1
|
Young M, McLeod DSA, Richard K. Nicotine increases hepatocyte transthyretin turnover: A possible mechanism for the protective effect of smoking on preeclampsia? Mol Cell Endocrinol 2025; 597:112446. [PMID: 39725350 DOI: 10.1016/j.mce.2024.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Transthyretin is a thyroid hormone binding protein with a major role in the distribution of thyroid hormones to peripheral tissues. In preeclampsia, the failing placenta releases soluble endoglin into the maternal circulation causing systemic vascular dysfunction. Our group has previously shown that transthyretin binds to soluble endoglin and is taken up as a complex into hepatocytes. The risk of developing preeclampsia is greatly reduced by smoking cigarettes. The addictive component of cigarette smoke, nicotine, increases transthyretin expression in rodent brain and also stabilises binding between thyroxine and transthyretin. The aim of this study was to determine the effects of nicotine on transthyretin expression, secretion and uptake by hepatocytes and if nicotine altered the uptake of transthyretin bound soluble endoglin. Nicotine treatment increased transthyretin mRNA and protein levels in cultured hepatocytes. Using live cell imaging, Alexa-transthyretin uptake was significantly increased in the presence of nicotine. Alexa-soluble endoglin uptake was also significantly increased by exposure to nicotine. The transthyretin-Alexa-soluble endoglin complex was taken up via the low-density lipoprotein receptor related protein-1 (LRP1). LRP1 protein levels were unaffected in nicotine treated hepatocytes. Nicotine exposure increases hepatocyte synthesis, secretion and uptake of transthyretin as well as cell uptake of soluble endoglin. Nicotine may protect against preeclampsia by increasing serum TTR which can bind soluble endoglin and remove it from the circulation. Further research is required to better understand the role of transthyretin and nicotine in mitigating preeclampsia.
Collapse
Affiliation(s)
- Melanie Young
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Herston, Qld 4029, Australia
| | - Donald S A McLeod
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Herston, Qld 4029, Australia
| | - Kerry Richard
- Conjoint Endocrine Laboratory, Chemical Pathology, Pathology Queensland, Queensland Health, Herston, Qld 4029, Australia; School of Medicine, University of Queensland, Herston, Qld 4029, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld 4000, Australia.
| |
Collapse
|
2
|
Evangelista M, Chirico N, Papa E. In silico models for the screening of human transthyretin disruptors. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136188. [PMID: 39454338 DOI: 10.1016/j.jhazmat.2024.136188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The use of New Approach Methodologies (NAMs), such as Quantitative Structure-Activity Relationship (QSAR) models, is highly recommended by international regulations to speed up hazard and risk assessment of Endocrine Disruptors, which are known to be linked to a wide spectrum of severe diseases on humans and wildlife. A very sensitive target for these chemicals is the thyroid hormone system, which plays a key role in regulating metabolic and cognitive functions. Several chemicals have been demonstrated to compete with the thyroid hormone thyroxine (T4) for binding to human thyroid hormone distributor protein transthyretin (hTTR). In this work, we generated three new datasets composed by T4-hTTR competing potencies of more than 200 heterogeneous chemicals measured by three different in vitro assays. These datasets were used for the development of new regression QSAR models. The best models were thoroughly validated by internal and external validation procedures. The mechanistic interpretation of the selected molecular descriptors provided information on structural features which are relevant to characterise hTTR binders, such as the presence of hydroxylated and halogenated aromatic rings. PCA analysis was used to rank the studied chemicals according to their increasing T4-hTTR competing potency. Hydroxylated and halogenated bicyclic aromatic compounds are ranked as the strongest hTTR binders. The new QSARs are useful to screen potential Thyroid Hormone System-Disrupting Chemicals (THSDCs), and to support the identification of sustainable alternatives to hazardous chemicals.
Collapse
Affiliation(s)
- Marco Evangelista
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Nicola Chirico
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Ester Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
3
|
Gu Y, Zhou J, Zhao Q, Jiang X, Gao H. Identify the key genes and pathways of melatonin in age-dependent mice hippocampus regulation by transcriptome analysis. Comput Biol Chem 2024; 113:108267. [PMID: 39486357 DOI: 10.1016/j.compbiolchem.2024.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
CONTEXT Dysregulation of energy metabolism is a fundamental contributor to all the hallmarks of brain aging. Melatonin, primarily secreted by the pineal gland, is closely associated with molecules and signaling pathways that sense and affect energy metabolism. However, the impact of melatonin on age-related mRNA expression in the hippocampus of mice at different ages remains poorly understood. OBJECTIVE The present study conducted transcriptome analysis of the hippocampus in melatonin-exposed mice at 9, 13, and 25 months of age. Differential gene analysis, GO and KEGG pathway enrichment analysis, GSEA analysis, as well as weighted gene co-expression network analysis (WGCNA), were performed on the transcriptome data. RESULTS Our study demonstrated that melatonin exerts a more pronounced regulatory effect on the transcriptome of 25-month old mice, and significantly enhances the expression level of TTR in the hippocampus of 13-month old mice. WGCNA analysis revealed that melatonin primarily modulates the energy metabolism of mouse hippocampus through the mTOR signaling pathway and AMPK signaling pathway. CONCLUSIONS In conclusion, our study provides new insights into the comprehensive understanding of the mechanism of melatonin's age-dependent regulation of the mice hippocampus.
Collapse
Affiliation(s)
- Yujia Gu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiayu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, PR China.
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Suo Z, Xiao T, Qu Y, Zheng Y, Xu W, Zhou B, Yang J, Yu J, Zheng H, Ni C. Aged hippocampal single-cell atlas screening unveils disrupted neuroglial system in postoperative cognitive impairment. Aging Cell 2024:e14406. [PMID: 39540334 DOI: 10.1111/acel.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glia-neuron interaction is a crucial feature in aged hippocampus during the occurrence of postoperative cognitive impairment. However, the regulatory effects of microglia, astrocytes, and oligodendrocytes in this glia-neuron interaction, the potential mechanisms and gene targets are still to be elucidated. Here, single-cell RNA sequencing was performed to detect the perioperative genomic expression characteristics of neuroglial system in the hippocampus of aged mice, and to investigate the potential cross-cellular mechanisms and valuable treatment options for glia-neuron interaction-related cognitive impairment. We found that postoperative neurons and glia cells exhibited protein dysmetabolism and mitochondrial electron misrouting. Impaired autophagy and circadian rhythm worsened microglia activation/neuroinflammation, and exacerbated these metabolic alterations. Reactive microglia also aggravated astrocyte and oligodendrocyte cytotoxicity through the PGD2/DP and complement pathways, altering glutamate level and synaptic function via the "tripartite synapses" model, and affecting neuronal myelination. Ligand-receptor communication also indicated these synaptic and axonal dysfunctions via enhanced MDK and PTN pathways. Additionally, we found that anesthetic dexmedetomidine hold therapeutic potential within the disrupted neuroglial system. It enhanced neuronal metabolic rebalance (Atf3-related) and reduced neuroinflammation from a multicellular perspective, therefore improving postoperative cognitive impairment. Together, our study proposes an aged hippocampal cell atlas and provides insights into the role of disrupted glia-neuron cycle in postoperative cognitive impairment. Our findings also elucidate the therapeutic potential and mechanism of dexmedetomidine intervention.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Wang S, Greenbaum J, Qiu C, Swerdlow RH, Haeri M, Gong Y, Shen H, Xiao H, Deng H. Gene interactions analysis of brain spatial transcriptome for Alzheimer's disease. Genes Dis 2024; 11:101337. [PMID: 39281834 PMCID: PMC11402150 DOI: 10.1016/j.gendis.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 09/18/2024] Open
Abstract
Recent studies have explored the spatial transcriptomics patterns of Alzheimer's disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique genome-wide transcriptomic features associated with different spatial regions and pathological status. However, the dynamics of gene interactions that occur during amyloid-β accumulation remain largely unknown. In this study, we performed analyses on ligand-receptor communication, transcription factor regulatory network, and spot-specific network to reveal the dependence and the dynamics of gene associations/interactions on spatial regions and pathological status with mouse and human brains. We first used a spatial transcriptomics dataset of the App NL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor pairs with opposite tendencies throughout the amyloid-β accumulation process and showed the specific ligand-receptor interactions across the hippocampus layers at different extents of pathological changes. We then identified nerve function related transcription factors in the hippocampus and entorhinal cortex, as well as genes with different transcriptomic association degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics dataset from different AD mouse models and human single-nuclei RNA-seq data/AlzData database were used for validation. This is the first study to identify various gene associations throughout amyloid-β accumulation based on spatial transcriptomics, establishing the foundations to reveal advanced and in-depth AD etiology from a novel perspective based on the comprehensive analyses of gene interactions that are spatio-temporal dependent.
Collapse
Affiliation(s)
- Shengran Wang
- Reproductive Medicine Center, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Russell H Swerdlow
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mohammad Haeri
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Lin X, Xu T, Hou W, Dong X, Sun Y. Cationic Surface Charge Engineering of Recombinant Transthyretin Remarkably Increases the Inhibitory Potency Against Amyloid β-Protein Fibrillogenesis. Molecules 2024; 29:5023. [PMID: 39519665 PMCID: PMC11547489 DOI: 10.3390/molecules29215023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The deposition of amyloid β-protein (Aβ) in the brain is the main pathogenesis of Alzheimer's disease (AD). The development of potent inhibitors against Aβ aggregation is one of the effective strategies to combat AD. Endogenous transthyretin (TTR) can inhibit Aβ fibrillization via hydrophobic interactions, but its weak inhibitory potency hinders its application in AD therapy. Here, different recombinant TTRs were designed by cationic surface charge engineering. Compared with TTR, all positively charged recombinant TTRs showed enhanced capability in inhibiting Aβ aggregation, especially the recombinant protein obtained by mutating the acidic amino acid in TTR to arginine (TTR-nR) exhibited excellent inhibitory effect. Among them, TTR-7R remarkably increased the inhibitory potency against Aβ, which could effectively inhibit Aβ40 fibrillization at a very low concentration (0.5 μM). In addition, TTR-7R increased cultured cell viability from 62% to 89%, scavenged amyloid plaques in AD nematodes, and prolonged nematode lifespan by 5 d at 2 μM. Thermodynamic studies demonstrated that TTR-7R, enriching in positive charges, presented hydrophobic interactions and enhanced electrostatic interactions with Aβ40, leading to a significantly enhanced inhibitory capacity of TTR-7R. The research provided insights into the development of efficient recombinant protein inhibitors for AD treatment.
Collapse
Affiliation(s)
- Xiaoding Lin
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ting Xu
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenqi Hou
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
7
|
Corino C, Aimo A, Luigetti M, Ciccone L, Ferrari Chen YF, Panichella G, Musetti V, Castiglione V, Vergaro G, Emdin M, Franzini M. Tetrameric Transthyretin as a Protective Factor Against Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04442-8. [PMID: 39192044 DOI: 10.1007/s12035-024-04442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Transthyretin (TTR) is a tetrameric protein traditionally recognized for its role in transporting thyroxine and retinol. Recent research has highlighted the potential neuroprotective functions of TTR in the setting of Alzheimer's disease (AD), which is the most common form of dementia and is caused by the deposition of amyloid beta (Aβ) and the resulting cytotoxic effects. This paper explores the mechanisms of TTR protective action, including its interaction with Aβ to prevent fibril formation and promote Aβ clearance from the brain. It also synthesizes experimental evidence suggesting that enhanced TTR stability may mitigate neurodegeneration and cognitive decline in AD. Potential therapeutic strategies such as small molecule stabilizers of TTR are discussed, highlighting their role in enhancing TTR binding to Aβ and facilitating its clearance. By consolidating current knowledge and proposing directions for future research, this review aims to underscore the significance of TTR as a neuroprotective factor in AD and the potential implications for future research.
Collapse
Affiliation(s)
- Camilla Corino
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Alberto Aimo
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Marco Luigetti
- Fondazione Policlinico Agostino Gemelli IRCCS, UOC Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Yu Fu Ferrari Chen
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Veronica Musetti
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Vincenzo Castiglione
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Maria Franzini
- Department of Translational Research On New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
González M, Maurelia F, Aguayo J, Amigo R, Arrué R, Gutiérrez JL, Torrejón M, Farkas C, Caprile T. Uncovering the role of the subcommissural organ in early brain development through transcriptomic analysis. Biol Res 2024; 57:49. [PMID: 39068496 PMCID: PMC11282827 DOI: 10.1186/s40659-024-00524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. RESULTS To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. CONCLUSION The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.
Collapse
Affiliation(s)
- Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arrué
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Leonardo Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Farkas
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
9
|
Qin W, Escher BI, Huchthausen J, Fu Q, Henneberger L. Species Difference? Bovine, Trout, and Human Plasma Protein Binding of Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9954-9966. [PMID: 38804966 PMCID: PMC11171458 DOI: 10.1021/acs.est.3c10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
10
|
Wang Y, Liu W, Sun Y, Dong X. Transthyretin-Penetratin: A Potent Fusion Protein Inhibitor against Alzheimer's Amyloid-β Fibrillogenesis with High Blood Brain Barrier Crossing Capability. Bioconjug Chem 2024; 35:419-431. [PMID: 38450606 DOI: 10.1021/acs.bioconjchem.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The design of a potent amyloid-β protein (Aβ) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aβ inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aβ aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aβ inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aβ40 fibrillization at a low concentration (1.5 μM), while a TTR concentration as high as 12.5 μM was required to gain a similar function. Moreover, TP could mitigate Aβ-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 μM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aβ40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aβ species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Li Z, Liu J. Thyroid dysfunction and Alzheimer's disease, a vicious circle. Front Endocrinol (Lausanne) 2024; 15:1354372. [PMID: 38419953 PMCID: PMC10899337 DOI: 10.3389/fendo.2024.1354372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Recently, research into the link between thyroid dysfunction and Alzheimer's disease (AD) remains a current topic of interest. Previous research has primarily concentrated on examining the impact of thyroid dysfunction on the risk of developing AD, or solely explored the mechanisms of interaction between hypothyroidism and AD, a comprehensive analysis of the mechanisms linking thyroid dysfunction, including hyperthyroidism and hypothyroidism, to Alzheimer's disease (AD) still require further elucidation. Therefore, the aim of this review is to offer a thorough and comprehensive explanation of the potential mechanisms underlying the causal relationship between thyroid dysfunction and AD, highlighting the existence of a vicious circle. The effect of thyroid dysfunction on AD includes neuron death, impaired synaptic plasticity and memory, misfolded protein deposition, oxidative stress, and diffuse and global neurochemical disturbances. Conversely, AD can also contribute to thyroid dysfunction by affecting the stress repair response and disrupting pathways involved in thyroid hormone (TH) production, transport, and activation. Furthermore, this review briefly discusses the role and significance of utilizing the thyroid as a therapeutic target for cognitive recovery in AD. By exploring potential mechanisms and therapeutic avenues, this research contributes to our understanding and management of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
| | - Jia Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
13
|
Basanta B, Nugroho K, Yan NL, Kline GM, Powers ET, Tsai FJ, Wu M, Hansel-Harris A, Chen JS, Forli S, Kelly JW, Lander GC. The conformational landscape of human transthyretin revealed by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576879. [PMID: 38328110 PMCID: PMC10849623 DOI: 10.1101/2024.01.23.576879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Transthyretin (TTR) is a natively tetrameric thyroxine transporter found in blood and cerebrospinal fluid whose misfolding and aggregation causes transthyretin amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndaqel/Vyndamax) as an effective stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency-approved for the treatment of TTR amyloidosis. Despite 50 years of structural studies on TTR and this triumph of structure-based drug design, there remains a notable dearth of structural information available to understand ligand binding allostery and amyloidogenic TTR unfolding intermediates. We used single-particle cryo-electron microscopy (cryo-EM) to investigate the conformational landscape of this 55 kiloDalton tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states. These findings provide critical mechanistic insights into negatively cooperative ligand binding and the structural pathways responsible for TTR amyloidogenesis. This study underscores the capacity of cryo-EM to provide new insights into protein structures that have been historically considered too small to visualize and to identify pharmacological targets suppressed by the confines of the crystal lattice, opening uncharted territory in structure-based drug design.
Collapse
Affiliation(s)
- Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Karina Nugroho
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | - Nicholas L. Yan
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | | | - Evan T. Powers
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | - Felix J. Tsai
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Jason S. Chen
- Automated Synthesis Facility, Scripps Research, La Jolla, CA 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | | | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
14
|
Joshi SM, Wilson TC, Li Z, Preshlock S, Gómez-Vallejo V, Gouverneur V, Llop J, Arsequell G. Synthesis and PET Imaging Biodistribution Studies of Radiolabeled Iododiflunisal, a Transthyretin Tetramer Stabilizer, Candidate Drug for Alzheimer's Disease. Molecules 2024; 29:488. [PMID: 38257401 PMCID: PMC10818730 DOI: 10.3390/molecules29020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The small-molecule iododiflunisal (IDIF) is a transthyretin (TTR) tetramer stabilizer and acts as a chaperone of the TTR-Amyloid beta interaction. Oral administration of IDIF improves Alzheimer's Disease (AD)-like pathology in mice, although the mechanism of action and pharmacokinetics remain unknown. Radiolabeling IDIF with positron or gamma emitters may aid in the in vivo evaluation of IDIF using non-invasive nuclear imaging techniques. In this work, we report an isotopic exchange reaction to obtain IDIF radiolabeled with 18F. [19F/18F]exchange reaction over IDIF in dimethyl sulfoxide at 160 °C resulted in the formation of [18F]IDIF in 7 ± 3% radiochemical yield in a 20 min reaction time, with a final radiochemical purity of >99%. Biodistribution studies after intravenous administration of [18F]IDIF in wild-type mice using positron emission tomography (PET) imaging showed capacity to cross the blood-brain barrier (ca. 1% of injected dose per gram of tissue in the brain at t > 10 min post administration), rapid accumulation in the liver, long circulation time, and progressive elimination via urine. Our results open opportunities for future studies in larger animal species or human subjects.
Collapse
Affiliation(s)
- Sameer M. Joshi
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Thomas C. Wilson
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Zibo Li
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sean Preshlock
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Vanessa Gómez-Vallejo
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, UK; (T.C.W.); (V.G.)
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain; (S.M.J.); (V.G.-V.)
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
15
|
Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary Biomarkers for Alzheimer's Disease: A Systematic Review with Meta-Analysis. Int J Mol Sci 2024; 25:1168. [PMID: 38256241 PMCID: PMC10817083 DOI: 10.3390/ijms25021168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease which manifests with progressive cognitive impairment, leading to dementia. Considering the noninvasive collection of saliva, we designed the systematic review to answer the question "Are salivary biomarkers reliable for the diagnosis of Alzheimer's Disease?" Following the inclusion and exclusion criteria, 30 studies were included in this systematic review (according to the PRISMA statement guidelines). Potential biomarkers include mainly proteins, metabolites and even miRNAs. Based on meta-analysis, in AD patients, salivary levels of beta-amyloid42 and p-tau levels were significantly increased, and t-tau and lactoferrin were decreased at borderline statistical significance. However, according to pooled AUC, lactoferrin and beta-amyloid42 showed a significant predictive value for salivary-based AD diagnosis. In conclusion, potential markers such as beta-amyloid42, tau and lactoferrin can be detected in the saliva of AD patients, which could reliably support the early diagnosis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland (J.J.)
| | - Jakub Jankowski
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland (J.J.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
16
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
17
|
Massri AJ, Fitzpatrick M, Cunny H, Li JL, Harry GJ. Differential gene expression profiling implicates altered network development in rat postnatal day 4 cortex following 4-Methylimidazole (4-MeI) induced maternal seizures. Neurotoxicol Teratol 2023; 100:107301. [PMID: 37783441 PMCID: PMC10843020 DOI: 10.1016/j.ntt.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.
Collapse
Affiliation(s)
- Abdull J Massri
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mackenzie Fitzpatrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Office of the Scientific Director, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
18
|
AlAnazi FH, Al-kuraishy HM, Alexiou A, Papadakis M, Ashour MHM, Alnaaim SA, Elhussieny O, Saad HM, Batiha GES. Primary Hypothyroidism and Alzheimer's Disease: A Tale of Two. Cell Mol Neurobiol 2023; 43:3405-3416. [PMID: 37540395 PMCID: PMC10477255 DOI: 10.1007/s10571-023-01392-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Hypothyroidism (HPT) HPT could be a risk factor for the development and progression of Alzheimer's disease (AD). In addition, progressive neurodegeneration in AD may affect the metabolism of thyroid hormones (THs) in the brain causing local brain HPT. Hence, the present review aimed to clarify the potential association between HPT and AD. HPT promotes the progression of AD by inducing the production of amyloid beta (Aβ) and tau protein phosphorylation with the development of synaptic plasticity and memory dysfunction. Besides, the metabolism of THs is dysregulated in AD due to the accumulation of Aβ and tau protein phosphorylation leading to local brain HPT. Additionally, HPT can affect AD neuropathology through various mechanistic pathways including dysregulation of transthyretin, oxidative stress, ER stress, autophagy dysfunction mitochondrial dysfunction, and inhibition of brain-derived neurotrophic factor. Taken together there is a potential link between HPT and AD, as HPT adversely impacts AD neuropathology and the reverse is also true.
Collapse
Affiliation(s)
- Faisal Holil AlAnazi
- Department of Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | | | - Saud A. Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
19
|
Ciccone L, Camodeca C, Tonali N, Barlettani L, Rossello A, Fruchart Gaillard C, Kaffy J, Petrarolo G, La Motta C, Nencetti S, Orlandini E. New Hybrid Compounds Incorporating Natural Products as Multifunctional Agents against Alzheimer's Disease. Pharmaceutics 2023; 15:2369. [PMID: 37896129 PMCID: PMC10610016 DOI: 10.3390/pharmaceutics15102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aβ1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aβ in presence and in absence of Cu2+.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Nicolò Tonali
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Lucia Barlettani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
| | - Carole Fruchart Gaillard
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris Saclay, 91191 Gif-sur-Yvette, France;
| | - Julia Kaffy
- CNRS, BioCIS, Bâtiment Henri Moissan, Université Paris-Saclay, 17 Av. des Sciences, 91400 Orsay, France; (N.T.); (J.K.)
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (C.C.); (L.B.); (A.R.); (G.P.); (C.L.M.)
| | - Elisabetta Orlandini
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy;
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
20
|
Shi C, Kaffy J, Ha-Duong T, Gallard JF, Pruvost A, Mabondzo A, Ciccone L, Ongeri S, Tonali N. Proteolytically Stable Diaza-Peptide Foldamers Mimic Helical Hot Spots of Protein-Protein Interactions and Act as Natural Chaperones. J Med Chem 2023; 66:12005-12017. [PMID: 37632446 DOI: 10.1021/acs.jmedchem.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
A novel class of peptidomimetic foldamers based on diaza-peptide units are reported. Circular dichroism, attenuated total reflection -Fourier transform infrared, NMR, and molecular dynamics studies demonstrate that unlike the natural parent nonapeptide, the specific incorporation of one diaza-peptide unit at the N-terminus allows helical folding in water, which is further reinforced by the introduction of a second unit at the C-terminus. The ability of these foldamers to resist proteolysis, to mimic the small helical hot spot of transthyretin-amyloid β (Aβ) cross-interaction, and to decrease pathological Aβ aggregation demonstrates that the introduction of diaza-peptide units is a valid approach for designing mimics or inhibitors of protein-protein interaction and other therapeutic peptidomimetics. This study also reveals that small peptide foldamers can play the same role as physiological chaperone proteins and opens a new way to design inhibitors of amyloid protein aggregation, a hallmark of more than 20 serious human diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Chenghui Shi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Jean-François Gallard
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190 Gif sur Yvette, France
| | - Alain Pruvost
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Aloise Mabondzo
- CEA, INRAE, Département Médicaments et Technologies pour La Santé, Université Paris-Saclay, SPI 91191 Gif-sur-Yvette, France
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400 Orsay, France
| |
Collapse
|
21
|
Chu YP, Jin LW, Wang LC, Ho PC, Wei WY, Tsai KJ. Transthyretin attenuates TDP-43 proteinopathy by autophagy activation via ATF4 in FTLD-TDP. Brain 2023; 146:2089-2106. [PMID: 36355566 PMCID: PMC10411944 DOI: 10.1093/brain/awac412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) proteinopathies are accompanied by the pathological hallmark of cytoplasmic inclusions in the neurodegenerative diseases, including frontal temporal lobar degeneration-TDP and amyotrophic lateral sclerosis. We found that transthyretin accumulates with TDP-43 cytoplasmic inclusions in frontal temporal lobar degeneration-TDP human patients and transgenic mice, in which transthyretin exhibits dramatic expression decline in elderly mice. The upregulation of transthyretin expression was demonstrated to facilitate the clearance of cytoplasmic TDP-43 inclusions through autophagy, in which transthyretin induces autophagy upregulation via ATF4. Of interest, transthyretin upregulated ATF4 expression and promoted ATF4 nuclear import, presenting physical interaction. Neuronal expression of transthyretin in frontal temporal lobar degeneration-TDP mice restored autophagy function and facilitated early soluble TDP-43 aggregates for autophagosome targeting, ameliorating neuropathology and behavioural deficits. Thus, transthyretin conducted two-way regulations by either inducing autophagy activation or escorting TDP-43 aggregates targeted autophagosomes, suggesting that transthyretin is a potential modulator therapy for neurological disorders caused by TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Yuan-Ping Chu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, CA, USA
| | - Liang-Chao Wang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
22
|
Meneri M, Abati E, Gagliardi D, Faravelli I, Parente V, Ratti A, Verde F, Ticozzi N, Comi GP, Ottoboni L, Corti S. Identification of Novel Biomarkers of Spinal Muscular Atrophy and Therapeutic Response by Proteomic and Metabolomic Profiling of Human Biological Fluid Samples. Biomedicines 2023; 11:1254. [PMID: 37238925 PMCID: PMC10215459 DOI: 10.3390/biomedicines11051254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
23
|
Omega-3 PUFAs as a Dietary Supplement in Senile Systemic Amyloidosis. Nutrients 2023; 15:nu15030749. [PMID: 36771455 PMCID: PMC9921273 DOI: 10.3390/nu15030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6), two omega-3 poly-unsaturated fatty acids (PUFAs), are the main components in oil derived from fish and other marine organisms. EPA and DHA are commercially available as dietary supplements and are considered to be very safe and contribute to guaranteeing human health. Studies report that PUFAs have a role in contrasting neurodegenerative processes related to amyloidogenic proteins, such as β-amyloid for AD, α-synuclein in PD, and transthyretin (TTR) in TTR amyloidosis. In this context, we investigated if EPA and DHA can interact directly with TTR, binding inside the thyroxin-binding pockets (T4BP) that contribute to the tetramer stabilization. The data obtained showed that EPA and DHA can contribute to stabilizing the TTR tetramer through interactions with T4BP.
Collapse
|
24
|
Koopmans F, Li KW, Klaassen RV, Smit AB. MS-DAP Platform for Downstream Data Analysis of Label-Free Proteomics Uncovers Optimal Workflows in Benchmark Data Sets and Increased Sensitivity in Analysis of Alzheimer's Biomarker Data. J Proteome Res 2022; 22:374-386. [PMID: 36541440 PMCID: PMC9903323 DOI: 10.1021/acs.jproteome.2c00513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the rapidly moving proteomics field, a diverse patchwork of data analysis pipelines and algorithms for data normalization and differential expression analysis is used by the community. We generated a mass spectrometry downstream analysis pipeline (MS-DAP) that integrates both popular and recently developed algorithms for normalization and statistical analyses. Additional algorithms can be easily added in the future as plugins. MS-DAP is open-source and facilitates transparent and reproducible proteome science by generating extensive data visualizations and quality reporting, provided as standardized PDF reports. Second, we performed a systematic evaluation of methods for normalization and statistical analysis on a large variety of data sets, including additional data generated in this study, which revealed key differences. Commonly used approaches for differential testing based on moderated t-statistics were consistently outperformed by more recent statistical models, all integrated in MS-DAP. Third, we introduced a novel normalization algorithm that rescues deficiencies observed in commonly used normalization methods. Finally, we used the MS-DAP platform to reanalyze a recently published large-scale proteomics data set of CSF from AD patients. This revealed increased sensitivity, resulting in additional significant target proteins which improved overlap with results reported in related studies and includes a large set of new potential AD biomarkers in addition to previously reported.
Collapse
Affiliation(s)
- Frank Koopmans
- Department
of Molecular and Cellular Neurobiology, Center for Neurogenomics and
Cognitive Research, Amsterdam Neuroscience, VU University, 1081 HV Amsterdam, The Netherlands,
| | - Ka Wan Li
- Department
of Molecular and Cellular Neurobiology, Center for Neurogenomics and
Cognitive Research, Amsterdam Neuroscience, VU University, 1081 HV Amsterdam, The Netherlands
| | - Remco V. Klaassen
- Department
of Molecular and Cellular Neurobiology, Center for Neurogenomics and
Cognitive Research, Amsterdam Neuroscience, VU University, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department
of Molecular and Cellular Neurobiology, Center for Neurogenomics and
Cognitive Research, Amsterdam Neuroscience, VU University, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Oral Therapy for the Treatment of Transthyretin-Related Amyloid Cardiomyopathy. Int J Mol Sci 2022; 23:ijms232416145. [PMID: 36555787 PMCID: PMC9788438 DOI: 10.3390/ijms232416145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The care of systemic amyloidosis has improved dramatically due to improved awareness, accurate diagnostic tools, the development of powerful prognostic and companion biomarkers, and a continuous flow of innovative drugs, which translated into the blooming of phase 2/3 interventional studies for light chain (AL) and transthyretin (ATTR) amyloidosis. The unprecedented availability of effective drugs ignited great interest across various medical specialties, particularly among cardiologists who are now recognizing cardiac amyloidosis at an extraordinary pace. In all amyloidosis referral centers, we are observing a substantial increase in the prevalence of wild-type transthyretin (ATTRwt) cardiomyopathy, which is now becoming the most common form of cardiac amyloidosis. This review focuses on the oral drugs that have been recently introduced for the treatment of ATTR cardiac amyloidosis, for their ease of use in the clinic. They include both old repurposed drugs or fit-for-purpose designed compounds which bind and stabilize the TTR tetramer, thus reducing the formation of new amyloid fibrils, such as tafamidis, diflunisal, and acoramidis, as well as fibril disruptors which have the potential to promote the clearance of amyloid deposits, such as doxycycline. The development of novel therapies is based on the advances in the understanding of the molecular events underlying amyloid cardiomyopathy.
Collapse
|
26
|
Togha M, Rahimi P, Farajzadeh A, Ghorbani Z, Faridi N, Zahra Bathaie S. Proteomics analysis revealed the presence of inflammatory and oxidative stress markers in the plasma of migraine patients during the pain period. Brain Res 2022; 1797:148100. [PMID: 36174672 DOI: 10.1016/j.brainres.2022.148100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is increasing evidence that some biomarkers are implicated in migraine pathogenesis. This study looks at plasma proteome in migraine patients for potential protein biomarkers. METHODS This case-control study has two phases. In phase I, plasma samples were collected from three groups, including twenty-three episodic migraineurs, thirty-five chronic migraineurs, and twenty-nine healthy subjects. In phase II, plasma samples were prepared from two groups, including five episodic and five chronic migraine cases, during the pain and 24 h after the pain-free periods. Two-dimensional gel electrophoresis (2-DE) was performed on plasma proteins. The possible corresponding proteins for the differentially expressed spots between groups investigated by the Melanie software were predicted by 2-DE gels of the EXPASY database. LC-MS/MS additionally analyzed phase II data. RESULTS Expression levels of haptoglobin, clusterin, fibrinogen alpha chain, fibrinogen beta chain, complement c3, transthyretin, α1-microglobulin, and retinol-binding protein 4 were shown considerable changes in migraine patients compared to controls or their pain-free period. CONCLUSION Differences in expression levels for several proteins were observed across groups. Most of these are associated with inflammation, oxidative stress, and neuroprotection, which can be considered potential disease biomarkers. However, further research is necessary for this respect.
Collapse
Affiliation(s)
- Mansoureh Togha
- Headache Department, Iranian Center of Neurological Researches, Institute of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran; Neurology Ward, Sina Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - Asghar Farajzadeh
- Department of Clinical Laboratory Sciences, Islamic Azad University, Ardabil, Iran
| | - Zeinab Ghorbani
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Perfilyeva A, Bespalova K, Perfilyeva Y, Skvortsova L, Musralina L, Zhunussova G, Khussainova E, Iskakova U, Bekmanov B, Djansugurova L. Integrative Functional Genomic Analysis in Multiplex Autism Families from Kazakhstan. DISEASE MARKERS 2022; 2022:1509994. [PMID: 36199823 PMCID: PMC9529466 DOI: 10.1155/2022/1509994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
The study of extended pedigrees containing autism spectrum disorder- (ASD-) related broader autism phenotypes (BAP) offers a promising approach to the search for ASD candidate variants. Here, a total of 650,000 genetic markers were tested in four Kazakhstani multiplex families with ASD and BAP to obtain data on de novo mutations (DNMs), common, and rare inherited variants that may contribute to the genetic risk for developing autistic traits. The variants were analyzed in the context of gene networks and pathways. Several previously well-described enriched pathways were identified, including ion channel activity, regulation of synaptic function, and membrane depolarization. Perhaps these pathways are crucial not only for the development of ASD but also for ВАР. The results also point to several additional biological pathways (circadian entrainment, NCAM and BTN family interactions, and interaction between L1 and Ankyrins) and hub genes (CFTR, NOD2, PPP2R2B, and TTR). The obtained results suggest that further exploration of PPI networks combining ASD and BAP risk genes can be used to identify novel or overlooked ASD molecular mechanisms.
Collapse
Affiliation(s)
| | - Kira Bespalova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Yuliya Perfilyeva
- M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
- Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Lyazzat Musralina
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Elmira Khussainova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Ulzhan Iskakova
- Kazakh National Medical University, 94 Tole Bi St., Almaty 050000, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| |
Collapse
|
28
|
Mousten IV, Sørensen NV, Christensen RHB, Benros ME. Cerebrospinal Fluid Biomarkers in Patients With Unipolar Depression Compared With Healthy Control Individuals: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:571-581. [PMID: 35442429 PMCID: PMC9021989 DOI: 10.1001/jamapsychiatry.2022.0645] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Importance Depression has been associated with alterations in neurotransmitters, hormones, and inflammatory and neurodegenerative biomarkers, and biomarkers quantified in the cerebrospinal fluid (CSF) are more likely to reflect ongoing biochemical changes within the brain. However, a comprehensive overview of CSF biomarkers is lacking and could contribute to the pathophysiological understanding of depression. Objective To investigate differences in quantified CSF biomarkers in patients with unipolar depression compared with healthy control individuals. Data Sources PubMed, EMBASE, PsycINFO, Cochrane Library, Web of Science, and ClinicalTrials.gov were searched for eligible trials from database inception to August 25, 2021. Study Selection All studies investigating CSF biomarkers in individuals 18 years and older with unipolar depression and healthy control individuals were included. One author screened titles and abstracts, and 2 independent reviewers examined full-text reports. Studies that did not include healthy control individuals or included control individuals with recent hospital contacts or admissions that might affect CSF biomarker concentrations were excluded. Data Extraction and Synthesis Data extraction and quality assessment were performed by 2 reviewers following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guidelines. Meta-analyses were performed using standardized mean differences (SMDs) calculated with random-effects models. A third investigator was consulted if the 2 reviewers reached different decisions or when in doubt. Main Outcomes and Measures Quantifiable CSF biomarkers. Results A total of 167 studies met eligibility criteria, and 97 had available data and were included in the meta-analysis. These 97 studies comprised 165 biomarkers, 42 of which were quantified in 2 or more studies. CSF levels of interleukin 6 (7 studies; SMD, 0.35; 95% CI, 0.12 to 0.59; I2 = 16%), total protein (5 studies; SMD, 0.53; 95% CI, 0.35 to 0.72; I2 = 0%), and cortisol (2 studies; SMD, 1.23; 95% CI, 0.89 to 1.57; I2 = 0%) were higher in patients with unipolar depression compared with healthy control individuals, whereas homovanillic acid (17 studies; SMD, -0.26; 95% CI, -0.39 to -0.14; I2 = 11%), γ-aminobutyric acid (4 studies; SMD, -0.50; 95% CI, -0.92 to -0.08; I2 = 55%), somatostatin (5 studies; SMD, -1.49; 95% CI, -2.53 to -0.45; I2 = 91%), brain-derived neurotrophic factor (3 studies; SMD, -0.58; 95% CI, -0.97 to -0.19; I2 = 0%), amyloid-β 40 (3 studies; SMD, -0.80; 95% CI, -1.14 to -0.46; I2 = 0%), and transthyretin (2 studies; SMD, -0.82; 95% CI, -1.37 to -0.27; I2 = 0%) were lower. The remaining 33 biomarkers had nonsignificant results. Conclusions and Relevance The findings of this systematic review and meta-analysis point toward a dysregulated dopaminergic system, a compromised inhibitory system, hypothalamic-pituitary-adrenal axis hyperactivity, increased neuroinflammation and blood-brain barrier permeability, and impaired neuroplasticity as important factors in depression pathophysiology.
Collapse
Affiliation(s)
- Ina Viktoria Mousten
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nina Vindegaard Sørensen
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Haubo B. Christensen
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Yamaguchi H, Kawahara H, Kodera N, Kumaki A, Tada Y, Tang Z, Sakai K, Ono K, Yamada M, Hanayama R. Extracellular Vesicles Contribute to the Metabolism of Transthyretin Amyloid in Hereditary Transthyretin Amyloidosis. Front Mol Biosci 2022; 9:839917. [PMID: 35402512 PMCID: PMC8983912 DOI: 10.3389/fmolb.2022.839917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary (variant) transthyretin amyloidosis (ATTRv amyloidosis), which is caused by variants in the transthyretin (TTR) gene, leads to TTR amyloid deposits in multiple organs and various symptoms such as limb ataxia, muscle weakness, and cardiac failure. Interaction between amyloid proteins and extracellular vesicles (EVs), which are secreted by various cells, is known to promote the clearance of the proteins, but it is unclear whether EVs are involved in the formation and deposition of TTR amyloid in ATTRv amyloidosis. To clarify the relationship between ATTRv amyloidosis and EVs, serum-derived EVs were analyzed. In this study, we showed that cell-derived EVs are involved in the formation of TTR amyloid deposits on the membrane of small EVs, as well as the deposition of TTR amyloid in cells. Human serum-derived small EVs also altered the degree of aggregation and deposition of TTR. Furthermore, the amount of TTR aggregates in serum-derived small EVs in patients with ATTRv amyloidosis was lower than that in healthy controls. These results indicate that EVs contribute to the metabolism of TTR amyloid, and suggest that TTR in serum-derived small EVs is a potential target for future ATTRv amyloidosis diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironori Kawahara
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Ayanori Kumaki
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasutake Tada
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zixin Tang
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| |
Collapse
|
30
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
31
|
The Transthyretin/Oleuropein Aglycone Complex: A New Tool against TTR Amyloidosis. Pharmaceuticals (Basel) 2022; 15:ph15030277. [PMID: 35337074 PMCID: PMC8953266 DOI: 10.3390/ph15030277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The release of monomers from the homotetrameric protein transthyretin (TTR) is the first event of a cascade, eventually leading to sporadic or familial TTR amyloidoses. Thus, ligands able to stabilize TTR and inhibit monomer release are subject of intense scrutiny as potential treatments against these pathologies. Here, we investigated the interaction between TTR and a non-glycated derivative of the main olive polyphenol, oleuropein (OleA), known to interfere with TTR aggregation. We coupled fluorescence studies with molecular docking to investigate the OleA/TTR interaction using wild-type TTR, a monomeric variant, and the L55P cardiotoxic mutant. We characterized a fluorescence band emitted by OleA upon formation of the OleA/TTR complex. Exploiting this signal, we found that a poorly specific non-stoichiometric interaction occurs on the surface of the protein and a more specific stabilizing interaction takes place in the ligand binding pocket of TTR, exhibiting a KD of 3.23 ± 0.32 µM, with two distinct binding sites. OleA interacts with TTR in different modes, stabilizing it and preventing its dissociation into monomers, with subsequent misfolding. This result paves the way to the possible use of OleA to prevent degenerative diseases associated with TTR misfolding.
Collapse
|
32
|
Tatar M. The role of Aβ in Alzheimer's Disease as an Evolutionary Outcome of Optimized Innate Immune Defense. J Prev Alzheimers Dis 2022; 9:580-588. [PMID: 36281662 PMCID: PMC10535726 DOI: 10.14283/jpad.2022.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's Disease is a progressive manifestation of aging associated with accumulated Amyloid β. It remains frustratingly unclear why this protein accumulates and how it contributes to Alzheimer's Disease pathology. In one recent hypothesis, Amyloid β is suggested to function as an antimicrobial peptide in innate immune defense within the brain, where Amyloid β gains toxicity when it becomes abundant. This essay proposes an evolutionary explanation for why Amyloid β expression is regulated at an optimum based on its function as a defense and how this leads to disease. Among its potential physiological functions, Amyloid β confers benefits to reduce direct pathogen damage while this simultaneously entails cellular cost of defense. Optimal Amyloid β expression occurs when the gain in fitness from an incremental increase is balanced by the marginal cost of this increase. It proposes that natural selection acting upon the young favored systems to maintain Amyloid β at an optimal level through mechanisms that induce the defense and repress its expression. With age, the force of natural selection declines and permits mechanisms of negative feedback repression to degenerate. Consequently, Amyloid β is expressed beyond its optimum. Age also elevates cumulative pathogen exposure, reduces pathogen barriers and reactivates latent pathogens. The net effect is elevated, chronic induction of Amyloid β in the brain. The model recommends attention to innate immune negative regulation in the brain to discover ways to restore these functions toward a youthful state in the elderly.
Collapse
Affiliation(s)
- M Tatar
- Marc Tatar, Department of Ecology, Evolution and Organismal Biology, Box GW, Walter Hall Brown University, Providence RI 02912, USA, Office: +1 401-863-3455, Fax: +1 401-863-2166,
| |
Collapse
|
33
|
Barbas R, Font-Bardia M, Ballesteros A, Arsequell G, Prohens R, Frontera A. Static discrete disorder in the crystal structure of iododiflunisal: on the importance of hydrogen bond, halogen bond and π-stacking interactions. CrystEngComm 2022. [DOI: 10.1039/d2ce00202g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a combined computational/crystallographic analysis focused on the static discrete disorder shown by the drug iododiflunisal.
Collapse
Affiliation(s)
- Rafael Barbas
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raigs X, Centres Científics i Tecnològics, Universitat de Barcelona, Spain
| | - Alfredo Ballesteros
- Departamento de Química Orgánica e Inorgánica, Instituto de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Spain
| |
Collapse
|
34
|
Searching for the Best Transthyretin Aggregation Protocol to Study Amyloid Fibril Disruption. Int J Mol Sci 2021; 23:ijms23010391. [PMID: 35008816 PMCID: PMC8745744 DOI: 10.3390/ijms23010391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.
Collapse
|
35
|
Cotrina EY, Santos LM, Rivas J, Blasi D, Leite JP, Liz MA, Busquets MA, Planas A, Prohens R, Gimeno A, Jiménez-Barbero J, Gales L, Llop J, Quintana J, Cardoso I, Arsequell G. Targeting transthyretin in Alzheimer's disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer's disease. Eur J Med Chem 2021; 226:113847. [PMID: 34555615 DOI: 10.1016/j.ejmech.2021.113847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Transthyretin (TTR) has a well-established role in neuroprotection in Alzheimer's Disease (AD). We have setup a drug discovery program of small-molecule compounds that act as chaperones enhancing TTR/Amyloid-beta peptide (Aβ) interactions. A combination of computational drug repurposing approaches and in vitro biological assays have resulted in a set of molecules which were then screened with our in-house validated high-throughput screening ternary test. A prioritized list of chaperones was obtained and corroborated with ITC studies. Small-molecule chaperones have been discovered, among them our lead compound Iododiflunisal (IDIF), a molecule in the discovery phase; one investigational drug (luteolin); and 3 marketed drugs (sulindac, olsalazine and flufenamic), which could be directly repurposed or repositioned for clinical use. Not all TTR tetramer stabilizers behave as chaperones in vitro. These chemically diverse chaperones will be used for validating TTR as a target in vivo, and to select one repurposed drug as a candidate to enter clinical trials as AD disease-modifying drug.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain
| | - Luis Miguel Santos
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal
| | - Josep Rivas
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain
| | - Daniel Blasi
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain
| | - José Pedro Leite
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal
| | - Márcia A Liz
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal
| | - Maria Antònia Busquets
- Facultat de Farmàcia i Ciències de l'Alimentació, University of Barcelona, E-08028, Barcelona, Spain
| | - Antoni Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, E-08017, Barcelona, Spain
| | - Rafel Prohens
- Centres Científics i Tecnologics, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, E-48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, E-48160, Derio, Spain; Ikerbasque, Basque Foundation for Science, E-48009, Bilbao, Spain
| | - Luis Gales
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), E-20014, San Sebastian, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), E-08028, Barcelona, Spain.
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, PT-4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PT-4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), PT-4050-013, Porto, Portugal.
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), E-08034, Barcelona, Spain.
| |
Collapse
|
36
|
Araghi M, Shipley MJ, Anand A, Mills NL, Kivimaki M, Singh-Manoux A, Tabák A, Sabia S, Brunner EJ. Serum transthyretin and risk of cognitive decline and dementia: 22-year longitudinal study. Neurol Sci 2021; 42:5093-5100. [PMID: 33770310 PMCID: PMC9136660 DOI: 10.1007/s10072-021-05191-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Serum transthyretin (TTR) may be an early biomarker for Alzheimer's disease and related disorders (ADRD). We investigated associations of TTR measured at baseline with cognitive decline and incident ADRD and whether TTR trajectories differ between ADRD cases and non-cases, over 22 years before diagnosis. A total of 6024 adults aged 45-69 in 1997-1999 were followed up until 2019. TTR was assessed three times, and 297 cases of dementia were recorded. Higher TTR was associated with higher cognitive function at baseline; however, TTR was unrelated to subsequent change in cognitive function. TTR at baseline did not predict ADRD risk (hazard ratio per SD TTR (4.8 mg/dL) = 0.97; 95% confidence interval: 0.94-1.00). Among those later diagnosed with ADRD, there was a marginally steeper downward TTR trajectory than those free of ADRD over follow-up (P=0.050). Our findings suggest TTR is not neuroprotective. The relative decline in TTR level in the preclinical stage of ADRD is likely to be a consequence of disease processes.
Collapse
Affiliation(s)
- Marzieh Araghi
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| | - Martin J Shipley
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Atul Anand
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Adam Tabák
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
- Department of Internal Medicine and Oncology, Semmelweis University Faculty of Medicine, Budapest, Hungary
- Department of Public Health, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - Séverine Sabia
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Eric J Brunner
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| |
Collapse
|
37
|
Shi H, Huang X, Chen X, Yang Y, Wu F, Yao C, Ma G, Du A. Haemonchus contortus Transthyretin-Like Protein TTR-31 Plays Roles in Post-Embryonic Larval Development and Potentially Apoptosis of Germ Cells. Front Cell Dev Biol 2021; 9:753667. [PMID: 34805162 PMCID: PMC8595280 DOI: 10.3389/fcell.2021.753667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Transthyretin (TTR)-like proteins play multi-function roles in nematode and are important component of excretory/secretory product in Haemonchus contortus. In this study, we functionally characterised a secretory transthyretin-like protein in the barber's pole worm H. contortus. A full-length of transthyretin-like protein-coding gene (Hc-ttr-31) was identified in this parasitic nematode, representing a counterpart of Ce-ttr-31 in Caenorhabditis elegans. High transcriptional levels of Hc-ttr-31 were detected in the egg and early larval stages of H. contortus, with the lowest level measured in the adult stage, indicating a decreased transcriptional pattern of this gene during nematode development. Localisation analysis indicated a secretion of TTR-31 from the intestine to the gonad, suggesting additional roles of Hc-ttr-31 in nematode reproduction. Expression of Hc-ttr-31 and Ce-ttr-31 in C. elegans did not show marked influence on the nematode development and reproduction, whereas Hc-ttr-31 RNA interference-mediated gene knockdown of Ce-ttr-31 shortened the lifespan, decreased the brood size, slowed the pumping rate and inhibited the growth of treated worms. Particularly, gene knockdown of Hc-ttr-31 in C. elegans was linked to activated apoptosis signalling pathway, increased general reactive oxygen species (ROS) level, apoptotic germ cells and facultative vivipary phenotype, as well as suppressed germ cell removal signalling pathways. Taken together, Hc-ttr-31 appears to play roles in regulating post-embryonic larval development, and potentially in protecting gonad from oxidative stress and mediating engulfment of apoptotic germ cells. A better knowledge of these aspects should contribute to a better understanding of the developmental biology of H. contortus and a discovery of potential targets against this and related parasitic worms.
Collapse
Affiliation(s)
- Hengzhi Shi
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xiaocui Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Domowicz MS, Chan WC, Claudio-Vázquez P, Gonzalez T, Schwartz NB. Brain transcriptome analysis of a CLN2 mouse model as a function of disease progression. J Neuroinflammation 2021; 18:262. [PMID: 34749772 PMCID: PMC8576919 DOI: 10.1186/s12974-021-02302-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal ceroid lipofuscinoses, (NCLs or Batten disease) are a group of inherited, early onset, fatal neurodegenerative diseases associated with mutations in 13 genes. All forms of the disease are characterized by lysosomal accumulation of fluorescent storage material, as well as profound neurodegeneration, but the relationship of the various genes’ function to a single biological process is not obvious. In this study, we used a well-characterized mouse model of classical late infantile NCL (cLINCL) in which the tripeptidyl peptidase 1 (Tpp1) gene is disrupted by gene targeting, resulting in loss of detectable TPP1 activity and leading to progressive neurological phenotypes including ataxia, increased motor deficiency, and early death. Methods In order to identify genes and pathways that may contribute to progression of the neurodegenerative process, we analyzed forebrain/midbrain and cerebellar transcriptional differences at 1, 2, 3 and 4 months of age in control and TPP1-deficient mice by global RNA-sequencing. Results Progressive neurodegenerative inflammatory responses involving microglia, astrocytes and endothelial cells were observed, accompanied by activation of leukocyte extravasation signals and upregulation of nitric oxide production and reactive oxygen species. Several astrocytic (i.e., Gfap, C4b, Osmr, Serpina3n) and microglial (i.e., Ctss, Itgb2, Itgax, Lyz2) genes were identified as strong markers for assessing disease progression as they showed increased levels of expression in vivo over time. Furthermore, transient increased expression of choroid plexus genes was observed at 2 months in the lateral and fourth ventricle, highlighting an early role for the choroid plexus and cerebrospinal fluid in the disease pathology. Based on these gene expression changes, we concluded that neuroinflammation starts, for the most part, after 2 months in the Tpp1−/− brain and that activation of microglia and astrocytes occur more rapidly in cerebellum than in the rest of the brain; confirming increased severity of inflammation in this region. Conclusions These findings have led to a better understanding of cLINCL pathological onset and progression, which may aid in development of future therapeutic treatments for this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02302-z.
Collapse
Affiliation(s)
- Miriam S Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago Medical Center, 5841 S. Maryland Avenue, MC 5058, Chicago, IL, 60637, USA.
| | - Wen-Ching Chan
- Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Patricia Claudio-Vázquez
- Department of Pediatrics, Biological Sciences Division, The University of Chicago Medical Center, 5841 S. Maryland Avenue, MC 5058, Chicago, IL, 60637, USA
| | - Tatiana Gonzalez
- Department of Pediatrics, Biological Sciences Division, The University of Chicago Medical Center, 5841 S. Maryland Avenue, MC 5058, Chicago, IL, 60637, USA
| | - Nancy B Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago Medical Center, 5841 S. Maryland Avenue, MC 5058, Chicago, IL, 60637, USA.,Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
39
|
Dohrn MF, Medina J, Olaciregui Dague KR, Hund E. Are we creating a new phenotype? Physiological barriers and ethical considerations in the treatment of hereditary transthyretin-amyloidosis. Neurol Res Pract 2021; 3:57. [PMID: 34719408 PMCID: PMC8559355 DOI: 10.1186/s42466-021-00155-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Hereditary transthyretin (TTR) amyloidosis (ATTRv) is an autosomal dominant, systemic disease transmitted by amyloidogenic mutations in the TTR gene. To prevent the otherwise fatal disease course, TTR stabilizers and mRNA silencing antisense drugs are currently approved treatment options. With 90% of the amyloidogenic protein produced by the liver, disease progression including polyneuropathy and cardiomyopathy, the two most prominent manifestations, can successfully be halted by hepatic drug targeting or-formerly-liver transplantation. Certain TTR variants, however, favor disease manifestations in the central nervous system (CNS) or eyes, which is mostly associated with TTR production in the choroid plexus and retina. These compartments cannot be sufficiently reached by any of the approved medications. From liver-transplanted patients, we have learned that with longer lifespans, such CNS manifestations become more relevant over time, even if the underlying TTR mutation is not primarily associated with such. Are we therefore creating a new phenotype? Prolonging life will most likely lead to a shift in the phenotypic spectrum, enabling manifestations like blindness, dementia, and cerebral hemorrhage to come out of the disease background. To overcome the first therapeutic limitation, the blood-brain barrier, we might be able to learn from other antisense drugs currently being used in research or even being approved for primary neurodegenerative CNS diseases like spinal muscular atrophy or Alzheimer's disease. But what effects will unselective CNS TTR knock-down have considering its role in neuroprotection? A potential approach to overcome this second limitiation might be allele-specific targeting, which is, however, still far from clinical trials. Ethical standpoints underline the need for seamless data collection to enable more evidence-based decisions and for thoughtful consenting in research and clinical practice. We conclude that the current advances in treating ATTRv amyloidosis have become a meaningful example for mechanism-based treatment. With its great success in improving patient life spans, we will still have to face new challenges including shifts in the phenotype spectrum and the ongoing need for improved treatment precision. Further investigation is needed to address these closed barriers and open questions.
Collapse
Affiliation(s)
- Maike F Dohrn
- Department of Neurology, Medical Faculty of the RWTH Aachen University, Neuromuscular Outpatient Clinic, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Jessica Medina
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Ernst Hund
- Amyloidosis Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
40
|
Rejc L, Gómez-Vallejo V, Rios X, Cossío U, Baz Z, Mujica E, Gião T, Cotrina EY, Jiménez-Barbero J, Quintana J, Arsequell G, Cardoso I, Llop J. Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. J Alzheimers Dis 2021; 77:99-112. [PMID: 32804152 DOI: 10.3233/jad-200570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. OBJECTIVE We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). METHODS Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. RESULTS Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. CONCLUSION Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.
Collapse
Affiliation(s)
- Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Xabier Rios
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Edurne Mujica
- Biochemistry and Molecular Biology, EHU-UPV, Leioa, Spain
| | - Tiago Gião
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department Organic Chemistry II, Faculty Science & Technology, EHU-UPV, Leioa, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
41
|
Ge F, Zhu D, Tian M, Shi J. The Role of Thyroid Function in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1553-1562. [PMID: 34420955 DOI: 10.3233/jad-210339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The thyroid gland is crucial for the regulation of metabolism, growth, and development of various tissues, organs, systems, including the central nervous system. Recent studies have implicated the role of thyroid dysfunction in the etiology of Alzheimer's disease (AD), while AD leads to a significant increase in the prevalence of thyroid dysfunction. In this review, we have analyzed the role of thyroid function in the pathophysiology of AD as well as its biomarkers. The present review aims to provide encouraging targets for early screening of AD risk factors and intervention strategies.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Minjie Tian
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model. Genes (Basel) 2021; 12:genes12081172. [PMID: 34440346 PMCID: PMC8392718 DOI: 10.3390/genes12081172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.
Collapse
|
43
|
Wieczorek E, Ożyhar A. Transthyretin: From Structural Stability to Osteoarticular and Cardiovascular Diseases. Cells 2021; 10:1768. [PMID: 34359938 PMCID: PMC8307983 DOI: 10.3390/cells10071768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor. The TTR structure is destabilized by mutations, oxidative modifications, aging, proteolysis, and metal cations, including Ca2+. Destabilized TTR molecules form amyloid deposits, resulting in senile and familial amyloidopathies. This review links structural stability of TTR with the environmental factors, particularly oxidative stress and Ca2+, and the processes involved in the pathogenesis of TTR-related diseases. The roles of TTR in biomineralization, calcification, and osteoarticular and cardiovascular diseases are broadly discussed. The association of TTR-related diseases and vascular and ligament tissue calcification with TTR levels and TTR structure is presented. It is indicated that unaggregated TTR and TTR amyloid are bound by vicious cycles, and that TTR may have an as yet undetermined role(s) at the crossroads of calcification, blood coagulation, and immune response.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
44
|
Breaking the barrier: In vitro models to study choroid plexus development. Curr Opin Cell Biol 2021; 73:41-49. [PMID: 34182208 DOI: 10.1016/j.ceb.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
The choroid plexus is central to normal brain function by secreting cerebrospinal fluid and dynamically regulating its composition throughout development and homoeostasis. Much of our current understanding of this region of the brain comes from studies in animal models. These fundamental studies have shed light on choroid plexus mechanisms of secretion, barrier function and homoeostatic regulation. However, how these specific mechanisms are regulated in the human choroid plexus is much less understood, due to ethical and technical limitations. A number of recent breakthroughs have enabled a new range of techniques and tools for functional characterisation of choroid plexus development and physiology. With the advance of new technologies such as in vivo imaging, single-cell transcriptomics and in vitro three-dimensional cultures we are now able to address a number of outstanding questions in choroid plexus biology. Here, we discuss some of these recent breakthroughs and we focus in particular on how in vitro models can be a powerful tool to study human cerebrospinal fluid secretion and barrier function.
Collapse
|
45
|
Cioffi CL, Raja A, Muthuraman P, Jayaraman A, Jayakumar S, Varadi A, Racz B, Petrukhin K. Identification of Transthyretin Tetramer Kinetic Stabilizers That Are Capable of Inhibiting the Retinol-Dependent Retinol Binding Protein 4-Transthyretin Interaction: Potential Novel Therapeutics for Macular Degeneration, Transthyretin Amyloidosis, and Their Common Age-Related Comorbidities. J Med Chem 2021; 64:9010-9041. [PMID: 34138572 DOI: 10.1021/acs.jmedchem.1c00099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset. Drawing from clinically investigated AG10, we designed a constrained congener (14) that exhibits excellent TTR tetramer binding potency, prevents TTR aggregation in a gel-based assay, and possesses desirable pharmacokinetics in mice. Additionally, 14 significantly lowers murine serum retinol binding protein 4 (RBP4) levels despite a lack of binding at that protein's all-trans-retinol site. We hypothesize that kinetic stabilization of TTR tetramers via 14 is allosterically hindering all-trans-retinol-dependent RBP4-TTR tertiary complex formation and that the compound could present ancillary therapeutic utility for indications treated with RBP4 antagonists, such as macular degeneration.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Aravindan Jayaraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Srinivasan Jayakumar
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
46
|
Proteomic Exploration of Plasma Exosomes and Other Small Extracellular Vesicles in Pediatric Hodgkin Lymphoma: A Potential Source of Biomarkers for Relapse Occurrence. Diagnostics (Basel) 2021; 11:diagnostics11060917. [PMID: 34063765 PMCID: PMC8223799 DOI: 10.3390/diagnostics11060917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Exosomes and other small extracellular vesicles (EVs) are potential sources of cancer biomarkers. Plasma-derived EVs have not yet been studied in pediatric Hodgkin lymphoma (HL), for which predictive biomarkers of relapse are greatly needed. In this two-part proteomic study, we used two-dimensional difference gel electrophoresis (2D-DIGE) followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) to analyze EV proteins of plasma collected at diagnosis from children with nodular sclerosis HL, relapsed or not. EVs isolated using membrane affinity had radii ranging from 20 to 130 nm and contained the programmed cell death 6-interacting (ALIX) and the tumor susceptibility gene 101 (TSG101) proteins, whereas calnexin (CANX) was not detected. 2D-DIGE identified 16 spots as differentially abundant between non-relapsed and relapsed HL (|fold change| ≥ 1.5, p < 0.05). LC–MS/MS identified these spots as 11 unique proteins, including five more abundant in non-relapsed HL (e.g., complement C4b, C4B; fibrinogen γ chain, FGG) and six more abundant in relapsed HL (e.g., transthyretin, TTR). Shotgun LC–MS/MS on pooled EV proteins from non-relapsed HL identified 161 proteins, including 127 already identified in human exosomes (ExoCarta data). This EV cargo included 89 proteins not yet identified in exosomes from healthy plasma. Functional interrogation by the Database for Annotation, Visualization and Integrated Discovery (DAVID) revealed that the EV proteins participate in platelet degranulation and serine-type endopeptidase activity as the most significant Gene Ontology (GO) biological process and molecular function (p < 0.01).
Collapse
|
47
|
Cotrina EY, Blasi D, Vilà M, Planas A, Abad-Zapatero C, Centeno NB, Quintana J, Arsequell G. Optimization of kinetic stabilizers of tetrameric transthyretin: A prospective ligand efficiency-guided approach. Bioorg Med Chem 2020; 28:115794. [DOI: 10.1016/j.bmc.2020.115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
|
48
|
Cotrina EY, Oliveira Â, Leite JP, Llop J, Gales L, Quintana J, Cardoso I, Arsequell G. Repurposing Benzbromarone for Familial Amyloid Polyneuropathy: A New Transthyretin Tetramer Stabilizer. Int J Mol Sci 2020; 21:E7166. [PMID: 32998442 PMCID: PMC7583827 DOI: 10.3390/ijms21197166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein involved in human amyloidosis, including familial amyloid polyneuropathy (FAP). Discovering small-molecule stabilizers of the TTR tetramer is a therapeutic strategy for these diseases. Tafamidis, the only approved drug for FAP treatment, is not effective for all patients. Herein, we discovered that benzbromarone (BBM), a uricosuric drug, is an effective TTR stabilizer and inhibitor against TTR amyloid fibril formation. BBM rendered TTR more resistant to urea denaturation, similarly to iododiflunisal (IDIF), a very potent TTR stabilizer. BBM competes with thyroxine for binding in the TTR central channel, with an IC50 similar to IDIF and tafamidis. Results obtained by isothermal titration calorimetry (ITC) demonstrated that BBM binds TTR with an affinity similar to IDIF, tolcapone and tafamidis, confirming BBM as a potent binder of TTR. The crystal structure of the BBM-TTR complex shows two molecules binding deeply in the thyroxine binding channel, forming strong intermonomer hydrogen bonds and increasing the stability of the TTR tetramer. Finally, kinetic analysis of the ability of BBM to inhibit TTR fibrillogenesis at acidic pH and comparison with other stabilizers revealed that benzbromarone is a potent inhibitor of TTR amyloidogenesis, adding a new interesting scaffold for drug design of TTR stabilizers.
Collapse
Affiliation(s)
- Ellen Y. Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain;
| | - Ângela Oliveira
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Pedro Leite
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain;
| | - Luis Gales
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003 Barcelona, Spain;
| | - Isabel Cardoso
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain;
| |
Collapse
|
49
|
Age, Sex Hormones, and Circadian Rhythm Regulate the Expression of Amyloid-Beta Scavengers at the Choroid Plexus. Int J Mol Sci 2020; 21:ijms21186813. [PMID: 32957439 PMCID: PMC7554684 DOI: 10.3390/ijms21186813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) in the brain is thought to derive from the impairment of Aβ clearance mechanisms rather than from its overproduction, which consequently contributes to the development of Alzheimer’s disease. The choroid plexus epithelial cells constitute an important clearance route for Aβ, either by facilitating its transport from the cerebrospinal fluid to the blood, or by synthesizing and secreting various proteins involved in Aβ degradation. Impaired choroid plexus synthesis, secretion, and transport of these Aβ-metabolizing enzymes have been therefore associated with the disruption of Aβ homeostasis and amyloid load. Factors such as aging, female gender, and circadian rhythm disturbances are related to the decline of choroid plexus functions that may be involved in the modulation of Aβ-clearance mechanisms. In this study, we investigated the impact of age, sex hormones, and circadian rhythm on the expression of Aβ scavengers such as apolipoprotein J, gelsolin, and transthyretin at the rat choroid plexus. Our results demonstrated that mRNA expression and both intracellular and secreted protein levels of the studied Aβ scavengers are age-, sex-, and circadian-dependent. These data suggest that the Aβ-degradation and clearance pathways at the choroid plexus, mediated by the presence of Aβ scavengers, might be compromised as a consequence of aging and circadian disturbances. These are important findings that enhance the understanding of Aβ-clearance-regulating mechanisms at the blood–cerebrospinal fluid barrier.
Collapse
|
50
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|