1
|
Mustafa G, Arif MAR, Bakhsh M, Wajih Ul Hassan S. First report of aflatoxin and ochratoxin contamination in ginger collected from different agroclimatic zones from Punjab, Pakistan. Toxicon 2024; 251:108138. [PMID: 39433257 DOI: 10.1016/j.toxicon.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ginger, a fresh rhizome, an economically important spice with extensive nutraceutical activities finds itself in vegetable and therapeutic market. Aflatoxins (AFB1, AFB2, AFG1 and AFG2) along with ochratoxin A (OTA) are the most significant and the most toxic form of mycotoxins which are produced by various fungi. This study was initiated to assess the contamination of AFs and OTA in raw and dried ginger products, collected from different agro-climatic zones in Punjab, Pakistan employing the high performance liquid chromatography. We found all (raw ginger samples commercial ginger powders) samples contaminated with AFB1 (range: 29.88-1060.12 μg/kg). AFB2 contamination was much lower (range: 0-17.54 μg/kg). Variable contamination of AFG1 was also observed (range: 0-170.58 μg/kg) whereas AFG2 contamination was found in only three (range: 0-21.88 μg/kg) out of 19 raw ginger samples. OTA contamination ranged from 0.05 to 3.42 μg/kg. Ginger samples from lower altitudes (<1000 m) were more contaminated with AFB1 sub type mycotoxin. Keeping in view that the toxicity of AFs is in the order of B1>G1> B2>G2, it was alarming to find that 100% of the samples were contaminated with AFB1 way beyond the permissible limits. Our very first report about the contamination of ginger with AFs presents a grave health issue because of wide use of ginger. We conclude that ginger production in Pakistan needs to be carefully crafted and due diligence is needed during ginger cultivation, harvest and post-harvest operations because the amount of aflatoxins detected in this study are very much above the permissible limits. In this regard, ginger storage in cooler environments such as refrigerator should be encouraged to contain the AFs proliferation.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Mian Abdur Rehman Arif
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| | - Murad Bakhsh
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan
| | - Syed Wajih Ul Hassan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Mérida-García R, Gálvez S, Solís I, Martínez-Moreno F, Camino C, Soriano JM, Sansaloni C, Ammar K, Bentley AR, Gonzalez-Dugo V, Zarco-Tejada PJ, Hernandez P. High-throughput phenotyping using hyperspectral indicators supports the genetic dissection of yield in durum wheat grown under heat and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1470520. [PMID: 39649812 PMCID: PMC11620856 DOI: 10.3389/fpls.2024.1470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024]
Abstract
High-throughput phenotyping (HTP) provides new opportunities for efficiently dissecting the genetic basis of drought-adaptive traits, which is essential in current wheat breeding programs. The combined use of HTP and genome-wide association (GWAS) approaches has been useful in the assessment of complex traits such as yield, under field stress conditions including heat and drought. The aim of this study was to identify molecular markers associated with yield (YLD) in elite durum wheat that could be explained using hyperspectral indices (HSIs) under drought field conditions in Mediterranean environments in Southern Spain. The HSIs were obtained from hyperspectral imagery collected during the pre-anthesis and anthesis crop stages using an airborne platform. A panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq) to determine population structure, revealing a lack of genetic structure in the breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six growing seasons under drought field conditions at two locations in Andalusia, in southern Spain. GWAS analysis identified 740 significant marker-trait associations (MTAs) across all the durum wheat chromosomes, several of which were common for YLD and the HSIs, and can potentially be integrated into breeding programs. Candidate gene (CG) analysis uncovered genes related to important plant processes such as photosynthesis, regulatory biological processes, and plant abiotic stress tolerance. These results are novel in that they combine high-resolution hyperspectral imaging at the field scale with GWAS analysis in wheat. They also support the use of HSIs as useful tools for identifying chromosomal regions related to the heat and drought stress response in wheat, and pave the way for the integration of field HTP in wheat breeding programs.
Collapse
Affiliation(s)
- Rosa Mérida-García
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Ignacio Solís
- Department of Agronomy, ETSIA (University of Seville), Seville, Spain
| | | | - Carlos Camino
- European Commission (EC), Joint Research Centre (JRC), Ispra, Italy
| | - Jose Miguel Soriano
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - AGROTECNIO, Lleida, Spain
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Alison R. Bentley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Victoria Gonzalez-Dugo
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pablo J. Zarco-Tejada
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science (FoS), and Faculty of Engineering, and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
3
|
Mohammadi M, Mohammadi R. Potential of tetraploid wheats in plant breeding: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112155. [PMID: 38885883 DOI: 10.1016/j.plantsci.2024.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Domestication syndrome, selection pressure, and modern plant breeding programs have reduced the genetic diversity of the wheat germplasm. For the genetic gains of breeding programs to be sustainable, plant breeders require a diverse gene pool to select genes for resistance to biotic stress factors, tolerance to abiotic stress factors, and improved quality and yield components. Thus, old landraces, subspecies and wild ancestors are rich sources of genetic diversity that have not yet been fully exploited, and it is possible to utilize this diversity. Compared with durum wheat, tetraploid wheat subspecies have retained much greater genetic diversity despite genetic drift and various environmental influences, and the identification and utilization of this diversity can make a greater contribution to the genetic enrichment of wheat. In addition, using the pre-breeding method, the valuable left-behind alleles in the wheat gene pool can be re-introduced through hybridization and introgressive gene flow to create a sustainable opportunity for the genetic gain of wheat. This review provides some insights about the potential of tetraploid wheats in plant breeding and the genetic gains made by them in plant breeding across past decades, and gathers the known functional information on genes/QTLs, metabolites, traits and their direct involvement in wheat resistance/tolerance to biotic/abiotic stresses.
Collapse
Affiliation(s)
- Majid Mohammadi
- Dryland Agricultural Research Institute (DARI), Sararood branch, AREEO, Kermanshah, Iran.
| | - Reza Mohammadi
- Dryland Agricultural Research Institute (DARI), Sararood branch, AREEO, Kermanshah, Iran.
| |
Collapse
|
4
|
Zaïm M, Sanchez-Garcia M, Belkadi B, Filali-Maltouf A, Al Abdallat A, Kehel Z, Bassi FM. Genomic regions of durum wheat involved in water productivity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:316-333. [PMID: 37702385 PMCID: PMC10735558 DOI: 10.1093/jxb/erad357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Durum wheat is a staple food in the Mediterranean Basin, mostly cultivated under rainfed conditions. As such, the crop is often exposed to moisture stress. Therefore, the identification of genetic factors controlling the capacity of genotypes to convert moisture into grain yield (i.e., water productivity) is quintessential to stabilize production despite climatic variations. A global panel of 384 accessions was tested across 18 Mediterranean environments (in Morocco, Lebanon, and Jordan) representing a vast range of moisture levels. The accessions were assigned to water responsiveness classes, with genotypes 'Responsive to Low Moisture' reaching an average +1.5 kg ha-1 mm-1 yield advantage. Genome wide association studies revealed that six loci explained most of this variation. A second validation panel tested under moisture stress confirmed that carrying the positive allele at three loci on chromosomes 1B, 2A, and 7B generated an average water productivity gain of +2.2 kg ha-1 mm-1. These three loci were tagged by kompetitive allele specific PCR (KASP) markers, and these were used to screen a third independent validation panel composed of elites tested across moisture stressed sites. The three KASP combined predicted up to 10% of the variation for grain yield at 60% accuracy. These loci are now ready for molecular pyramiding and transfer across cultivars to improve the moisture conversion of durum wheat.
Collapse
Affiliation(s)
- Meryem Zaïm
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| | - Miguel Sanchez-Garcia
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V in Rabat, Morocco
| | - Ayed Al Abdallat
- Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Zakaria Kehel
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| | - Filippo M Bassi
- ICARDA, Biodiversity and Integrated Gene Management, P.O. Box 6299, Rabat Institutes, Rabat, Morocco
| |
Collapse
|
5
|
Jabbour Y, Hakim MS, Al-Yossef A, Saleh MM, Shaaban ASAD, Kabbaj H, Zaïm M, Kleinerman C, Bassi FM. Genomic regions involved in the control of 1,000-kernel weight in wild relative-derived populations of durum wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1297131. [PMID: 38098797 PMCID: PMC10720367 DOI: 10.3389/fpls.2023.1297131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Terminal drought is one of the most common and devastating climatic stress factors affecting durum wheat (Triticum durum Desf.) production worldwide. The wild relatives of this crop are deemed a vast potential source of useful alleles to adapt to this stress. A nested association mapping (NAM) panel was generated using as a recurrent parent the Moroccan variety 'Nachit' derived from Triticum dicoccoides and known for its large grain size. This was recombined to three top-performing lines derived from T. dicoccoides, T. araraticum, and Aegilops speltoides, for a total of 426 inbred progenies. This NAM was evaluated across eight environments (Syria, Lebanon, and Morocco) experiencing different degrees of terminal moisture stress over two crop seasons. Our results showed that drought stress caused on average 41% loss in yield and that 1,000-kernel weight (TKW) was the most important trait for adaptation to it. Genotyping with the 25K TraitGenetics array resulted in a consensus map of 1,678 polymorphic SNPs, spanning 1,723 cM aligned to the reference 'Svevo' genome assembly. Kinship distinguished the progenies in three clades matching the parent of origin. A total of 18 stable quantitative trait loci (QTLs) were identified as controlling various traits but independent from flowering time. The most significant genomic regions were named Q.ICD.NAM-04, Q.ICD.NAM-14, and Q.ICD.NAM-16. Allelic investigation in a second germplasm panel confirmed that carrying the positive allele at all three loci produced an average TKW advantage of 25.6% when field-tested under drought conditions. The underlying SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers and successfully validated in a third germplasm set, where they explained up to 19% of phenotypic variation for TKW under moisture stress. These findings confirm the identification of critical loci for drought adaptation derived from wild relatives that can now be readily exploited via molecular breeding.
Collapse
Affiliation(s)
- Yaman Jabbour
- Field Crop Department, Faculty of Agriculture Engineering, Aleppo University, Aleppo, Syria
- General Commission for Scientific Agriculture Research (GCSAR), Field Crop Department, Aleppo, Syria
| | - Mohammad Shafik Hakim
- Field Crop Department, Faculty of Agriculture Engineering, Aleppo University, Aleppo, Syria
| | - Abdallah Al-Yossef
- General Commission for Scientific Agriculture Research (GCSAR), Field Crop Department, Aleppo, Syria
| | - Maysoun M. Saleh
- General Commission for Scientific Agriculture Research (GCSAR), Genetic Resources Department, Damascus, Syria
| | - Ahmad Shams Al-Dien Shaaban
- Biotechnology Engineering Department, Faculty of Technological Engineering, Aleppo University, Aleppo, Syria
| | - Hafssa Kabbaj
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| | - Meryem Zaïm
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| | - Charles Kleinerman
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas, Biodiversity and Crop Improvement, Rabat, Morocco
| |
Collapse
|
6
|
Dukamo BH, Gedebo A, Tesfaye B, Degu HD. Genetic diversity of Ethiopian durum wheat ( T. turgidum subsp. durum) landraces under water stressed and non stressed conditions. Heliyon 2023; 9:e18359. [PMID: 37519732 PMCID: PMC10375799 DOI: 10.1016/j.heliyon.2023.e18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Ethiopia, being a major center of origin and diversity for durum wheat, possesses a highly variable genetic pool with diverse agroecological adaptations. Wheat landraces are an important source of genetic variation for breeding programs. This study was conducted to study the genotypic diversity of Ethiopian durum wheat genetic resources under two contrasting environments namely drought-stressed and non-stressed. It was carried out on 100 landraces and 4 local checks using an augmented design. Data were collected on 13 traits comprising yield and yield components, phenology, and canopy condition. The analysis of variance revealed significant differences between landraces for different traits with different sources of variation. Several landraces were found to outyield the checks at both environmental conditions. Intermediate to high estimates of the phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), heritability in a broad sense (h2b), and genetic advance in percent of the mean (GAPM) were observed for all the studied traits except for days to flowering at normal, thousands seed weight at stress, and days to maturity, leaf chlorophyll concentration measurement, and canopy temperature measurement at both conditions. The estimation of variability parameters showed that genotypic variation was higher than environmental variation for most traits. The number of tillers, spike length, kernel per spike, and grain yield indicated higher values for h2b and GAPM (74.42% and 20.86; 83.2% and 28.24; 70.79% and 28.0; and 89.54% and 74.71) at normal and (97.87% and 98.22; 71.27% and 28.51; 75.52% and 43.9; and 90.04% and 103.68) at the stressed condition, respectively. Spikelets per spike, kernel per spike, and thousands seed weight were positively correlated with grain yield. Grain yield exhibited a weak negative correlation with days to heading and days to maturity. Principal components analysis revealed that six traits were the major loadings on the first two principal components that describe 37.9% and 41.0% of the total morphological variance at normal and stressed conditions, respectively. Cluster analysis grouped the landraces into six clusters, with each cluster showing variation in performance for different traits under normal and stressed conditions. The intracluster distance was maximum in cluster I (D2 = 7.68) and (D2 = 8.19) at normal and stressed conditions respectively and the intercluster distance was found to be maximum between clusters I and IV (D2 = 11.02) and clusters I and II (D2 = 10.33) at normal and stressed conditions respectively. The presence of significant genetic variability among the evaluated durum wheat landraces suggests an opportunity for improvement of grain yield through the hybridization of genotypes from different clusters and subsequent selection. Genotypes with superior agronomic traits that outperform the best checks are identified as potential parents for yield improvement programs for moisture stress.
Collapse
Affiliation(s)
- Bantewalu Hailekidan Dukamo
- Hawassa University, College of Natural and Computational Sciences, Ethiopia
- Hawassa University, College of Agriculture, Ethiopia
| | | | | | | |
Collapse
|
7
|
Arriagada O, Gadaleta A, Marcotuli I, Maccaferri M, Campana M, Reveco S, Alfaro C, Matus I, Schwember AR. A comprehensive meta-QTL analysis for yield-related traits of durum wheat ( Triticum turgidum L. var. durum) grown under different water regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:984269. [PMID: 36147234 PMCID: PMC9486101 DOI: 10.3389/fpls.2022.984269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 05/13/2023]
Abstract
Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and 6B. Candidate genes associated to MQTL were identified and an in-silico expression analysis was carried out for 15 genes selected among those that were differentially expressed under drought. These results can be used to increase durum wheat grain yields under different water regimes and to obtain new genotypes adapted to climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matteo Campana
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samantha Reveco
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Alfaro
- Centro Regional Rayentue, Instituto de Investigaciones Agropecuarias (INIA), Rengo, Chile
| | - Iván Matus
- Centro Regional Quilamapu, Instituto de Investigaciones Agropecuarias (INIA), Chillán, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Negisho K, Shibru S, Matros A, Pillen K, Ordon F, Wehner G. Association Mapping of Drought Tolerance Indices in Ethiopian Durum Wheat ( Triticum turgidum ssp. durum). FRONTIERS IN PLANT SCIENCE 2022; 13:838088. [PMID: 35693182 PMCID: PMC9178276 DOI: 10.3389/fpls.2022.838088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Ethiopia is a major producer of durum wheat in sub-Saharan Africa. However, its production is prone to drought stress as it is fully dependent on rain, which is erratic and unpredictable. This study aimed to detect marker-trait associations (MTAs) and quantitative trait loci (QTLs) related to indices. Six drought tolerance indices, i.e., drought susceptibility index (DSI), geometric mean productivity (GMP), relative drought index (RDI), stress tolerance index (STI), tolerance index (TOL), and yield stability index (YSI) were calculated from least-square means (lsmeans) of grain yield (GY) and traits significantly (p < 0.001) correlated with grain yield (GY) under field drought stress (FDS) and field non-stress (FNS) conditions. GY, days to grain filling (DGF), soil plant analysis development (SPAD) chlorophyll meter, seeds per spike (SPS), harvest index (HI), and thousand kernel weight (TKW) were used to calculate DSI, GMP, RDI, STI, TOL, and YSI drought indices. Accessions, DW084, DW082, DZ004, C037, and DW092 were selected as the top five drought-tolerant based on DSI, RDI, TOL, and YSI combined ranking. Similarly, C010, DW033, DW080, DW124-2, and C011 were selected as stable accessions based on GMP and STI combined ranking. A total of 184 MTAs were detected linked with drought indices at -log10p ≥ 4.0,79 of which were significant at a false discovery rate (FDR) of 5%. Based on the linkage disequilibrium (LD, r 2 ≥ 0.2), six of the MTAs with a positive effect on GY-GMP were detected on chromosomes 2B, 3B, 4A, 5B, and 6B, explaining 14.72, 10.07, 26.61, 21.16, 21.91, and 22.21% of the phenotypic variance, respectively. The 184 MTAs were clustered into 102 QTLs. Chromosomes 1A, 2B, and 7A are QTL hotspots with 11 QTLs each. These chromosomes play a key role in drought tolerance and respective QTL may be exploited by marker-assisted selection for improving drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Kefyalew Negisho
- National Agricultural Biotechnology Research Center, Ethiopian Institute of Agricultural Research (EIAR), Holeta, Ethiopia
| | - Surafel Shibru
- Melkassa Research Center, Ethiopian Institute of Agricultural Research (EIAR), Melkassa, Ethiopia
| | - Andrea Matros
- Julius Kühn Institute (JKI), Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University, Halle, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI), Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Gwendolin Wehner
- Julius Kühn Institute (JKI), Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
9
|
QTL mapping for adult plant resistance to wheat stripe rust in M96-5 × Guixie 3 wheat population. J Appl Genet 2022; 63:265-279. [PMID: 35338429 PMCID: PMC8979893 DOI: 10.1007/s13353-022-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/02/2022]
Abstract
Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n = 228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies, and QTL analysis enabled to elucidate genetic architecture of wheat resistance to stripe rust. A total of 19 QTL for stripe rust resistance were mapped on 12 chromosomes using phenotypic data from multiple field tests over the course of 6 years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2A) and 6AL (Qyr.gaas.6A) were detected in six and five different environments, respectively; in both QTL, positive allele was contributed by GX3 variety. Qyr.gaas.2A was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.
Collapse
|
10
|
Identification and Validation of Quantitative Trait Loci Mapping for Spike-Layer Uniformity in Wheat. Int J Mol Sci 2022; 23:ijms23031052. [PMID: 35162974 PMCID: PMC8835109 DOI: 10.3390/ijms23031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Spike-layer uniformity (SLU), the consistency of the spike distribution in the vertical space, is an important trait. It directly affects the yield potential and appearance. Revealing the genetic basis of SLU will provide new insights into wheat improvement. To map the SLU-related quantitative trait loci (QTL), 300 recombinant inbred lines (RILs) that were derived from a cross between H461 and Chinese Spring were used in this study. The RILs and parents were tested in fields from two continuous years from two different pilots. Phenotypic analysis showed that H461 was more consistent in the vertical spatial distribution of the spike layer than in Chinese Spring. Based on inclusive composite interval mapping, four QTL were identified for SLU. There were two major QTL on chromosomes 2BL and 2DL and two minor QTL on chromosomes 1BS and 2BL that were identified. The additive effects of QSlu.sicau-1B, Qslu.sicau-2B-2, and QSlu.sicau-2D were all from the parent, H461. The major QTL, QSlu.sicau-2B-2 and QSlu.sicau-2D, were detected in each of the conducted trials. Based on the best linear unbiased prediction values, the two loci explained 23.97% and 15.98% of the phenotypic variation, respectively. Compared with previous studies, the two major loci were potentially novel and the two minor loci were overlapped. Based on the kompetitive allele-specific PCR (KASP) marker, the genetic effects for QSlu.sicau-2B-2 were validated in an additional RIL population. The genetic effects ranged from 26.65% to 32.56%, with an average value of 30.40%. In addition, QSlu.sicau-2B-2 showed a significant (p < 0.01) and positive influence on the spike length, spikelet number, and thousand kernel weight. The identified QTL and the developed KASP marker will be helpful for fine-mapping these loci, finally contributing to wheat breeding programs in a marker-assisted selection way.
Collapse
|
11
|
Arif MAR, Shokat S, Plieske J, Ganal M, Lohwasser U, Chesnokov YV, Kocherina NV, Kulwal P, Kumar N, McGuire PE, Sorrells ME, Qualset CO, Börner A. A SNP-based genetic dissection of versatile traits in bread wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:960-976. [PMID: 34218494 DOI: 10.1111/tpj.15407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
The continuous increase in global population prompts increased wheat production. Future wheat (Triticum aestivum L.) breeding will heavily rely on dissecting molecular and genetic bases of wheat yield and related traits which is possible through the discovery of quantitative trait loci (QTLs) in constructed populations, such as recombinant inbred lines (RILs). Here, we present an evaluation of 92 RILs in a bi-parental RIL mapping population (the International Triticeae Mapping Initiative Mapping Population [ITMI/MP]) using newly generated phenotypic data in 3-year experiments (2015), older phenotypic data (1997-2009), and newly created single nucleotide polymorphism (SNP) marker data based on 92 of the original RILs to search for novel and stable QTLs. Our analyses of more than 15 unique traits observed in multiple experiments included analyses of 46 traits in three environments in the USA, 69 traits in eight environments in Germany, 149 traits in 10 environments in Russia, and 28 traits in four environments in India (292 traits in 25 environments) with 7584 SNPs (292 × 7584 = 2 214 528 data points). A total of 874 QTLs were detected with limit of detection (LOD) scores of 2.01-3.0 and 432 QTLs were detected with LOD > 3.0. Moreover, 769 QTLs could be assigned to 183 clusters based on the common markers and relative proximity of related QTLs, indicating gene-rich regions throughout the A, B, and D genomes of common wheat. This upgraded genotype-phenotype information of ITMI/MP can assist breeders and geneticists who can make crosses with suitable RILs to improve or investigate traits of interest.
Collapse
Affiliation(s)
- Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Sajid Shokat
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Jörg Plieske
- SGS Institut Fresenius GmbH TraitGenetics Section, Am Schwabeplan 1b, Stadt Seeland, OT Gatersleben, 06466, Germany
| | - Martin Ganal
- SGS Institut Fresenius GmbH TraitGenetics Section, Am Schwabeplan 1b, Stadt Seeland, OT Gatersleben, 06466, Germany
| | - Ulrike Lohwasser
- Resources Genetics and Reproduction Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Seeland, OT Gatersleben, 06466, Germany
| | - Yuriy V Chesnokov
- Laboratory of Ecological Genetics and Plant Breeding, Agrophysical Research Institute, Grazhdanskiy pr. 14, St. Petersburg, 195220, Russia
| | - Nataliya V Kocherina
- Laboratory of Ecological Genetics and Plant Breeding, Agrophysical Research Institute, Grazhdanskiy pr. 14, St. Petersburg, 195220, Russia
| | - Pawan Kulwal
- State Level Biotechnology Centre, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra, 413 722, India
| | - Neeraj Kumar
- Department of Plant and Environmental Sciences, Clemson University, 100C Biosystems Research Complex 105 Collings Street, Clemson, SC, 29634-0141, USA
| | - Patrick E McGuire
- Plant Sciences Department, University of California, Mail Stop 3, One Shields Avenue, Davis, CA, 95616, USA
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Calvin O Qualset
- Plant Sciences Department, University of California, Mail Stop 3, One Shields Avenue, Davis, CA, 95616, USA
| | - Andreas Börner
- Resources Genetics and Reproduction Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Seeland, OT Gatersleben, 06466, Germany
| |
Collapse
|
12
|
Arif MAR, Liaqat M, Imran M, Waheed MQ, Arif A, Singh S, Shokat S. Genetic basis of some physiological traits and yield in early and late sowing conditions in bread wheat (Triticum aestivum L.). J Appl Genet 2021; 62:601-605. [PMID: 34114178 DOI: 10.1007/s13353-021-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The rise in human population necessitates the use of all available tools to enhance wheat productivity. In this regard, pre-breeding has mobilized novel underutilized genetic variation into breeding programs. However, this germplasm needs to be characterized for its efficient utilization. This investigation was initiated to evaluate the early and late sown wheat pre-breeding germplasm for physiology- and yield-related traits and to associate the mapped SNPs using association mapping approach. Our results indicate that the germplasm performed better in early sowing in comparison to late planting where grain yield (Yd) was found positively correlated with water use efficiency (WUE), heading time, and chlorophyll contents (Chl). We discovered a total of 210 associations involving 155 SNPs. Taking into consideration either early or late sowing and the mean values, only 12 marker traits were associated with trait germination, plant height, stomatal conductance, transpiration rate, Chl, carotenoids, and Yd. Our correlations and mapping results indicate that higher WUE along with Chl can be targeted as indirect physiological markers to enhance wheat yield.
Collapse
Affiliation(s)
- Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan.
| | - Maryam Liaqat
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Imran
- Saline Agriculture Group, Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Qandeel Waheed
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | - Anjuman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | | | - Sajid Shokat
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
13
|
Akram S, Arif MAR, Hameed A. A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). J Appl Genet 2020; 62:27-41. [PMID: 33128382 DOI: 10.1007/s13353-020-00593-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023]
Abstract
Wheat is a foremost food grain of Pakistan and occupies a vital position in agricultural policies of the country. Wheat demand will be increased by 60% by 2050 which is a serious concern to meet this demand. Conventional breeding approaches are not enough to meet the demand of growing human population. It is paramount to integrate underutilized genetic diversity into wheat gene pool through efficient and accurate breeding tools and technology. In this study, we present the genetic analysis of a 312 diverse pre-breeding lines using DArT-seq SNPs seeking to elucidate the genetic components of emergence percentage, heading time, plant height, lodging, thousand kernel weight, and yield (Yd) which resulted in detection of 201 significant (p value < 10-3) and 61 highly significant associations (p value < 1.45 × 10-4). More importantly, chromosomes 1B and 2A carried loci linked to Yd in two different seasons, and an increase of up to 8.20% is possible in Yd by positive allele mining. We identified seven lines with > 4 positive alleles for Yd whose pedigree carried Aegilops squarrosa as one of the parents providing evidence that Aegilops species, apart from imparting resistance against biotic stresses, may also provide alleles for yield enhancement.
Collapse
Affiliation(s)
- Saba Akram
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Mian Abdur Rehman Arif
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan.
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
14
|
Arriagada O, Marcotuli I, Gadaleta A, Schwember AR. Molecular Mapping and Genomics of Grain Yield in Durum Wheat: A Review. Int J Mol Sci 2020; 21:ijms21197021. [PMID: 32987666 PMCID: PMC7582296 DOI: 10.3390/ijms21197021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period. For these reasons, and due to recurrent disease epidemics, Mediterranean wheat productivity often remains under potential levels. Many studies, using both linkage analysis (LA) and a genome-wide association study (GWAS), have identified the genomic regions controlling the grain yield and the associated markers that can be used for marker-assisted selection (MAS) programs. Here, we have summarized all the current studies identifying quantitative trait loci (QTLs) and/or candidate genes involved in the main traits linked to grain yield: kernel weight, number of kernels per spike and number of spikes per unit area.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, 306-22 Santiago, Chile;
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70121 Bari, Italy; (I.M.); (A.G.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70121 Bari, Italy; (I.M.); (A.G.)
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, 306-22 Santiago, Chile;
- Correspondence: ; Tel.: +56-223544123
| |
Collapse
|