungi.
Collapse
Affiliation(s)
- Nusrat Ahmad
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| | - Mansoor Ahmad Malik
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| | - Abdul Hamid Wani
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| | - Mohd Yaqub Bhat
- Section of Mycology and Plant Pathology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
9
|
Chen HX, Chen FJ, Zhou QJ, Shang SL, Tang B, Xu ZJ, Duan LJ, Jin JL, Xu GZ, Yan MC, Chen J. Two colistin resistance-producing Aeromonas strains, isolated from coastal waters in Zhejiang, China: characteristics, multi-drug resistance and pathogenicity. Front Microbiol 2024; 15:1401802. [PMID: 39144207 PMCID: PMC11322120 DOI: 10.3389/fmicb.2024.1401802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Aeromonas spp. are ubiquitous inhabitants of ecosystems, and many species are opportunistically pathogenic to humans and animals. Multidrug-resistant (MDR) Aeromonas species have been widely detected in hospitals, urban rivers, livestock, and aquatic animals. Results In this study, we identified two Aeromonas isolates, namely Aeromonas veronii 0728Q8Av and Aeromonas caviae 1029Y16Ac, from coastal waters in Zhejiang, China. Both isolates exhibited typical biochemical characteristics and conferred MDR to 11 kinds of antibiotics, remaining susceptible to ceftazidime. Whole-genome sequencing revealed that both isolates harbored multiple antibiotic resistance genes (ARGs) and several mobile genetic elements (MGEs) on the chromosomes, each containing a resistance genomic island (GI), a typical class 1 integron, a transposon, and various insertion sequences (ISs). Most ARGs were situated within the multiple resistance GI, which contained a class 1 integron and a transposon in both Aeromonas isolates. Furthermore, a chromosomal mcr-3.16 gene was identified in A. veronii 0728Q8Av, while a chromosomal mcr-3.3 was found in A. caviae 1029Y16Ac. Both mcr-3 variants were not located within but were distanced from the multidrug resistance GI on the chromosome, flanking by multiple ISs. In addition, a mcr-3-like was found adjacent to mcr-3.16 to form a tandem mcr-3.16-mcr-3-like-dgkA structure; yet, Escherichia coli carrying the recombinants of mcr-3-like did not exhibit resistance to colistin. And an incomplete mcr-3-like was found adjacent to mcr-3.3 in A. caviae 1029Y16Ac, suggesting the possibility that mcr-3 variants originated from Aeromonas species. In vivo bacterial pathogenicity test indicated that A. veronii 0728Q8Av exhibited moderate pathogenicity towards infected ayu, while A. caviae 1029Y16Ac was non-virulent. Discussion Thus, both Aeromonas species deserve further attention regarding their antimicrobial resistance and pathogenicity.
Collapse
Affiliation(s)
- Hong-Xian Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fang-Jie Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Shi-Lin Shang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Jie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jun Duan
- School of Marine Sciences, Ningbo University, Ningbo, China
- Ningbo Haishu District Animal Husbandry and Veterinary Medicine Technical Management Service Station, Ningbo, China
| | - Jing-Lei Jin
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Gui-Zong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mao-Cang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Fandzloch M, Augustyniak AW, Trzcińska-Wencel J, Golińska P, Roszek K. A new MOF@bioactive glass composite reinforced with silver nanoparticles - a new approach to designing antibacterial biomaterials. Dalton Trans 2024; 53:10928-10937. [PMID: 38888155 DOI: 10.1039/d4dt01190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multifunctional materials that combine antimicrobial properties with the ability to stimulate bone formation are needed to overcome the problem of infected bone defects. As a novel approach, a new composite based on bioactive glass nanoparticles in a simple system of SiO2-CaO (BG) coated with NH4[Cu3(μ3-OH)(μ3-4-carboxypyrazolato)3] (Cu-MOF) with additionally anchored silver nanoparticles (AgNPs) was proposed. Ag@Cu-MOF@BG obtained by the spin coating approach in the form of a disc was characterized using PXRD, ATR-FTIR, XPS, ICP-OES, and TEM. Importantly, the material retained its bioactivity, although ion exchange in the bioactive glass administered as a disc is limited. Hydroxyapatite (HA) formation was identified in TEM images after 7 days of immersion of the composite in a physiological-like buffer (pH 7.4, 37 °C). The Cu and Ag contents of Ag@Cu-MOF@BG were as low as 0.013 and 0.018 wt% respectively, but the slow release of the AgNPs ensured its antibacterial nature. Ag@Cu-MOF@BG exhibited antibacterial activity against all tested bacteria (E. coli, S. aureus, P. aeruginosa, and K. pneumoniae) with the diameter of the inhibition zones of their growth between 8 and 10 mm and the reduction index determined to be ≥3. Moreover, the biocompatibility of the new composite has been demonstrated, as shown by cell culture assays with human dermal fibroblasts (HDFs). The results from the migration test also proved that the HDF cell's phenotypic properties were not changed, and the cell adhesion and migration ability were the same as in control indirect assays.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422, Wrocław, Poland.
| | - Adam W Augustyniak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
11
|
Sana SS, Raorane CJ, Raj V, Alagumalai K, Gangadhar L, Gupta VK, Kim SC, Kaushik AK. Electron Beam-Supported Fabrication of Biocompatible Silver/iota-Carrageenan for Wound Healing Application. ACS APPLIED BIO MATERIALS 2024; 7:3636-3648. [PMID: 38729923 DOI: 10.1021/acsabm.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Silver nanoparticles (AgNPs) are a potent antibacterial agent, especially when used to treat bacteria that are multidrug resistant. However, it is challenging to eliminate the hazardous reducing agents that remain in AgNPs produced by the conventional chemical reduction process. To overcome these challenges, the presented research demonstrates the fabrication of AgNPs using iota-carrageenan (ι-carra) as a carbohydrate polymer using electron beam (EB) irradiation. Well-characterized ι-carra@AgNPs have a face-centered cubic (FCC) structure with spherical morphology and an average size of 26 nm. Herein we explored the approach for fabricating ι-carra@AgNPs that is suitable for scaling up the production of nanoparticles that exhibit excellent water stability. Further, the optimized ι-carra@AgNPs exhibited considerable antibacterial activity of 40% and 30% inhibition when tested with Gram-negative Escherichia coli ATCC 43895 and Gram-positive Staphylococcus aureus (S. aureus) (ATCC 6538), respectively, and low cytotoxicity at 10-50 μg/mL. To establish the potential biomedical application, as proof of the concept, the ι-carra@AgNPs showed significant antibiofilm activity at 20 μg/mL and also showed 95% wound healing abilities at 50 μg/mL compared to the nontreated control groups. Electron beam assisted ι-carra@AgNPs showed significant beneficial effects against specific bacterial strains and may provide a guide for the development of new antibacterial materials for wound dressing for large-scale production for biomedical applications.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | | | - Lekshmi Gangadhar
- Department of Nanotechnology, Nanodot Research Private Limited, Nagercoil, Kanyakumari 629001, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG13NE, United Kingdom
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Technology, Woxsen University, Hyderabad, Telangana 502345, India
| |
Collapse
|
12
|
Jayaseelan C, Siva D, Kamaraj C, Thirugnanasambandam R, Ganesh Kumar V, Subashni B, Ashokkumar R, Saravanan D. Phytosynthesis of zinc oxide nanoparticles for enhanced antioxidant, antibacterial, and photocatalytic properties: A greener approach to environmental sustainability. ENVIRONMENTAL RESEARCH 2024; 251:118770. [PMID: 38518913 DOI: 10.1016/j.envres.2024.118770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV-Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV-vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.
Collapse
Affiliation(s)
- C Jayaseelan
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - D Siva
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - C Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India
| | - R Thirugnanasambandam
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - V Ganesh Kumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - B Subashni
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - R Ashokkumar
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - D Saravanan
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
13
|
Vanlalveni C, Ralte V, Zohmingliana H, Das S, Anal JMH, Lallianrawna S, Rokhum SL. A review of microbes mediated biosynthesis of silver nanoparticles and their enhanced antimicrobial activities. Heliyon 2024; 10:e32333. [PMID: 38947433 PMCID: PMC11214502 DOI: 10.1016/j.heliyon.2024.e32333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
In recent decades, biosynthesis of metal and (or) metal oxide nanoparticles using microbes is accepted as one of the most sustainable, cost-effective, robust, and green processes as it does not encompass the usage of largely hazardous chemicals. Accordingly, numerous simple, inexpensive, and environmentally friendly approaches for the biosynthesis of silver nanoparticles (AgNPs) were reported using microbes avoiding conventional (chemical) methods. This comprehensive review detailed an advance made in recent years in the microbes-mediated biosynthesis of AgNPs and evaluation of their antimicrobial activities covering the literature from 2015-till date. It also aimed at elaborating the possible effect of the different phytochemicals, their concentrations, extraction temperature, extraction solvent, pH, reaction time, reaction temperature, and concentration of precursor on the shape, size, and stability of the synthesized AgNPs. In addition, while trying to understand the antimicrobial activities against targeted pathogenic microbes the probable mechanism of the interaction of produced AgNPs with the cell wall of targeted microbes that led to the cell's reputed and death have also been detailed. Lastly, this review detailed the shape and size-dependent antimicrobial activities of the microbes-mediated AgNPs and their enhanced antimicrobial activities by synergetic interaction with known commercially available antibiotic drugs.
Collapse
Affiliation(s)
- Chhangte Vanlalveni
- Department of Botany, Mizoram University, Tanhril, Aizawl, Mizoram 796001, India
| | - Vanlalhruaii Ralte
- Department of Botany, Pachhunga University College, Aizawl, 796001, Mizoram, India
| | - Hlawncheu Zohmingliana
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Shikhasmita Das
- Department of Chemistry, National Institute of Technology Silchar, Silchar, 788010, India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Samuel Lallianrawna
- Department of Chemistry, Govt. Zirtiri Residential Science College, Aizawl, 796001, Mizoram, India
| | | |
Collapse
|
14
|
Jose A, Asha S, Rani A, T S X, Kumar P. Pseudomonas otitidis-mediated synthesis of silver nanoparticles: characterization, antimicrobial and antibiofilm potential. Lett Appl Microbiol 2024; 77:ovae053. [PMID: 38845375 DOI: 10.1093/lambio/ovae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.
Collapse
Affiliation(s)
- Ashitha Jose
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Sneha Asha
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Anaswara Rani
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Xavier T S
- Center for Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
15
|
Echegaray-Ugarte TS, Cespedes-Loayza AL, Cruz-Loayza JL, Huayapa-Yucra LA, Cruz I, de Carvalho JC, Goyzueta-Mamani LD. Green Synthesis of Silver Nanoparticles Mediated by Punica granatum Peel Waste: An Effective Additive for Natural Rubber Latex Nanofibers Enhancement. Polymers (Basel) 2024; 16:1531. [PMID: 38891477 PMCID: PMC11174564 DOI: 10.3390/polym16111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pomegranate waste poses an environmental challenge in Arequipa. Simultaneously, interest in sustainable materials like natural rubber latex (NRL) is growing, with Peruvian communities offering a promising source. This study explores the green synthesis of silver nanoparticles (AgNPs) using pomegranate peel extract and their incorporation into NRL nanofibers for enhanced functionalities. An eco-friendly process utilized silver nitrate and pomegranate peel extract as a reducing and capping agent to synthesize AgNPs. The resulting AgNPs and NRL/AgNPs nanofibers were characterized using imaging and spectroscopic techniques such as UV-vis, TGA, FTIR, XRD, Raman, SEM, and DLS. Green-synthesized AgNPs were spherical and crystalline, with an average diameter of 59 nm. They showed activity against K. pneumoniae, E. coli, B. cereus, and S. aureus (IC50: 51.32, 4.87, 27.72, and 69.72 µg/mL, respectively). NRL and NRL/AgNPs nanofibers (300-373 nm diameter) were successfully fabricated. The composite nanofibers exhibited antibacterial activity against K. pneumoniae and B. cereus. This study presents a sustainable approach by utilizing pomegranate waste for AgNP synthesis and NRL sourced from Peruvian communities. Integrating AgNPs into NRL nanofibers produced composites with antimicrobial properties. This work has potential applications in smart textiles, biomedical textiles, and filtration materials where sustainability and antimicrobial functionality are crucial.
Collapse
Affiliation(s)
- Talia S. Echegaray-Ugarte
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru; (T.S.E.-U.); (A.L.C.-L.); (J.L.C.-L.); (L.A.H.-Y.); (I.C.)
| | - Andrea L. Cespedes-Loayza
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru; (T.S.E.-U.); (A.L.C.-L.); (J.L.C.-L.); (L.A.H.-Y.); (I.C.)
| | - Jacqueline L. Cruz-Loayza
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru; (T.S.E.-U.); (A.L.C.-L.); (J.L.C.-L.); (L.A.H.-Y.); (I.C.)
| | - Luis A. Huayapa-Yucra
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru; (T.S.E.-U.); (A.L.C.-L.); (J.L.C.-L.); (L.A.H.-Y.); (I.C.)
| | - Isemar Cruz
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru; (T.S.E.-U.); (A.L.C.-L.); (J.L.C.-L.); (L.A.H.-Y.); (I.C.)
| | - Júlio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná—Polytechnic Center, Curitiba 81531-980, Brazil;
| | - Luis Daniel Goyzueta-Mamani
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| |
Collapse
|
16
|
Alomar TS, AlMasoud N, Awad MA, AlOmar RS, Merghani NM, El-Zaidy M, Bhattarai A. Designing Green Synthesis-Based Silver Nanoparticles for Antimicrobial Theranostics and Cancer Invasion Prevention. Int J Nanomedicine 2024; 19:4451-4464. [PMID: 38799694 PMCID: PMC11127651 DOI: 10.2147/ijn.s440847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.
Collapse
Affiliation(s)
- Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Manal A Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Reem S AlOmar
- Department of Family and Community Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 32210, Saudi Arabia
| | - Nada M Merghani
- Central Research Laboratory, Vice Rectorate for Studies and Scientific Research, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11459, Saudi Arabia
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar, 56613, Nepal
| |
Collapse
|
17
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
18
|
Petcu G, Ciobanu EM, Paun G, Neagu E, Baran A, Trica B, Neacsu A, Atkinson I, Bucuresteanu R, Badaluta A, Ditu LM, Parvulescu V. Hybrid Materials Obtained by Immobilization of Biosynthesized Ag Nanoparticles with Antioxidant and Antimicrobial Activity. Int J Mol Sci 2024; 25:4003. [PMID: 38612814 PMCID: PMC11012143 DOI: 10.3390/ijms25074003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.
Collapse
Affiliation(s)
- Gabriela Petcu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Elena Madalina Ciobanu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Gabriela Paun
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania
| | - Elena Neagu
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania
| | - Adriana Baran
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Andreea Neacsu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Razvan Bucuresteanu
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Alexandra Badaluta
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Lia Mara Ditu
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Viorica Parvulescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| |
Collapse
|
19
|
Khedr WE, Shaheen MNF, Elmahdy EM, El-Bendary MA, Hamed AA, Mohamedin AH. Silver and gold nanoparticles: Eco-friendly synthesis, antibiofilm, antiviral, and anticancer bioactivities. Prep Biochem Biotechnol 2024; 54:470-482. [PMID: 37610377 DOI: 10.1080/10826068.2023.2248238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
For the first time in this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were green synthesized by the cost-effective and eco-friendly procedure using Cotton seed meal and Fodder yeast extracts. The biosynthesized NPs were characterized by UV-Vis spectroscopy, dynamic light scattering analysis (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and fourier-transform infrared (FTIR) spectroscopy. Furthermore, the biosynthesized NPs were tested in vitro against biofilm formation by some pathogenic negative bacteria (Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., and Pseudomonas aeruginosa) and negative bacteria (staphylococcus aureus) as well as against human denovirus serotype 5 (HAdV-5) and anticancer activity using HepG2 hepatocarcinoma cells. UV-Vis absorption spectra of reaction mixture of AgNPs and AuNPs exhibited maximum absorbance at 440 nm and 540 nm, respectively. This finding was confirmed by DLS measurements that the highest intensity of the AgNPs and AuNPs were 84 nm and 73.9 nm, respectively. FTIR measurements identified some functional groups detected in Cotton seed meal and Fodder yeast extracts that could be responsible for reduction of silver and gold ions to metallic silver and gold. The morphologies and particle size of AgNPs and AuNPs were confirmed by the TEM and SAED pattern analysis. Biosynthesized AgNPs and AuNPs showed good inhibitory effects against biofilms produced by Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., Pseudomonas aeruginosa, and Staphylococcus aureus. In addition, they showed anticancer activities against hepatocellular carcinoma (HepG-2) and antiviral activity against human adenovirus serotype 5 infection in vitro. Finally, the results of this study is expected to be extremely helpful to nano-biotechnology, pharmaceutical, and food packing applications through developing antimicrobial and/or an anticancer drugs from ecofriendly and inexpensive nanoparticles with multi-potentiality.
Collapse
Affiliation(s)
| | - Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Magda A El-Bendary
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
20
|
Mishra M, Ballal A, Rath D, Rath A. Novel silver nanoparticle-antibiotic combinations as promising antibacterial and anti-biofilm candidates against multiple-antibiotic resistant ESKAPE microorganisms. Colloids Surf B Biointerfaces 2024; 236:113826. [PMID: 38447448 DOI: 10.1016/j.colsurfb.2024.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
HYPOTHESIS The emergence of Multiple Antibiotic Resistance (MAR) in ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens is a global challenge to public health. The inherent antimicrobial nature of silver nanoparticles (AgNPs) makes them promising antimicrobial candidates against antibiotic-resistant pathogens. This study explores the combination of AgNPs with antibiotics (SACs) to create new antimicrobial agents effective against MAR ESKAPE microorganisms. METHODS AgNPs were synthesized using Streptococcus pneumoniae ATCC 49619 and characterized for structure and surface properties. The SACs were tested against ESKAPE microorganisms using growth kinetics and time-kill curve methods. The effect of SACs on bacterial biofilms and the disruption of cell membranes was determined. The in-vitro cytotoxicity effect of the AgNPs was also studied. FINDINGS The synthesized AgNPs (spherical, 7.37±4.55 nm diameter) were antimicrobial against MAR ESKAPE microorganisms. The SACs showed synergy with multiple conventional antibiotics, reducing their antibacterial concentrations up to 32-fold. Growth kinetics and time-kill studies confirmed the growth retardation effect and bactericidal activity of SACs. Mechanistic studies suggested that these biofilm-eradicating SACs probably resulted in the loss of bacterial cell membrane integrity, leading to leakage of the cytoplasmic content. The AgNPs were highly cytotoxic against skin melanoma cells but non-cytotoxic to normal Vero cells.
Collapse
Affiliation(s)
- Maitri Mishra
- Antimicrobial Research (AMR) Lab, Department of Biotechnology, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, Maharashtra 400098, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Archana Rath
- Antimicrobial Research (AMR) Lab, Department of Biotechnology, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, Maharashtra 400098, India.
| |
Collapse
|
21
|
Alshahrani AA, Alqarni LS, Alghamdi MD, Alotaibi NF, Moustafa SM, Nassar AM. Phytosynthesis via wasted onion peel extract of samarium oxide/silver core/shell nanoparticles for excellent inhibition of microbes. Heliyon 2024; 10:e24815. [PMID: 38322933 PMCID: PMC10845252 DOI: 10.1016/j.heliyon.2024.e24815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The aqueous onion peel extract (OPE) was used to synthesize silver nanoparticles (Ag-onion), samarium oxide nanoparticles (Sm2O3-onion), and silver/samarium oxide core/shell nanoparticles (Ag@Sm2O3-onion). The produced nanoparticles were characterized by thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), energy band gap, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), zeta potential, and transmission electron microscopy (TEM). OPE and NPs were tested for the disinfection of some water microbes. XRD analysis exhibited an amorphous structure of samarium oxide in both Sm2O3-onion and Ag@ Sm2O3-onion. The isolated bacteria from the water sample were Bacillus subtilis (OQ073500) and Escherichia coli (MW534699), while the isolated fungi were Alternaria brassicae (MZ266540), Aspergillus flavus (MT550030), Aspergillus penicillioides (MW957971), Pythium ultimum (MW830915), Verticillium dahlia (MW830379), Fusarium acuminatum (MZ266538), Candida albicans (MW534712), and Candida parapsilosis (MW960416). High levels of antimicrobial activity were seen in both the nanoparticles and the aqueous onion peel extract. Based on experimental results, Ag@Sm2O3 demonstrated the highest activity as an effective disinfectant, indicating the effectiveness of the modification process.
Collapse
Affiliation(s)
- Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Al‐Baha University, P.O. Box 1988, Al‐Baha, 65799, Saudi Arabia
| | - Laila S. Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Al‐Baha University, P.O. Box 1988, Al‐Baha, 65799, Saudi Arabia
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
22
|
Mirzania F, Salimikia I, Ghasemian Yadegari J, Marzban A, Firouzi A, Nazarzadeh A, Aalaei J. Biological Activities of Zinc Oxide Nanoparticles Green Synthesized Using the Aqueous Extract of Dracocephalum kotschyi Boiss. Curr Drug Discov Technol 2024; 21:e271223224899. [PMID: 38151833 DOI: 10.2174/0115701638284118231220074251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Dracocephalum kotschyi Boiss. is known as a native medicinal plant of Iran. OBJECTIVE In this study, aqueous extract of D. kotschyi was used to synthesize ZnO-NPs. To produce ZnO-NPs, aerial parts of D. kotschyi were powdered and then macerated for obtaining aqueous extract, after that, aqueous extract was used to reduse zinc nitrate to ZnO-NPs. METHODS To confirm nanoparticles synthesis, SEM, TEM, UV-Vis, FTIR, and XRD were used. The synthesized ZnO-NPs were studied for antimicrobial activities by microdilution method for calculating MIC and MBC. Analysis of ZnO-NPs confirmed successful synthesis by extract of D. kotschyi. RESULTS The sizes of ZnO-NPs were estimated 50-200 nm in diameter. Antibacterial and antifungal experiments showed potent activities against Staphylococos aureus, Pseudomonas aeruginosa and Candida albicans. The results of the studies showed that the nanoparticles synthesized with the aqueous extract of D. kotschyi have a much greater antimicrobial effect than the aqueous extract of D. kotschyi and zinc nanoparticles, each alone (MIC values 3.7 to 7.5 mg/ml). CONCLUSION The noteworthy point is that the inhibitory rate of synthesized zinc oxide nanoparticles is higher compared to broad-spectrum antibiotics, such as chloramphenicol (MIC values 15 mg/ml). Determining the therapeutic and toxic dose of this product for humans requires further investigation and clinical trials.
Collapse
Affiliation(s)
- Foroogh Mirzania
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Iraj Salimikia
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirmasoud Firouzi
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Nazarzadeh
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javid Aalaei
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
23
|
Anzar N, Suleman S, Singh Y, Parvez S, Khanuja M, Pilloton R, Narang J. Wearable Electrochemical Glove-Based Analytical Device (eGAD) for the Detection of Methamphetamine Employing Silver Nanoparticles. BIOSENSORS 2023; 13:934. [PMID: 37887127 PMCID: PMC10605403 DOI: 10.3390/bios13100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Illicit drug misuse has become a widespread issue that requires continuous drug monitoring and diagnosis. Wearable electrochemical drug detection devices possess the potential to function as potent screening instruments in the possession of law enforcement personnel, aiding in the fight against drug trafficking and facilitating forensic investigations conducted on site. These wearable sensors are promising alternatives to traditional detection methods. In this study, we present a novel wearable electrochemical glove-based analytical device (eGAD) designed especially for detecting the club drug, methamphetamine. To develop this sensor, we immobilized meth aptamer onto silver nanoparticle (AgNPs)-modified electrodes that were printed onto latex gloves. The characteristics of AgNPs, including their shape, size and purity were analysed using FTIR, SEM and UV vis spectrometry, confirming the successful synthesis. The developed sensor shows a 0.1 µg/mL limit of detection and 0.3 µg/mL limit of quantification with a linear concentration range of about 0.01-5 µg/mL and recovery percentages of approximately 102 and 103%, respectively. To demonstrate its applicability, we tested the developed wearable sensor by spiking various alcoholic and non-alcoholic drink samples. We found that the sensor remains effective for 60 days, making it a practical option with a reasonable shelf-life. The developed sensor offers several advantages, including its affordability, ease of handling and high sensitivity and selectivity. Its portable nature makes it an ideal tool for rapid detection of METH in beverages too.
Collapse
Affiliation(s)
- Nigar Anzar
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.)
| | - Shariq Suleman
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.)
| | - Yashda Singh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.)
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India;
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Roberto Pilloton
- Institute of Crystallography, National Research Council (CNR-IC), 00015 Rome, Italy
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard University, New Delhi 110062, India; (N.A.); (S.S.); (Y.S.)
| |
Collapse
|
24
|
Lopez-Ayuso CA, Garcia-Contreras R, Manisekaran R, Figueroa M, Arenas-Arrocena MC, Hernandez-Padron G, Pozos-Guillén A, Acosta-Torres LS. Evaluation of the biological responses of silver nanoparticles synthesized using Pelargonium x hortorum extract. RSC Adv 2023; 13:29784-29800. [PMID: 37829709 PMCID: PMC10565737 DOI: 10.1039/d3ra00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Silver nanoparticles (AgNPs) are one of the widely studied nanomaterials for diverse biomedical applications, in particular, as antimicrobial agents to kill bacteria, fungi, and viruses. In this report, AgNPs were synthesized using a geranium (Pelargonium x hortorum) leaves extract and tested for their antimicrobial and cytotoxic activity and reactive oxygen species (ROS) production. Using green biosynthesis, the leaves extract was employed as a reducing and stabilizing agent. Synthesis parameters like reaction time and precursor (silver nitrate AgNO3) volume final were modified, and the products were tested against Streptococcus mutans. For the first time, the metabolomic analysis of extract, we have identified more than 50 metabolites. The UV-Vis analysis showed a peak ranging from 410-430 nm, and TEM confirmed their nearly spherical morphology for all NPs. The antimicrobial activity of the NPs revealed a minimum inhibitory concentration (MIC) of 10 μg mL-1. Concerning cytotoxicity, a dose-time-dependent effect was observed with a 50% cellular cytotoxicity concentration (CC50) of 4.51 μg mL-1 at 24 h. Interestingly, the cell nuclei were visualized using fluorescence microscopy, and no significant changes were observed. These results suggest that synthesized spherical AgNPs are promising potential candidates for medical applications.
Collapse
Affiliation(s)
- Christian Andrea Lopez-Ayuso
- Programa de Doctorado en Ciencias Odontológicas, Universidad Nacional Autónoma de México (UNAM) Mexico
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | | | - Ma Concepción Arenas-Arrocena
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Genoveva Hernandez-Padron
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Departamento de Nanotecnología, Universidad Nacional Autónoma de México Campus Juriquilla Juriquilla 76230 Mexico
| | - Amaury Pozos-Guillén
- Basic Science Laboratory, Faculty of Stomatology, San Luis Potosí University Av. Dr. Manuel Nava #2, Zona Universitaria 78290 San Luis Potosí SLP Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| |
Collapse
|
25
|
Huq MA, Khan AA, Alshehri JM, Rahman MS, Balusamy SR, Akter S. Bacterial mediated green synthesis of silver nanoparticles and their antibacterial and antifungal activities against drug-resistant pathogens. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230796. [PMID: 37885988 PMCID: PMC10598446 DOI: 10.1098/rsos.230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
In the healthcare sector, the production of bioactive silver nanoparticles (AgNPs) with antimicrobial properties is of great importance. In this study, a novel bacterial strain, Paenibacillus sp. MAHUQ-63, was identified as a potential candidate for facile and rapid biosynthesis of AgNPs. The synthesized AgNPs were used to control the growth of human pathogens, Salmonella Enteritidis and Candida albicans. The bacterial culture supernatant was used to synthesize the nanoparticles (NPs). Field emission transmission electron microscope examination showed spherical-shaped NPs with 15-55 nm in size. Fourier transform-infrared analysis identified various functional groups. The synthesized AgNPs demonstrated remarkable activity against S. Enteritidis and C. albicans. The zones of inhibition for 100 µl (0.5 mg ml-1) of AgNPs against S. Enteritidis and C. albicans were 18.0 ± 1.0 and 19.5 ± 1.3 mm, respectively. The minimum inhibitory concentrations were 25.0 and 12.5 µg ml-1 against S. Enteritidis and C. albicans, respectively. Additionally, the minimum bactericidal concentrations were 25.0 µg ml-1 against both pathogenic microbes. The field emission scanning electron microscopy analysis showed that the treatment of AgNPs caused morphological and structural damage to both S. Enteritidis and C. albicans. Therefore, these AgNPs can be used as a new and effective antimicrobial agent.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamilah M. Alshehri
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 143-747, Republic of Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Republic of Korea
| |
Collapse
|
26
|
Tran Khac K, Hoang Phu H, Tran Thi H, Dinh Thuy V, Do Thi H. Biosynthesis of silver nanoparticles using tea leaf extract ( camellia sinensis) for photocatalyst and antibacterial effect. Heliyon 2023; 9:e20707. [PMID: 37860560 PMCID: PMC10582344 DOI: 10.1016/j.heliyon.2023.e20707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Silver nanoparticles (C. AgNPs) are synthesized by the biological reduction method using extracts from green tea leaves (Camellia Sinensis) collected from tea hills at an altitude of 100 m above the ground. The chemicals present in the tea leaf extract act as reducing agents used to reduce Ag+ ions to silver atoms to form C. AgNPs in the solution. In this work, we optimized the C. AgNPs synthesis process by investigating the influence of reaction parameters such as concentration of tea leaf extract (1 ppm-50 ppm), reaction temperature (30 °C-60 °C), reaction time (5 min-100 min), and reaction rate (400 rpm-800 rpm) through absorption UV-Vis spectroscopy, TEM transmission electron microscopy, and spectroscopy X-ray. Organic compounds in tea leaf extract are detected by NMR measurement. The functional groups on the C. AgNPs are shown on the Fourier transform infrared (FTIR) spectrum. The C. AgNPs are used to degrade MB dye at 10 ppm concentration based on the photocatalytic effect using a 6500 K white light source. The C. AgNPs have also been studied for their antibacterial activity on two bacteria, Pseudomonas aeruginosa (P.A) and Staphylococcus aureus (S.A), while a positive control is Ampicillin 50 mg/ml and a negative control is H2O. The results reveal that the C. AgNPs with diameters in the range of 25 nm-55 nm degrade 10 ppm MB dye after 1 h with photodegradation efficiency up to 96 %. The antibacterial ability of C. AgNPs against both bacteria is good, even superior to that of Ampicillin. Furthermore, the particle synthesis efficiency and therefore the antibacterial activity as well as the photodegradation effect of C. AgNPs are higher than previously reported. At the same time, using green tea leaf extract to synthesize C. AgNPs creates environmentally friendly products. These useful behaviors are the potential to increase the scope and applicability of C. AgNPs, especially for biomedical applications in the near future.
Collapse
Affiliation(s)
- Khoi Tran Khac
- Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, 25000, Viet Nam
- Faculty of Fundamental Science, Phenikaa University, Nguyen Van Trac Street, Yen Nghia Ward, Ha Dong District, Hanoi City, Ha Đong, 100000, Viet Nam
| | - Hiep Hoang Phu
- Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, 25000, Viet Nam
| | - Hue Tran Thi
- Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, 25000, Viet Nam
| | - Van Dinh Thuy
- Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, 25000, Viet Nam
| | - Hue Do Thi
- Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, 25000, Viet Nam
| |
Collapse
|
27
|
Ghosh B, Bose A, Parmanik A, Ch S, Paul M, Biswas S, Rath G, Bhattacharya D. Facile fabrication of Nishamalaki churna mediated silver nanoparticles with antibacterial application. Heliyon 2023; 9:e18788. [PMID: 37560713 PMCID: PMC10407210 DOI: 10.1016/j.heliyon.2023.e18788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most serious threats to today's healthcare system. The prime factor behind increasing AMR is the formation of complex bacterial biofilms which acts as the protective shield between the bacterial cell and the antimicrobial drugs. Among various nanoformulations, green synthesized metallic silver nanoparticles are currently gaining research focus in safely breaking bacterial biofilms due to the inherent antimicrobial property of silver. In the current work, the aqueous extract of the ayurvedic formulation Nishamalaki churna is used to exhibit one pot green synthesis of silver nanoparticles. The physicochemical characteristics of Nishamalaki churna extract mediated AgNPs were evaluated using various analytical techniques, like UV-Visible spectrophotometer, FT-IR spectroscopy, SEM, XRD, DLS-Zeta potential analyzer etc. The synthesized spherical AgNPs were well formed within the size range of 30 nm to 80 nm. Furthermore, the synthesized AgNPs showed potent antibacterial effects against two primary AMR-causing bacterial species like Staphylococcus aureus and Pseudomonas aeruginosa with the successful destruction of their biofilm formation. Additionally, these AgNPs have shown profound antioxidant and anti-inflammatory activities as desirable add-on effects required by a prospective antibacterial agent.
Collapse
Affiliation(s)
- Bhavna Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
- Sri Jayadev College of Pharmaceutical Sciences, Naharkanta, Via: Balianta, Bhubaneswar, Odisha, 752101, India
| | - Anindya Bose
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ankita Parmanik
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Sanjay Ch
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus. Jawahar Nagar, Kapra Mandal. Medchal District, Telangana, 500 078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus. Jawahar Nagar, Kapra Mandal. Medchal District, Telangana, 500 078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus. Jawahar Nagar, Kapra Mandal. Medchal District, Telangana, 500 078, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
28
|
Shanmuganathan R, Brindhadevi K, Al-Ansari MM, Al-Humaid L, Barathi S, Lee J. In vitro investigation of silver nanoparticles synthesized using Gracilaria veruccosa - A seaweed against multidrug resistant Staphylococcusaureus. ENVIRONMENTAL RESEARCH 2023; 227:115782. [PMID: 36990196 DOI: 10.1016/j.envres.2023.115782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 05/08/2023]
Abstract
In recent years, the biosynthesis of silver (Ag) nanoparticles has attracted a great deal of interest for applications in biomedicine and bioremediation. In the present study, Gracilaria veruccosa extract was used to synthesize Ag nanoparticles for investigating their antibacterial and antibiofilm potentials. The color shift from olive green to brown indicated the synthesis of AgNPs by plasma resonance at 411 nm. Physical and chemical characterization revealed that AgNPs of 20-25 nm sizes were synthesized. Detecting functional groups, such as carboxylic acids and alkenes, suggested that the bioactive molecules in the G. veruccosa extract assisted the synthesis of AgNPs. X-ray diffraction verified the s purity and crystallinity of the AgNPs with an average diameter of 25 nm, while DLS analysis showed a negative surface charge of -22.5 mV. Moreover, AgNPs were tested in vitro for antibacterial and antibiofilm efficacies against S. aureus. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 3.8 μg/mL. Light and fluorescence microscopy proved the potential of AgNPs to disrupt the mature biofilm of S. aureus. Therefore, the present report has deciphered the potential of G. veruccosafor the synthesis of AgNPs and targeted the pathogenic bacteria S. aureus.
Collapse
Affiliation(s)
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh,11451, Saudi Arabia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh,11451, Saudi Arabia
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
29
|
Lai K, Xu T, Ye Q, Xu P, Xie J, Yan D, Zhu S, Jiang T, Xiong W, Gu C. A hybrid SERS sensing platform constructed by porous carbon/Ag nanoparticles for efficient imatinib detection in bio-environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122971. [PMID: 37295203 DOI: 10.1016/j.saa.2023.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/16/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a rapid and non-destructive spectral detection technique, and has been widely implemented on trace-level molecule detection. In this work, a hybrid SERS substrate constructed by porous carbon film and silver nanoparticles (PCs/Ag NPs) was developed and then used for imatinib (IMT) detection in bio-environment. The PCs/Ag NPs was prepared by direct carbonizing the gelatin-AgNO3 film in the air atmosphere, and an enhancement factor (EF) of 106 was achieved with R6G as the Raman reporter. Hereafter, this SERS substrate was used as the label-free sensing platform to detect the IMT in the serum, and the experimental results indicate that the substrate is conducive to eliminating the interference from the complex biological molecules in the serum, and the characteristic Raman peaks belonging to IMT (10-4 M) are accurately resolved. Furthermore, the SERS substrate was used to trace the IMT in the whole blood, the trace of ultra-low concertation of IMT is rapidly discovered without any pretreatment. Thus, this work finally suggests that the proposed sensing platform provides a rapid and reliable method for IMT detection in the bio-environment and offers a potential for its application in therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kui Lai
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Tao Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo 315010, Zhejiang, PR China.
| | - Qinli Ye
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Ping Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo 315010, Zhejiang, PR China
| | - Jianming Xie
- Gastrointestinal Surgery Clinic, Ningbo First Hospital, Ningbo University, Ningbo 315010, Zhejiang, PR China
| | - Denghui Yan
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Shanshan Zhu
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tao Jiang
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Wei Xiong
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China.
| | - Chenjie Gu
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
30
|
Al-Otibi F, Alshammry NA, Alharbi RI, Bin-Jumah MN, AlSubaie MM. Silver Nanoparticles of Artemisia sieberi Extracts: Chemical Composition and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112093. [PMID: 37299074 DOI: 10.3390/plants12112093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Artemisia sieberi (mugwort) is a member of the daisy family Asteraceae and is widely propagated in Saudi Arabia. A. sieberi has historical medical importance in traditional societies. The current study aimed to assess the antibacterial and antifungal characteristics of the aqueous and ethanolic extracts of A. sieberi. In addition, the study investigated the effect of silver nanoparticles (AgNPs) synthesized from the A. sieberi extract. METHODS The ethanolic and aqueous extracts and AgNPs were prepared from the shoots of A. sieberi. The characteristics of AgNPs were assessed by UV-visible spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The antibacterial experiments were performed against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The fungal species used were Candida parapsilosis, Candida krusei, Candida famata, Candida rhodotorula, and Candida albicans. The antibacterial and antifungal characteristics were evaluated by measuring the diameter of growing organisms in Petri dishes treated with different concentrations of either extracts or AgNPs compared to the untreated controls. Furthermore, TEM imaging was used to investigate any ultrastructure changes in the microbes treated with crude extracts and AgNO3. RESULTS The ethanolic and aqueous extracts significantly decreased the growth of E. coli, S. aureus, and B. subtilis (p < 0.001), while P. aeruginosa was not affected. Unlike crude extracts, AgNPs had more substantial antibacterial effects against all species. In addition, the mycelial growth of C. famata was reduced by the treatment of both extracts. C. krusei mycelial growth was decreased by the aqueous extract, while the growth of C. parapsilosis was affected by the ethanolic extract and AgNPs (p < 0.001). None of the treatments affected the growth of C. albicans or C. rhodotorula. TEM analysis showed cellular ultrastructure changes in the treated S. aureus and C. famata compared to the control. CONCLUSION The biosynthesized AgNPs and extracts of A. sieberi have a potential antimicrobial characteristic against pathogenic bacterial and fungal strains and nullified resistance behavior.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nourah A Alshammry
- Department of Biology, College of Science, Health Science Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Raedah I Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Health Science Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Maha M AlSubaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
31
|
Bukhary HA, Zaman U, Ur Rehman K, Alissa M, Rizg WY, Khan D, Almehizia AA, Naglah AM, Al-Wasidi AS, Alharbi AS, Refat MS, Abdelrahman EA. Acid protease functionalized novel silver nanoparticles (APTs-AgNPs): A new approach towards photocatalytic and biological applications. Int J Biol Macromol 2023; 242:124809. [PMID: 37178877 DOI: 10.1016/j.ijbiomac.2023.124809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Herein, we described for the first time, an efficient biogenic synthesis of APTs-AgNPs using acid protease from Melilotus indicus leaf extract. The acid protease (APTs) has an essential role in the stabilization, reduction, and capping of APTs-AgNPs. The crystalline nature, size, and surface morphology of APTs-AgNPs were examined using different techniques such as XRD, UV, FTIR, SEM, EDS, HRTEM, and DLS analysis. The generated APTs-AgNPs demonstrated notable performance as dual functionality (photocatalyst and antibacterial disinfection). By destroying 91 % of methylene blue (MB) in <90 min of exposure, APTs-AgNPs demonstrated remarkable photocatalytic activity. APTs-AgNPs also showed remarkable stability as a photocatalyst after five test cycles. Furthermore, the APTs-AgNPs was found to be a potent antibacterial agent with inhibition zones of 30(±0.5 mm), 27(±0.4 mm), 16(±0.1 mm), and 19(±0.7 mm) against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively, under both light and dark conditions. Furthermore, APTs-AgNPs effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, demonstrating their potent antioxidant activity. The outcomes of this study thus demonstrates the dual functionality of APTs-AgNPs produced using the biogenic approach method as a photocatalyst and an antibacterial agent for effective microbial and environmental control.
Collapse
Affiliation(s)
- Haitham A Bukhary
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, KPK, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Y Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dilfaraz Khan
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Amirah Senaitan Alharbi
- King Saud University Medical City, King Khalid University Hospital, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
32
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Hamouda NH, Saleh WD, Nasr NF, El Sabry MI. Benefits and risks of using bacterial- and plant-produced nano-silver for Japanese quail hatching-egg sanitation. Arch Microbiol 2023; 205:228. [PMID: 37160476 PMCID: PMC10169885 DOI: 10.1007/s00203-023-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
This research compared how bacterial-, plant-produced silver nanoparticles (Ag-NPs) and TH4 affected the eggshells microbial load and quail chicks' liver structure, embryonic mortality, and features related to hatchability. Ag-NPs were sensitized by bacterial and plant methods, and then identified by UV-visible spectroscopy, TEM, and FTIR spectroscopy. B-Ag-NPs were found in spherical shapes in size ranging from 7.09 to 18.1 nm versus multi-shape with size range of 25.0-78.1 nm for P-Ag-NPs. A total number of 624 eggs (in three equal groups) of Japanese quail flock were sprayed with TH4 as control, B-Ag-NPs and P-Ag-NPs. Thereafter, three eggs were sampled randomly from each group for determining important microbial groups. The remaining eggs were incubated according to the recommended incubation conditions. On the day of hatching, the percentages of hatchability and embryonic mortality were measured. Besides, five chicks from each treatment were slaughtered and the livers were utilized for ICP and histological tests. The effects of all three treatments on the microbial count in eggshells were comparable, according to the results. In addition, there was no negative effect on either hatchability percentage or embryonic mortality rate. The liver structure from both B-Ag-NPs and P-Ag-NPs treatments exhibited severe and moderate degeneration of hepatocytes, which may indicate possible hazardous effects of using nanoparticles. Using TH4 did not cause liver structure abnormality. In conclusion, using Ag-NPs for sanitizing hatching eggs effectively reduces the eggshell microbial count without affecting the hatchability percentage. Nevertheless, histological changes are appropriate to be considered as a safety parameter in Ag-NPs applications.
Collapse
Affiliation(s)
- Nagwa H Hamouda
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - W D Saleh
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - N F Nasr
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - M I El Sabry
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
34
|
Barabadi H, Mobaraki K, Ashouri F, Noqani H, Jounaki K, Mostafavi E. Nanobiotechnological approaches in antinociceptive therapy: Animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 2023; 316:102917. [PMID: 37150042 DOI: 10.1016/j.cis.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Pain management is a major challenge in healthcare systems worldwide. Owing to undesirable side effects of current analgesic medications, there is an exceeding need to develop the effective alternative therapeutics. Nowadays, the application of nanomaterials is being highly considered, as their exceptional properties arising from the nanoscale dimensions are undeniable. With the increasing use of metal NPs, more biocompatible and costly methods of synthesis have been developed in which different biological rescores including microorganisms, plants and algae are employed. Nanobiotechnology-based synthesis of nanosized particles is an ecological approach offering safe production of nanoparticles (NPs) by biological resources eliminating the toxicity attributed to the conventional routes. This review provides an assessment of biosynthesized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as antinociceptive agents in recent studies. Living animal models (mice and rats) have been used for analyzing the effect of biogenic NPs on decreasing the nociceptive pain utilizing different methods such as acetic acid-induced writhing test, hot plate test, and formalin test. Potent analgesic activity exhibited by green fabricated AgNPs and AuNPs represents the bright future of nanotechnology in the management of pain and other social and medicinal issues followed by this unpleasant sensation. Moreover, there NPs showed a protective effects on liver, kidney, and body weight in animal models that make them attractive for clinical studies. However, further research is required to fully address the harmless antinociceptive effect of NPs for clinical usage.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
35
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
36
|
Pangi VN, Marukurti A, Reddy AM, Medapalli SR. Synthesis of Biogenic Silver Nanoparticles (bAgNPs) Using Leaf Extract of Mirabilis jalapa and Evaluation of Anti-vibriocidal, Anti-oxidant properties and Cytotoxicity. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
37
|
One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics 2023; 15:pharmaceutics15020529. [PMID: 36839850 PMCID: PMC9958700 DOI: 10.3390/pharmaceutics15020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Among various routes of metallic nanoparticle (NPs) fabrication, phytosynthesis has significant advantages over other conventional approaches. Plant-mediated synthesis of NPs is a fast, one-step, ecobenign, and inexpensive method with high scalability. Herein, silver (Ag) and gold (Au)-NPs were extracellularly synthesized using aqueous Haloxylon salicornicum (H@Ag-, H@Au-NPs) leaf extracts. GC-MS was performed to analyze the chemical compositions of H. salicornicum extract. H@Ag- and H@Au-NPs were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission and scanning electron microscopy, and Zetasizer. H@Ag- and H@Au-NPs have surface plasmon resonance at 435.5 and 530.3 nm, respectively. FTIR and GC-MS data suggest that secondary plant metabolites and hydrocarbons might be responsible for the reduction and stabilization of NPs. XRD demonstrated that both NPs have a crystalline nature. H@Ag-NPs have a uniform spherical shape, whereas H@Au-NPs are spherical with few oval and triangular shapes, and their average nanosizes were 19.1 ± 0.8 and 8.1 ± 0.3 nm, respectively. Hydrodynamic diameters of H@Ag-NPs and H@Au-NPs were 184.7 nm, 56.4, and 295.4 nm, and their potential charges were -24.0 and -24.4 mV, respectively. The inhibitory activity of 500 µg/mL H@Ag- and H@Au-NPs was tested against Sw480, Sw620, HCT-116, and Caco-2 colon cancer cell lines and two normal cell lines, including HFs and Vero. H@Ag-NPs revealed potent anticancer activity against all cancer cells at low concentrations. Sw480 was the most sensitive cell to H@Ag-NPs, whereas Sw620 was the least permeable one. These findings suggested that the antiproliferative activity of H@Ag-NPs is cell-response-dependent and may be influenced by a variety of factors, including the cellular metabolic state, which influences cellular charge and interactions with charged NPs. Although H@Au-NPs were smaller, their reactivity against cancer cells was weak, suggesting that the chemical properties, metal structure, quantity and chemistry of the functional groups on the NP surface may influence their reactivity. The biocidal activity of 1 mg/mL H@Ag- and H@Au-NPs against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae was assessed. H@Ag-NPs showed biocidal activity against Gram-positive bacteria compared to Gram-negative bacteria, whereas H@Au-NPs showed no inhibitory activity. FRAP and DPPH assays were used to determine the scavenging activity of the plant extracts and both NPs. H@Ag-NPs (1 mg/mL) had the greatest scavenging activity compared to tested drugs. These findings suggest that H@Ag-NPs are potent anticancer, antibacterial, and antioxidant agents, while H@Au-NPs may be used as a drug vehicle for pharmaceutical applications.
Collapse
|
38
|
Oves M, Rauf MA, Qari HA. Therapeutic Applications of Biogenic Silver Nanomaterial Synthesized from the Paper Flower of Bougainvillea glabra (Miami, Pink). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030615. [PMID: 36770576 PMCID: PMC9920917 DOI: 10.3390/nano13030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/29/2023]
Abstract
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 ions. Data patterns obtained from physical techniques for characterizing BAgNPs, employing UV-visible, scattering electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), suggested that the nanoparticles have a spherical to oval form with size ranging from 10 to 50 nm. Spectroscopy and microscopic analysis were used to learn more about the antibacterial properties of the biologically produced BAgNPs from Bougainvillea glabra. Further, the potential mechanism of action of nanoparticles was investigated by studying their interactions in vitro with several bacterial strains and mammalian cancer cell systems. Finally, we can conclude that BAgNPs can be functionalized to dramatically inhibit bacterial growth and the growth of cancer cells in culture conditions, suggesting that biologically produced nanomaterials will provide new opportunities for a wide range of biomedical applications in the near future.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohd Ahmar Rauf
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Huda A. Qari
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
39
|
Carrapiço A, Martins MR, Caldeira AT, Mirão J, Dias L. Biosynthesis of Metal and Metal Oxide Nanoparticles Using Microbial Cultures: Mechanisms, Antimicrobial Activity and Applications to Cultural Heritage. Microorganisms 2023; 11:microorganisms11020378. [PMID: 36838343 PMCID: PMC9960935 DOI: 10.3390/microorganisms11020378] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles (1 to 100 nm) have unique physical and chemical properties, which makes them suitable for application in a vast range of scientific and technological fields. In particular, metal nanoparticle (MNPs) research has been showing promising antimicrobial activities, paving the way for new applications. However, despite some research into their antimicrobial potential, the antimicrobial mechanisms are still not well determined. Nanoparticles' biosynthesis, using plant extracts or microorganisms, has shown promising results as green alternatives to chemical synthesis; however, the knowledge regarding the mechanisms behind it is neither abundant nor consensual. In this review, findings from studies on the antimicrobial and biosynthesis mechanisms of MNPs were compiled and evidence-based mechanisms proposed. The first revealed the importance of enzymatic disturbance by internalized metal ions, while the second illustrated the role of reducing and negatively charged molecules. Additionally, the main results from recent studies (2018-2022) on the biosynthesis of MNPs using microorganisms were summarized and analyzed, evidencing a prevalence of research on silver nanoparticles synthesized using bacteria aiming toward testing their antimicrobial potential. Finally, a synopsis of studies on MNPs applied to cultural heritage materials showed potential for their future use in preservation.
Collapse
Affiliation(s)
- António Carrapiço
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Institute for Research and Advanced Training (IIFA), University of Évora, 7000-809 Évora, Portugal
| | - Maria Rosário Martins
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Medicinal Sciences and Health, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - José Mirão
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Luís Dias
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
- Correspondence:
| |
Collapse
|
40
|
Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater 2023; 20:64-80. [PMID: 35633877 PMCID: PMC9127278 DOI: 10.1016/j.bioactmat.2022.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Endowing implant surfaces with combined antibacterial and osteogenic properties by drug-loaded coatings has made great strides, but how to achieve the combined excellence of infection-triggered bactericidal and in vivo-proven osteogenic activities without causing bacterial resistance still remains a formidable challenge. Herein, antimicrobial peptides (AMPs) with osteogenic fragments were designed and complexed on the surface of silver nanoparticle (AgNP) through hydrogen bonding, and the collagen structure-bionic silk fibroin (SF) was applied to carry AgNPs@ AMPs to achieve infection-triggered antibacterial and osteointegration. As verified by TEM, AMPs contributed to the dispersion and size-regulation of AgNPs, with a particle size of about 20 nm, and a clear protein corona structure was observed on the particle surface. The release curve of silver ion displayed that the SF-based coating owned sensitive pH-responsive properties. In the antibacterial test against S.aureus for up to 21 days, the antibacterial rate had always remained above 99%. Meanwhile, the underlying mechanism was revealed, originating from the destruction of the bacterial cell membranes and ROS generation. The SF-based coating was conducive to the adhesion, diffusion, and proliferation of bone marrow stem cells (BMSCs) on the surface, and promoted the expression of osteogenic genes and collagen secretion. The in vivo implantation results showed that compared with the untreated Ti implants, SF-based coating enhanced osseointegration at week 4 and 8. Overall, the AgNPs@AMPs-loaded SF-based coating presented the ability to synergistically inhibit bacteria and promote osseointegration, possessing tremendous potential application prospects in bone defects and related-infection treatments. AMPs and AgNPs were complexed through hydrogen bonds to form a protein crowns structure. Silk fibroin matrix was able to maintain the activity of AMPs over 21 d and endow with the infection-trigger release. The functional coating achieved synergistic antibacterial properties by damaging membrane structure and generating ROS. The coating displayed acceptable osteogenic properties in vitro and observably promoted osteointegration in vivo.
Collapse
|
41
|
Zhang Y, Zhou J, Deng H, Fang Y, Qiao N, Ren M, Zhang Y, Zhang D, Lin H, Chen Y, Yong KT, Xiong J. Silk fibroin fibers-based shape memory membrane with Janus wettability for multitiered wearable protection. JOURNAL OF MATERIALS RESEARCH 2023; 38:633-643. [PMID: 36741987 PMCID: PMC9888350 DOI: 10.1557/s43578-022-00805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Realizing breathable shape memory fiber-based material with antibacterial and waterproof performances is important for multitiered wearable protection to address the increasing concerns of air pollution. Herein, using an alternating electrospinning-electrospraying technology, we develop a fiber-based membrane with Janus wettability based on a silk fibroin nanofibers-substrate (SFNFs), a polyurethane nanospheres-top layer (PUNSs), and a middle layer of PU nanofibers-mat with in-situ grown silver nanoparticles (PUNFs-AgNPs), which serves separately for skin contact, a self-cleaning physical barrier to resist external aerosol/bacteria (PM2.5 filtration efficiency ~ 98.1%), and a bio-barrier that can sterilize harmful particles and inhibit bacteria proliferation (> 95%). This breathable Janus film (SFNFs/PUNFs-AgNPs/PUNSs, SPAP) with an antibacterial filter shows shape memory stretchability enabled by the thermoplastic PU component, which is mechanically adaptive to human body for wearable protection. This work presents a breathable wearable material for air-filtration and anti-bacteria, promising for applications such as wound dressings, medical masks, protection suits, and multifunctional filters. GRAPHICAL ABSTRACT An alternating electrospinning-electrospraying technology was proposed to achieve a silk fibroin-based antibacterial membrane with Janus wettability, as well as good skin affinity and breathability, which serves well as physical and bio-barriers for water resistance, PM2.5 filtration (~98.1%) and bacteria inhibition (efficiency of 95%). This shape memory Janus membrane can adapt mechanically to human body curvatures for functional wearable protections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43578-022-00805-w.
Collapse
Affiliation(s)
- Yue Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Jiahui Zhou
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Heli Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Ying Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Na Qiao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Meng Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620 China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123 China
| | - Hong Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Yuyue Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Ken Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620 China
| |
Collapse
|
42
|
Green Synthesis of Flower-Like Carrageenan-Silver Nanoparticles and Elucidation of Its Physicochemical and Antibacterial Properties. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020907. [PMID: 36677963 PMCID: PMC9860806 DOI: 10.3390/molecules28020907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Herein, we report the green synthesis of flower-like carrageenan-silver nanoparticles (c-AgNPs) through a facile hydrothermal reaction at 90 °C for 2 h. The reduction of silver nitrate (AgNO3) to c-AgNPs was evident by the colour change of the solution from colourless to dark brown and further confirmed by a UV-Vis surface plasmon resonance (SPR) peak at ~420 nm. The FTIR spectra showed that the abundance of functional groups present in the carrageenan were responsible for the reduction and stabilisation of the c-AgNPs. The XRD pattern confirmed the crystalline nature and face-centred cubic structure of the c-AgNPs, while the EDX analysis showed the presence of a high composition of elemental silver (85.87 wt%). Interestingly, the morphological characterisations by SEM and FE-SEM revealed the formation of flower-like c-AgNPs composed of intercrossed and random lamellar petals of approximately 50 nm in thickness. The growth mechanism of flower-like c-AgNPs were elucidated based on the TEM and AFM analyses. The c-AgNPs displayed promising antibacterial properties against E. coli and S. aureus, with zones of inhibition ranging from 8.0 ± 0.0 to 11.7 ± 0.6 mm and 7.3 ± 0.6 to 9.7 ± 0.6 mm, respectively, as the concentration of c-AgNPs increased from 0.1 to 4 mg/mL.
Collapse
|
43
|
Rasheed A, Hussain S, Mushtaq W, Zubair M, Siddique K, Attia K, Khan N, Fiaz S, Azeem F, Chen Y. Application of silver nanoparticles synthesized through varying biogenic and chemical methods for wastewater treatment and health aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-022-24761-4. [PMID: 36622618 DOI: 10.1007/s11356-022-24761-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology uses biological and non-biological materials to create new systems at the nanoscale level. In recent years, the use of silver nanomaterials has attracted worldwide attention thanks to their wide range of applications as catalysts in several environmental processes including the degradation of organic pollutants and medicinal biotechnology. This study reports the synthesis of silver nanoparticles (AgNPs) through different methods including the biogenic methods based on leaf extract of Conocarpus erectus and a bacterial strain Pseudomonas sp. as well as chemically based abiotic method and comparison of their dye degradation potential. The synthesis of AgNPs in all samples was confirmed by UV-visible spectroscopy peaks at 418-420 nm. Using scanning electrom microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray differaction (XRD), and X-ray photoelectron spectroscopy (XPS), the biologically synthesized AgNPs were characterized as spherical shape of material with capping proteins that were involved in the stabilization of nanoparticles (NPs). The biologically synthesized AgNPs showed higher degradation (< 90%) of dyes as compared to chemically synthesized NPs. A prominent reduction of total dissolved solids (TDS), electrical conductivity (EC), pH, and chemical oxygen demand (COD) in textile wastewater spiked with reactive black 5 and reactive red 120 was observed by biologically synthesized AgNPs. AgNPs synthesized by Conocarpus erectus and Pseudomonas sp. also showed better characteristic anticancer and antidiabetic activities as compared to chemically synthesized ones. The results of this study suggested that C. erectus and Pseudomonas sp. based AgNPs can be exploited as an eco-friendly and cost-efficient materials to treat the wastewater and potential other polluted environments as well as to serve the medicinal field.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Waseem Mushtaq
- Laboratory of Chemistry of Natural Molecules, Liège University, Agrobiotech, Gembloux, Belgium
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Khadija Siddique
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Yinglong Chen
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
44
|
Hamida RS, Ali MA, Alkhateeb MA, Alfassam HE, Momenah MA, Bin-Meferij MM. Algal-Derived Synthesis of Silver Nanoparticles Using the Unicellular ulvophyte sp. MBIC10591: Optimisation, Characterisation, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010279. [PMID: 36615473 PMCID: PMC9821890 DOI: 10.3390/molecules28010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Algal-mediated synthesis of nanoparticles (NPs) is an eco-friendly alternative for producing NPs with potent physicochemical and biological properties. Microalgae represent an ideal bio-nanofactory because they contain several biomolecules acting as passivation and stabilising agents during the biogenesis of NPs. Herein, a novel microalgae sp. was isolated, purified, and identified using light and electron microscopy and 18s rRNA sequencing. The chemical components of their watery extract were assessed using GC-MS. Their dried biomass was used to synthesise silver (Ag) NPs with different optimisation parameters. Ag-NPs were physiochemically characterised, and their anticancer and antibacterial effects were examined. The data showed that the isolated strain was 99% similar to the unicellular ulvophyte sp. MBIC10591; it was ellipsoidal to spherical and had a large cup-shaped spongiomorph chloroplast. The optimum parameters for synthesising Ag-NPs by unicellular ulvophyte sp. MBIC10591 (Uv@Ag-NPs) were as follows: mixture of 1 mM of AgNO3 with an equal volume of algal extract, 100 °C for 1 h, and pH of 7 under illumination for 24 h. TEM, HRTEM, and SEM revealed that Uv@Ag-NPs are cubic to spherical, with an average nanosize of 12.1 ± 1.2 nm. EDx and mapping analysis showed that the sample had 79% of Ag, while FTIR revealed the existence of several functional groups on the NP surface derivatives from the algal extract. The Uv@Ag-NPs had a hydrodynamic diameter of 178.1 nm and a potential charge of -26.7 mV and showed marked antiproliferative activity against PC3, MDA-MB-231, T47D, and MCF-7, with IC50 values of 27.4, 20.3, 23.8, and 40 µg/mL, respectively, and moderate toxicity against HFs (IC50 of 13.3 µg/mL). Uv@Ag-NPs also showed marked biocidal activity against Gram-negative bacteria. Escherichia coli was the most sensitive bacteria to the NPs with an inhibition zone of 18.9 ± 0.03 mm. The current study reports, for the first time, the morphological appearance of the novel unicellular ulvophyte sp., MBIC10591, and its chemical composition and potential to synthesise Uv@Ag-NPs with smaller sizes and high stability to act as anti-tumour and microbial agents.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Nanobiology Lab, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Mohamed Abdelaal Ali
- Plant Production Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Mariam Abdulaziz Alkhateeb
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Essa Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence:
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Histopathology Unit, Research Department, Health Sciences Research Center (HSRC), Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
45
|
Eco-Friendly Preparation of Silver Nanoparticles and Their Antiproliferative and Apoptosis-Inducing Ability against Lung Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122123. [PMID: 36556488 PMCID: PMC9782107 DOI: 10.3390/life12122123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In the present study, the anti-proliferative and apoptotic potential of Tabebuia roseo-alba in lung cancer was assessed. Silver nanoparticles (AgNPs) of T. roseo-alba were synthesized using an ethanolic extract and characterized by adopting various parameters. Herein, the eco-friendly, cost-effective, and green synthesis of AgNPs was evaluated using an ethanolic extract of T. roseo-alba. The as-synthesized AgNPs were then characterized using various characterization techniques, such as UV-visible spectroscopy (UV-vis), X-ray powder diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The AgNPs are crystalline, spherical, and highly stable AgNPs of varying sizes in the range of 5-20 nm. The anticancer activity of the ethanolic extract of T. roseo-alba and its AgNPs was determined using an MTT assay. The results indicated that, although both samples showed prominent anti-proliferative activity on lung cancer cell lines, the AgNPs of T. roseo-alba were found to be more potent than the ethanolic extract. Further, apoptosis induction ability was evaluated by FITC Annexin V and PI staining, the results of which demonstrated the efficiency of the ethanolic extract of T. roseo-alba and its AgNPs in causing oxidative stress and subsequent cellular death. This was subsequently further confirmed by measuring the mitochondrial membrane potential after staining the cells with JC1. The apoptotic mode of cell death was further confirmed by DNA fragmentation and caspase assays using Western blot analysis.
Collapse
|
46
|
Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers (Basel) 2022; 14:polym14235302. [PMID: 36501695 PMCID: PMC9738229 DOI: 10.3390/polym14235302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria.
Collapse
|
47
|
Bhattacharjee G, Gohil J, Gohil N, Chaudhari H, Gangapuram B, Khambhati K, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Biosynthesis and characterization of Serratia marcescens derived silver nanoparticles: Investigating its antibacterial, anti-biofilm potency and molecular docking analysis with biofilm-associated proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Polycarbonate/polyvinyl alcohol thin film nanocomposite membrane incorporated with silver nanoparticles for water treatment. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
49
|
Das D, Bhattacharyya S, Bhattacharyya M, Mandal P. Green chemistry inspired formation of bioactive stable colloidal nanosilver and its wide-spectrum functionalised properties for sustainable industrial escalation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
50
|
Bhagat S, Shaikh H, Nafady A, Sirajuddin, Sherazi STH, Bhanger MI, Shah MR, Abro MI, Memon R, Bhagat R. Trace Level Colorimetric Hg2+ Sensor Driven by Citrus japonica Leaf Extract Derived Silver Nanoparticles: Green Synthesis and Application. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|