1
|
Ye X, Yuan J, Bai Y, Chen Y, Jiang H, Cao Y, Ge Q, Wang Z, Pan W, Wang S, Chen Q. Appraising the life-course impact of Epstein-Barr virus exposure and its genetic signature on periodontitis. J Periodontol 2024. [PMID: 39494826 DOI: 10.1002/jper.24-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Periodontitis arises from a multifaceted interplay of environmental variables and genetic susceptibility, where microbial infection plays an indispensable part. Epstein-Barr virus (EBV) exposure has long been considered associated with periodontitis activity; however, the causal relationship and genetic connection between them remain unknown. METHODS Within a life-course context, our study employed comprehensive Mendelian randomization (MR) methods, including univariable, multivariable, Bayesian model averaging, and reverse MR, to investigate the causal association between EBV exposure and periodontitis. Additionally, linkage disequilibrium score regression and colocalization analysis were utilized to assess the cross-trait genetic correlations, followed by transcriptome-wide association and enrichment analysis to discern the genetic-phenotypic biological profiles. RESULTS Heightened levels of EBV antibodies, particularly early antigen diffuses (which serve as indicators of early infection or reactivation), are associated with an increased risk of periodontitis (odds ratio [OR]: 1.27 [1.09-1.47], p = 6.05 × 10-3) and demonstrate a significant genetic correlation (p = 4.11 × 10-3). This pathogenesis may involve the high-confidence causal gene RNASEK located in 17p13.1. Genetically predicted early-life anti-EBV immunoglobulin G (IgG) levels are correlated to a reduced periodontitis risk (OR: 0.89 [0.82-0.97], p = 1.76 × 10-3). CONCLUSIONS The present study highlights the impact of life-course EBV exposure and its genetic hallmark on periodontitis, providing novel perspectives into the underlying pathogenesis and management strategies for EBV-related periodontitis. These findings underscore diverse clinical and public health implications, encompassing antiviral therapies, viral vaccination strategies, and tailored interventions for individualized periodontitis management. Further research is required to validate and expand upon our findings. PLAIN LANGUAGE SUMMARY Periodontitis is a chronic inflammatory disease driven by interactions between microbial pathogens and the host immune system. While bacteria have traditionally been the focus of research, recent studies highlight the significance of virus-bacteria interactions, particularly the role of Epstein-Barr virus (EBV)-a herpesvirus infecting over 90% of the global population-in the development of periodontitis. However, the underlying causal and genetic mechanisms remain unclear. Our study employed genome-wide multi-omics approaches to investigate the link between EBV exposure and periodontitis. We found that recent EBV infection or reactivation increases the risk of periodontitis, whereas early-life exposure, possibly enabling immune resistance, may reduce it. Essential genes were identified as potential mediators, including CRTC3-AS1, HLA-DQA1, and RNASEK. These findings provide novel insights into the EBV-periodontitis connection. For example, viral testing and control could benefit patients unresponsive to standard bacterial treatments, and early viral exposure via vaccination might reduce the risk of periodontitis. Further clinical studies are required to elucidate these underlying mechanisms and the contribution of virus-bacteria interactions.
Collapse
Affiliation(s)
- Xinjian Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jian Yuan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yijing Bai
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yitong Chen
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - He Jiang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Cao
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qifei Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhiyong Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Weiyi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Rams TE, Slots J. Elevated subgingival temperature infers high bacterial pathogen counts in severe periodontitis. Clin Exp Dent Res 2024; 10:e891. [PMID: 38706420 PMCID: PMC11070767 DOI: 10.1002/cre2.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES Periodontal inflammation may be assessed by bleeding on probing and subgingival temperature. This pilot study evaluated the intrapatient relationship between subgingival temperature and selected bacterial groups/species in deep periodontal pockets with bleeding on probing. MATERIALS AND METHODS In each of eight adults, an electronic temperature probe identified three "hot" pockets with elevated subgingival temperature and three "cool" pockets with normal subgingival temperature among premolars/molars with 6‒10 mm probing depths and bleeding on probing. Microbial samples collected separately from the hot and cool periodontal pockets were cultured for selected periodontal pathogens. RESULTS Hot compared to cool periodontal pockets revealed significantly higher absolute and normalized subgingival temperatures and yielded higher mean proportions of Porphyromonas gingivalis (10.2% for hot vs. 2.5% for cool, p = 0.030) and total red/orange complex periodontal pathogens (48.0% for hot vs. 24.6% for cool, p = 0.012). CONCLUSIONS Hot versus cool deep periodontal pockets harbored significantly higher levels of major periodontal pathogens. Subgingival temperature measurements may potentially be useful to assess risk of periodontitis progression and the efficacy of periodontal therapy.
Collapse
Affiliation(s)
- Thomas E. Rams
- Department of Periodontology and Oral ImplantologyTemple University School of DentistryPhiladelphiaPennsylvaniaUSA
| | - Jørgen Slots
- Division of Periodontology and Diagnostic SciencesUniversity of Southern California School of DentistryLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Slots J, Rams TE. Herpesvirus-Bacteria pathogenic interaction in juvenile (aggressive) periodontitis. A novel etiologic concept of the disease. Periodontol 2000 2024; 94:532-538. [PMID: 37345343 DOI: 10.1111/prd.12501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Localized juvenile (aggressive) periodontitis starts at puberty in otherwise healthy individuals and involves the proximal surfaces of permanent incisors and first molars. The disease destroys a sizeable amount of periodontal bone within a few months despite minimal dental plaque and gingival tissue inflammation. Cytomegalovirus and Epstein-Barr virus, as well as the two main periodontopathic bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, are linked to juvenile periodontitis. Juvenile periodontitis-affected teeth show cementum hypoplasia. We hypothesize that an active herpesvirus infection, at the time of root formation, hampers cementum formation and, at puberty, herpesvirus reactivation triggers an upgrowth of bacterial pathogens which produce rapid periodontal destruction on teeth with a defective periodontium. A pathogenic interaction between active herpesviruses and bacterial pathogens can potentially explain the etiology and incisor-first molar destructive pattern of juvenile periodontitis. Effective treatment of juvenile periodontitis may target the herpesvirus-bacteria co-infection.
Collapse
Affiliation(s)
- Jørgen Slots
- Division of Periodontology and Diagnostic Sciences, University of Southern California School of Dentistry, Los Angeles, California, USA
| | - Thomas E Rams
- Department of Periodontology and Oral Implantology, and Oral Microbiology Testing Service Laboratory, Temple University School of Dentistry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Hamada N, Shigeishi H, Oka I, Sasaki M, Kitasaki H, Nakamura M, Yano K, Wu CH, Kaneyasu Y, Maehara T, Sugiyama M, Ohta K. Associations between Oral Human Herpesvirus-6 and -7 and Periodontal Conditions in Older Adults. Life (Basel) 2023; 13:life13020324. [PMID: 36836681 PMCID: PMC9965650 DOI: 10.3390/life13020324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The associations between oral human herpesvirus-6 (HHV-6) and HHV-7, periodontal conditions, and lifestyle-related diseases, such as hypertension, diabetes, and dyslipidemia, have not been fully investigated in older adults. METHODS Seventy-four older patients who visited Hiroshima University Hospital were enrolled. Tongue swab samples were employed, and a real-time polymerase chain reaction was performed to detect HHV-6 and HHV-7 DNA. Dental plaque accumulation, probing pocket depth, and bleeding on probing (BOP) (i.e., a sign of periodontal inflammation) were examined. The periodontal inflamed surface area (PISA) value (i.e., an indicator of the severity of periodontitis) was also examined. RESULTS Of the 74 participants, one participant (1.4%) was HHV-6 DNA-positive and 36 participants (48.6%) were HHV-7 DNA-positive. A significant association between HHV-7 DNA and probing depth was found (p = 0.04). The HHV-7 DNA-positive participants had a higher positive rate of a ≥6-mm periodontal pocket with BOP (25.0%) than the HHV-7 DNA-negative participants (7.9%). Additionally, the HHV-7 DNA-positive participants had a higher PISA value than the HHV-7 DNA-negative participants. However, there was no significant association between HHV-7 and the PISA value (p = 0.82). No significant association was found between HHV-7 and lifestyle-related diseases (p > 0.05). CONCLUSIONS Oral HHV-7 infection is associated with a deep periodontal pocket.
Collapse
|
6
|
Jia G, Ren Z. Changes of Oral Flora, Inflammatory Factors, and Immune Function Indicators in Patients with Chronic Periodontitis and Their Clinical Significance. Crit Rev Eukaryot Gene Expr 2023; 33:57-64. [PMID: 37602453 DOI: 10.1615/critreveukaryotgeneexpr.2023048819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
This research focuses on investigating the changes of oral flora, inflammatory factors, and immune function indicators in patients with chronic periodontitis (CP) and their clinical significances. Clinical indices such as gingival index (GI) and sulcus bleeding index (SBI) of the study subjects were recorded. The levels of oral flora, inflammatory factors and T lymphocyte subsets in gingival crevicular fluid (GCF) of the study subjects were measured. To analyze the correlation between GI and gingival SBI and oral flora, inflammatory factors, and immune function indicators, Pearson correlation analysis was performed. Porphyromonas gingivalis, Streptococcus digestiveis, Prevotella intermedia, Veronococcus, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-8, CD3+, CD4+, and CD4+/CD8+ had a positive correlation with GI and SBI, while IL-10 and CD8+ were negatively correlated with GI and SBI. Oral flora, inflammatory factors and immune function indicators levels are largely elevated in patients with CP and they are correlated with CP clinical indicators.
Collapse
Affiliation(s)
- Guodong Jia
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
7
|
Genome- and Transcriptome-Wide Association Studies Identify Susceptibility Genes and Pathways for Periodontitis. Cells 2022; 12:cells12010070. [PMID: 36611863 PMCID: PMC9818314 DOI: 10.3390/cells12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Several genes associated with periodontitis have been identified through genome-wide association studies (GWAS); however, known genes only explain a minority of the estimated heritability. We aimed to explore more susceptibility genes and the underlying mechanisms of periodontitis. Firstly, a genome-wide meta-analysis of 38,532 patients and 316,185 healthy controls was performed. Then, cross- and single-tissue transcriptome-wide association studies (TWAS) were conducted based on GWAS summary statistics and the Genotype-Tissue Expression (GTEx) project. Risk genes were evaluated to determine if they were differentially expressed in periodontitis sites compared with unaffected sites using public datasets. Finally, gene co-expression network analysis was conducted to identify the functional biology of the susceptible genes. A total of eight single nucleotide polymorphisms (SNPs) within the introns of lncRNA LINC02141 approached genome-wide significance after meta-analysis. EZH1 was identified as a novel susceptibility gene for periodontitis by TWAS and was significantly upregulated in periodontitis-affected gingival tissues. EZH1 co-expression genes were greatly enriched in the cell-substrate junction, focal adhesion and other important pathways. Our findings may offer a fundamental clue for comprehending the genetic mechanisms of periodontitis.
Collapse
|
8
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
9
|
Yokoe S, Hasuike A, Watanabe N, Tanaka H, Karahashi H, Wakuda S, Takeichi O, Kawato T, Takai H, Ogata Y, Sato S, Imai K. Epstein-Barr Virus Promotes the Production of Inflammatory Cytokines in Gingival Fibroblasts and RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms23020809. [PMID: 35054995 PMCID: PMC8775710 DOI: 10.3390/ijms23020809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory condition that causes the destruction of the supporting tissues of teeth and is a major public health problem affecting more than half of the adult population worldwide. Recently, members of the herpes virus family, such as the Epstein–Barr virus (EBV), have been suggested to be involved in the etiology of periodontitis because bacterial activity alone does not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells, EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with oral cells or macrophage lineage, resulting in periodontitis onset and progression.
Collapse
Affiliation(s)
- Sho Yokoe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
| | - Norihisa Watanabe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (H.T.); (T.K.)
| | - Hiroyuki Karahashi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Shin Wakuda
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (H.T.); (T.K.)
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; (H.T.); (Y.O.)
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; (H.T.); (Y.O.)
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Correspondence: ; Tel.: +81-3-33219-8115
| |
Collapse
|
10
|
Maulani C, Auerkari EI, C. Masulili SL, Soeroso Y, Djoko Santoso W, S. Kusdhany L. Association between Epstein-Barr virus and periodontitis: A meta-analysis. PLoS One 2021; 16:e0258109. [PMID: 34618843 PMCID: PMC8496828 DOI: 10.1371/journal.pone.0258109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose Previous studies have found that Epstein-Barr virus (EBV) is associated with periodontitis, though some controversy remains. This meta-analysis aimed to clarify and update the relationship between EBV and periodontitis as well as clinical parameters. Methods A comprehensive search was conducted in the PubMed and Scopus databases in December 2020. Original data were extracted according to defined inclusion and exclusion criteria. Outcomes were analyzed, including overall odds ratios (ORs) and 95% confidence intervals (CIs). A random-effects model was used, and publication bias was assessed by Egger’s and Begg’s tests. Sensitivity analysis was used to evaluate the stability of the outcome. Results Twenty-six studies were included in the present meta-analysis, involving 1354 periodontitis patients and 819 healthy controls. The included studies mostly showed high quality. The overall quantitative synthesis for the association between EBV and periodontitis was an increased odds ratio when subgingival EBV was detected OR = 7.069, 95% CI = 4.197–11.905, P<0.001). The results of subgroup analysis suggested that the association of EBV with periodontitis was significant in Asian, European, and American populations (P<0.001; P = 0.04; P = 0.003, respectively) but not in African populations (P = 0.29). Subgroup analysis by sample type showed that subgingival plaque (SgP), tissue and gingival crevicular fluid GCF were useful for EBV detection (P<0.001). EBV detection amplification methods included nested PCR, multiplex PCR and PCR (P<0.001; P = 0.05, P<0.001, respectively), but EBV detection by real-time PCR and loop-mediated isothermal amplification presented no significant result (P = 0.06; P = 0.3, respectively). For the clinical parameters of periodontitis, pocket depth (PD) and bleeding of probing (BOP) percentages were higher in the EBV-positive sites than in the EBV-negative sites (MD 0.47 [0.08, 0.85], P = 0.02; MD 19.45 [4.47, 34.43], P = 0.01). Conclusions A high frequency of EBV detection is associated with an increased risk of periodontitis. The EBV association was particularly significant in all populations except in African populations. Subgigival plaque (SgP), tissue and GCF were not significantly different useful material for detecting EBV in periodontitis. Nested PCR and multiplex PCR are reliable methods for this purpose. In the presence of EBV, PD and BOP are reliable clinical parameters for gingival inflammation. However, some caution in such interpretation is justified due to heterogeneity among studies. A suggested extension could assess the parallel influence of other human herpesviruses.
Collapse
Affiliation(s)
- Chaerita Maulani
- Faculty of Dentistry, Doctoral Program, Universitas Indonesia, Jakarta, Indonesia
| | - Elza Ibrahim Auerkari
- Faculty of Dentistry, Department of Oral Biology, Universitas Indonesia, Jakarta, Indonesia
- * E-mail:
| | - Sri Lelyati C. Masulili
- Faculty of Dentistry, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Faculty of Dentistry, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Widayat Djoko Santoso
- Faculty of Medicine, Department of Internal Medicine in Tropical Infection, Universitas Indonesia, Jakarta, Indonesia
| | - Lindawati S. Kusdhany
- Faculty of Dentistry, Department of Prosthodontics, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
11
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
13
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
14
|
Occurrence of Candida albicans in Periodontitis. Int J Dent 2021; 2021:5589664. [PMID: 34135968 PMCID: PMC8179758 DOI: 10.1155/2021/5589664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background Periodontal diseases are the result of an imbalance between the microbiota and immune defense. The role of yeast in the pathogenesis of these diseases has been studied. This study aims to assess the occurrence of Candida albicans in periodontitis. Materials and Methods Fifty subjects were recruited for the study (15 healthy individuals and 35 periodontitis subjects). The periodontal examination and plaque sampling were carried out for all patients. Candida albicans identification was based on culture, direct examination, and polymerase chain reaction. The statistical analysis was performed by SPSS 20 (SPSS Inc., Chicago, IL, USA). Results Twenty percent of the diseased group harbored Candida albicans which was slightly higher than in the healthy group (7%), suggesting that, under normal conditions, yeast does not grow easily in subgingival sites. However, no significant difference between the healthy and periodontitis groups (p=0.23) was found. Our results also indicated that the presence of Candida albicans was neither gender nor age related in the studied groups. Conclusion The results of this study suggest that Candida albicans occurs in periodontitis. More studies are needed to clarify the potential role of this yeast in different stages and forms of the disease.
Collapse
|
15
|
Ikeda T, Gion Y, Nishimura Y, Nishimura MF, Yoshino T, Sato Y. Epstein-Barr Virus-Positive Mucocutaneous Ulcer: A Unique and Curious Disease Entity. Int J Mol Sci 2021; 22:ijms22031053. [PMID: 33494358 PMCID: PMC7865427 DOI: 10.3390/ijms22031053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV)-positive mucocutaneous ulcer (EBVMCU) was first described as a lymphoproliferative disorder in 2010. EBVMCU is a unifocal mucosal or cutaneous ulcer that often occurs after local trauma in patients with immunosuppression; the patients generally have a good prognosis. It is histologically characterized by proliferating EBV-positive atypical B cells accompanied by ulcers. On the basis of conventional pathologic criteria, EBVMCU may be misdiagnosed as EBV-positive diffuse large B-cell lymphoma or other lymphomas. However, its prognosis differs from that of EBV-associated lymphomas, in that patients with EBVMCU frequently show spontaneous regression or complete remission without chemotherapy. Therefore, EBVMCU is now recognized as a low-grade malignancy or a pseudo-malignant lesion. Avoiding unnecessary chemotherapy by distinguishing EBVMCU from other EBV-associated lymphomas will reduce the burden and unnecessary harm on patients. On the basis of these facts, EBVMCU was first described as a new clinicopathological entity by the World Health Organization in 2017. In this review, we discuss the clinicopathological characteristics of previously reported EBVMCU cases, while focusing on up-to-date clinical, pathological, and genetic aspects.
Collapse
Affiliation(s)
- Tomoka Ikeda
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
| | - Yuka Gion
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan;
| | - Yoshito Nishimura
- Department of General Medicine, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Midori Filiz Nishimura
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
| | - Yasuharu Sato
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (T.I.); (M.F.N.); (T.Y.)
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan;
- Correspondence: ; Tel.: +81-86-235-7150; Fax: +81-86-235-7156
| |
Collapse
|
16
|
Chen PJ, Chen YY, Lin CW, Yeh YT, Yeh HW, Huang JY, Yang SF, Yeh CB. Effect of Periodontitis and Scaling and Root Planing on Risk of Pharyngeal Cancer: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010008. [PMID: 33375028 PMCID: PMC7792785 DOI: 10.3390/ijerph18010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the association between periodontitis and the risk of pharyngeal cancer in Taiwan. For this population-based nested case–control study using the Longitudinal Health Insurance Database derived from Taiwan’s National Health Insurance Research Database, we identified patients (n = 1292) who were newly diagnosed with pharyngeal cancer between 2005 and 2013 and exactly paired them with propensity score matched control subjects (n = 2584). Periodontitis and scaling and root planing (SRP) were identified before the index date. Pharyngeal cancer was subdivided into 3 subgroups on the basis of anatomic location: nasopharyngeal cancer, oropharyngeal cancer, and hypopharyngeal cancer. A multiple conditional logistic regression model was applied to analyze the adjusted odds ratio (aOR). Periodontitis was associated with an increased risk of pharyngeal cancer (aOR, 1.57; 95% confidence interval (CI), 1.17 to 2.10), especially oropharyngeal cancer (aOR, 2.22; 95% CI, 1.07 to 4.60). We found a decreased risk of pharyngeal cancer in patients who had undergone SRP (aOR, 0.77; 95% CI, 0.61 to 0.96). In conclusion, this study showed that periodontitis was associated with an increased risk of pharyngeal cancer and SRP exerted a protective effect against pharyngeal cancer. Our results suggest that treating periodontitis and performing SRP, which are modifiable factors in oral health, in clinical practice may provide an opportunity to decrease the disease burden of pharyngeal cancer in Taiwan.
Collapse
Affiliation(s)
- Ping-Ju Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Dentistry, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Yang Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Ying-Tung Yeh
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Graduate School of Dentistry, School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Han-Wei Yeh
- School of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (C.-B.Y.)
| | - Chao-Bin Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (C.-B.Y.)
| |
Collapse
|
17
|
Baker JL, Morton JT, Dinis M, Alvarez R, Tran NC, Knight R, Edlund A. Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res 2020; 31:64-74. [PMID: 33239396 PMCID: PMC7849383 DOI: 10.1101/gr.265645.120] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Dental caries, the most common chronic infectious disease worldwide, has a complex etiology involving the interplay of microbial and host factors that are not completely understood. In this study, the oral microbiome and 38 host cytokines and chemokines were analyzed across 23 children with caries and 24 children with healthy dentition. De novo assembly of metagenomic sequencing obtained 527 metagenome-assembled genomes (MAGs), representing 150 bacterial species. Forty-two of these species had no genomes in public repositories, thereby representing novel taxa. These new genomes greatly expanded the known pangenomes of many oral clades, including the enigmatic Saccharibacteria clades G3 and G6, which had distinct functional repertoires compared to other oral Saccharibacteria. Saccharibacteria are understood to be obligate epibionts, which are dependent on host bacteria. These data suggest that the various Saccharibacteria clades may rely on their hosts for highly distinct metabolic requirements, which would have significant evolutionary and ecological implications. Across the study group, Rothia, Neisseria, and Haemophilus spp. were associated with good dental health, whereas Prevotella spp., Streptococcus mutans, and Human herpesvirus 4 (Epstein-Barr virus [EBV]) were more prevalent in children with caries. Finally, 10 of the host immunological markers were significantly elevated in the caries group, and co-occurrence analysis provided an atlas of potential relationships between microbes and host immunological molecules. Overall, this study illustrated the oral microbiome at an unprecedented resolution and contributed several leads for further study that will increase the understanding of caries pathogenesis and guide therapeutic development.
Collapse
Affiliation(s)
- Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - James T Morton
- Systems Biology Group, Flatiron Institute, New York, New York 10010, USA
| | - Márcia Dinis
- Section of Pediatric Dentistry, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA
| | - Ruth Alvarez
- Section of Pediatric Dentistry, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA
| | - Nini C Tran
- Section of Pediatric Dentistry, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, California 92161, USA.,Department of Pediatrics, University of California at San Diego, La Jolla, California 92161, USA.,Department of Computer Science and Engineering, University of California at San Diego, La Jolla, California 92093, USA.,Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, California 92037, USA.,Department of Pediatrics, University of California at San Diego, La Jolla, California 92161, USA
| |
Collapse
|