1
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
2
|
Shen Y. Pathogenesis and Mechanism of Uremic Vascular Calcification. Cureus 2024; 16:e64771. [PMID: 39026575 PMCID: PMC11255132 DOI: 10.7759/cureus.64771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
This review elucidates the modeling and mechanistic studies of vascular calcification in chronic kidney disease - mineral and bone disorder. In patients with chronic kidney disease, metabolic abnormalities in uremic toxins, including phosphate and indole sulfate, are closely associated with vascular calcification. Vitamin K, vascular circadian clock, and autophagy are also key factors involved in vascular calcification. Furthermore, communication between endothelial cells and smooth muscle cells also plays a pivotal role in the regulation of this process. Together, these factors accelerate vascular calcification progression and increase the risk of cardiovascular events. Therefore, timely intervention for vascular calcification is essential for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yingjing Shen
- Nephrology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, CHN
| |
Collapse
|
3
|
Desai SR, Ko YA, Liu C, Hafeez Z, Park J, Faaborg-Andersen C, Alvi Z, Alras Z, Alkhoder AA, Martini A, Varughese A, Ejaz K, Cheung B, Wang M, Gold DA, Gold ME, Jain V, Vatsa N, Islam SJ, Almuwaqqat Z, Dhindsa DS, Mehta A, Kim JH, Wilson P, Waller EK, Vaccarino V, Quyyumi AA. Vitamin D Deficiency, Inflammation, and Diminished Endogenous Regenerative Capacity in Coronary Heart Disease. JACC. ADVANCES 2024; 3:100804. [PMID: 38939377 PMCID: PMC11198268 DOI: 10.1016/j.jacadv.2023.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 06/29/2024]
Abstract
Background Vitamin D deficiency (VDD) is associated with coronary heart disease (CHD) and poor outcomes, but supplementation does not improve prognosis. VDD has been implicated in and may promote greater risk through inflammation and impaired progenitor cell function. Objectives The authors examined VDD, high-sensitivity C-reactive protein (hsCRP), circulating progenitor cell (CPC) counts, and outcomes in patients with CHD. They hypothesized that the higher risk with VDD is mediated by inflammation and impaired regenerative capacity. Methods A total of 5,452 individuals with CHD in the Emory Cardiovascular Biobank had measurement of 25-hydroxyvitamin D, subsets of whom had hsCRP measurements and CPCs estimated as CD34-expressing mononuclear cell counts. Findings were validated in an independent cohort. 25-hydroxyvitamin D <20 ng/mL was considered VDD. Cox and Fine-Gray models determined associations between marker levels and: 1) all-cause mortality; 2) cardiovascular mortality; and 3) major adverse cardiovascular events, a composite of adverse CHD outcomes. Results VDD (43.6% of individuals) was associated with higher adjusted cardiovascular mortality (HR: 1.57, 95% CI: 1.09-2.28). There were significant interactions between VDD and hsCRP and CPC counts in predicting cardiovascular mortality. Individuals with both VDD and elevated hsCRP had the greatest risk (HR: 2.82, 95% CI: 2.16-3.67). Only individuals with both VDD and low CPC counts were at high risk (HR: 2.25, 95% CI: 1.46-3.46). These findings were reproduced in the validation cohort. Conclusions VDD predicts adverse outcomes in CHD. Those with VDD, inflammation and/or diminished regenerative capacity are at a significantly greater risk of cardiovascular mortality. Whether targeted supplementation in these high-risk groups improves risk warrants further study.
Collapse
Affiliation(s)
- Shivang R. Desai
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi-An Ko
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chang Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zaki Hafeez
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Christian Faaborg-Andersen
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zain Alvi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zahran Alras
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ayman A. Alkhoder
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afif Martini
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anil Varughese
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kiran Ejaz
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian Cheung
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maggie Wang
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel A. Gold
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew E. Gold
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vardhmaan Jain
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nishant Vatsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shabatun J. Islam
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zakaria Almuwaqqat
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Devinder S. Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- VCU Health Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jonathan H. Kim
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter Wilson
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Viola Vaccarino
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Arshed A. Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kim MS, Lee JS, Chung SJ, Soh Y. Association between Vitamin D and Short-Term Functional Outcomes in Acute Ischemic Stroke. Nutrients 2023; 15:4957. [PMID: 38068815 PMCID: PMC10708110 DOI: 10.3390/nu15234957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin D (Vit D) affects musculoskeletal performance and central nervous system neuroprotection. We aimed to investigate the association between serum Vit D levels and short-term functional outcomes in patients with acute ischemic stroke. This study involved patients with acute ischemic stroke confirmed on brain MRI. The National Institutes of Health Stroke Scale (NIHSS) was used to assess initial stroke severity upon admission. We evaluated the functional outcomes using the Berg Balance Scale (BBS), Manual Function Test (MFT), Korean Mini-Mental State Examination (K-MMSE), Korean version of the modified Barthel Index (K-MBI) within three weeks from the onset of stroke, and modified Rankin Scale (mRS) score at discharge. Overall, 192 patients were finally included and divided into three groups: Vit D sufficient (n = 28), insufficient (n = 49), and deficient (n = 115). Multivariate analysis showed that the Vit D deficient group presented with a higher risk of initially severe stroke (p = 0.025) and poor functional outcomes on the BBS (p = 0.048), MFT (p = 0.017), K-MMSE (p = 0.001), K-MBI (p = 0.003), and mRS (p = 0.032) compared to the Vit D sufficient group. Vit D deficiency may be associated with severe initial stroke and poor short-term post-stroke functional outcomes.
Collapse
Affiliation(s)
- Min-Su Kim
- Department of Physical Medicine & Rehabilitation, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-S.K.); (S.J.C.)
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Sung Joon Chung
- Department of Physical Medicine & Rehabilitation, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-S.K.); (S.J.C.)
| | - Yunsoo Soh
- Department of Physical Medicine & Rehabilitation, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-S.K.); (S.J.C.)
| |
Collapse
|
5
|
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z. Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells. Front Med (Lausanne) 2023; 10:1193660. [PMID: 37469665 PMCID: PMC10352799 DOI: 10.3389/fmed.2023.1193660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. Vascular calcification (VC), the deposition of calcium and phosphate within the arterial wall, is an important characteristic of AS natural history. However, medial arterial calcification (MAC) differs from intimal calcification and cannot simply be explained as the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are directly involved in AS and VC processes. Understanding the communication between ECs and VSMCs is critical in revealing mechanisms underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular messengers in kinds of physiological processes and pathological progression. Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The effects of ncRNAs have not been comprehensively understood, especially encapsulated in EVs. Some ncRNAs have demonstrated significant roles in AS and VC, but it remains unclear the functions of the majority ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chongmei Liu
- Department of Pathology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Zhou Y, Chen Y, Yin G, Xie Q. Calciphylaxis and its co-occurrence with connective tissue diseases. Int Wound J 2023; 20:1316-1327. [PMID: 36274216 PMCID: PMC10031236 DOI: 10.1111/iwj.13972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 03/23/2023] Open
Abstract
Calciphylaxis, also known as calcific uremic arteriopathy, is a rare calcification syndrome that presents as ischemic skin necrosis and severe pain. It has a high mortality rate and is characterised by calcification of the small and medium arteries and micro-thrombosis. Calciphylaxis mainly occurs in patients with end-stage renal disease. In recent years, there have been an increasing number of cases of calciphylaxis associated with connective tissue diseases. Given the absence of clear diagnostic criteria for calciphylaxis thus far, an early diagnosis is crucial for designing an effective multidisciplinary treatment plan. In this article, we review the research progress on calciphylaxis and describe its characteristics in the context of connective tissue diseases.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
8
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
9
|
Vascular Calcification Is Associated with Fetuin-A and Cortical Bone Porosity in Stone Formers. J Pers Med 2022; 12:jpm12071120. [PMID: 35887617 PMCID: PMC9319706 DOI: 10.3390/jpm12071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Nephrolithiasis has been associated with bone loss and vascular calcification (VC), reflecting abnormal extraosseous calcium deposition. Fetuin-A (Fet-A) acts as a potent inhibitor of ectopic mineralization. The aim of the present study was to evaluate the prevalence of VC in stone formers (SF) and non-stone formers (NSF) and to investigate potential determinants of VC among SF, including circulating levels of Fet-A and bone microarchitecture parameters. Methods: Abdominal aortic calcification (AAC) was assessed using available computed tomography in SF and in age-, sex-, and BMI-matched NSF (potential living kidney donors). Serum Fet-A was measured in stored blood samples from SF. Bone microarchitecture parameters were obtained as a post hoc analysis of a cross-sectional cohort from young SF evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: A total of 62 SF (38.0 [28.0−45.3] years old) and 80 NSF (40.0 [37.0−45.8] years old) were included. There was no significant difference in AAC scores between SF and NSF. However, when dividing SF according to mean AAC score, below <5.8% (n = 33) or above ≥5.8% (n = 29), SF with higher AAC presented significantly higher BMI and tibial cortical porosity (Ct.Po) and significantly lower serum HDL, klotho, Fet-A, and eGFR. Urinary calcium did not differ between groups, but fractional excretion of phosphate was higher in the former. Upon multivariate regression, BMI, serum Fet-A, and tibial Ct.Po remained independently associated with AAC. Conclusions: This study suggests an association between reduced circulating Fet-A levels and increased bone Ct.Po with VC in SF.
Collapse
|
10
|
Calore A, Hadavi D, Honing M, Albillos-Sanchez A, Mota C, Bernaerts K, Harings J, Moroni L. CHOLECALCIFEROL AS BIOACTIVE PLASTICIZER OF HIGH Mw PDLLA SCAFFOLDS FOR BONE REGENERATION. Tissue Eng Part C Methods 2022; 28:335-350. [PMID: 35323028 DOI: 10.1089/ten.tec.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Synthetic thermoplastic polymers are a widespread choice as material candidates for scaffolds for tissue engineering (TE), thanks to their ease of processing and tunable properties with respect to biological polymers. These features made them largely employed in melt-extrusion based additive manufacturing (AM), with particular application in hard-tissue engineering. In this field, high molecular weight (Mw) polymers ensuring entanglement network strength are often favorable candidates as scaffold materials because of their enhanced mechanical properties compared to lower Mw grades. However, this is accompanied by high viscosities once processed in molten conditions, which requires driving forces not always accessible technically or compatible with often chemically non-stabilized biomedical grades. When possible, this is circumvented by increasing the operating temperature, which often results in polymer chain scission and consequent degradation of properties. Additionally, synthetic polymers are mostly considered bioinert compared to biological materials and additional processing steps are often required to make them favorable for tissue regeneration. In this study, we report the plasticization of a common thermoplastic polymer with cholecalciferol, the metabolically inactive form of vitamin D3. Plasticization of the polymer allowed us to reduce its melt viscosity, and therefore the energy requirements (mechanical (torque) and heat (temperature)) for extrusion, limiting ultimately polymer degradation. Additionally, we evaluated the effect of cholecalciferol, which is more easily available than its active counterpart, on the osteogenic differentiation of mesenchymal stromal cells (hMSCs). Results indicated that cholecalciferol supported osteogenic differentiation more than the osteogenic culture medium, suggesting that hMSCs possess the enzymatic toolbox for Vitamin D3 (VD3) metabolism.
Collapse
Affiliation(s)
- Andrea Calore
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht, Netherlands;
| | - Darya Hadavi
- Maastricht University, M4I Maastricht Multimodal Molecular Imaging Institute , Maastricht, Netherlands;
| | - Maarten Honing
- Maastricht University, M4I Maastricht Multimodal Molecular Imaging Institute , Maastricht, Netherlands;
| | - Ane Albillos-Sanchez
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, Netherlands;
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, Netherlands;
| | - Katrien Bernaerts
- Maastricht University, AMIBM Aachen-Maastricht Institute for Biobased Materials , Maastricht, Netherlands;
| | - Jules Harings
- Maastricht University, AMIBM Aachen-Maastricht Institute for Biobased Materials , Maastricht, Netherlands;
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Uniersiteitsingel, 40, Maastricht, Netherlands, 6229ER;
| |
Collapse
|
11
|
Liu Y, Zhang S, Xue Z, Zhou X, Tong L, Liao J, Pan H, Zhou S. Bone mesenchymal stem cells-derived miR-223-3p-containing exosomes ameliorate lipopolysaccharide-induced acute uterine injury via interacting with endothelial progenitor cells. Bioengineered 2021; 12:10654-10665. [PMID: 34738867 PMCID: PMC8810142 DOI: 10.1080/21655979.2021.2001185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) have been used for the treatment of acute uterine injury (AUI)-induced intrauterine adhesion (IUA) via interacting with the endothelial progenitor cells (EPCs), and BMSCs-derived exosomes (BMSCs-exo) may be the key regulators for this process. However, the underlying mechanisms have not been studied. Based on the existed literatures, lipopolysaccharide (LPS) was used to induce AUI in mice models and EPCs to mimic the realistic pathogenesis of IUA in vivo and in vitro. Our data suggested that LPS induced apoptotic and pyroptotic cell death in mice uterine horn tissues and EPCs, and the clinical data supported that increased levels of pro-inflammatory cytokines IL-18 and IL-1β were also observed in IUA patients' serum samples, and silencing of NLRP3 rescued cell viability in LPS-treated EPCs. Next, the LPS-treated EPCs were respectively co-cultured with BMSCs in the Transwell system and BMSCs-exo, and the results hinted that both BMSCs and BMSCs-exo reversed the promoting effects of LPS treatment-induced cell death in EPCs. Then, we screened out miR-223-3p, as the upstream regulator for NLRP3, was enriched in BMSCs-exo, and BMSCs-exo inactivated NLRP3-mediated cell pyroptosis in EPCs via delivering miR-223-3p. Interestingly, upregulation of miR-223-3p attenuated LPS-induced cell death in EPCs. Collectively, we concluded that BMSCs-exo upregulated miR-223-3p to degrade NLRP3 in EPCs, which further reversed the cytotoxic effects of LPS treatment on EPCs to ameliorate LPS-induced AUI.
Collapse
Affiliation(s)
- Yana Liu
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Shihong Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Zhiwei Xue
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Xiaoxia Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Lin Tong
- Department of Obstetrics and Gynecology, Minerva Hospital for Women and Children, Chengdu, Sichuan, China
| | - Jiachen Liao
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Huan Pan
- Department of Obstetrics and Gynecology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| |
Collapse
|
12
|
Pierce JL, Perrien DS. Do Interactions of Vitamin D 3 and BMP Signaling Hold Implications in the Pathogenesis of Fibrodysplasia Ossificans Progressiva? Curr Osteoporos Rep 2021; 19:358-367. [PMID: 33851285 PMCID: PMC8515998 DOI: 10.1007/s11914-021-00673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Fibrodysplasia ossificans progressiva (FOP) is a debilitating rare disease known for episodic endochondral heterotopic ossification (HO) caused by gain-of-function mutations in ACVR1/ALK2. However, disease severity varies among patients with identical mutations suggesting disease-modifying factors, including diet, may have therapeutic implications. The roles of vitamin D3 in calcium metabolism and chondrogenesis are known, but its effects on BMP signaling and chondrogenesis are less studied. This review attempts to assess the possibility of vitamin D's effects in FOP by exploring relevant intersections of VD3 with mechanisms of FOP flares. RECENT FINDINGS In vitro and in vivo studies suggest vitamin D suppresses inflammation, while clinical studies suggest that vitamin D3 protects against arteriosclerosis and inversely correlates with non-genetic intramuscular HO. However, the enhancement of chondrogenesis, BMP signaling, and possibly Activin A expression by vitamin D may be more relevant in FOP. There appears to be little potential for vitamin D to reduce HO in FOP, but testing the potential for excess vitamin D to promote HO may be warranted.
Collapse
Affiliation(s)
- Jessica L Pierce
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMRB 1027, Atlanta, GA, 30232, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMRB 1027, Atlanta, GA, 30232, USA.
| |
Collapse
|
13
|
Chao CT, Lee SY, Wang J, Chien KL, Hung KY. The risk trajectory of different cardiovascular morbidities associated with chronic kidney disease among patients with newly diagnosed diabetes mellitus: a propensity score-matched cohort analysis. Cardiovasc Diabetol 2021; 20:86. [PMID: 33894776 PMCID: PMC8070330 DOI: 10.1186/s12933-021-01279-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Background Chronic kidney disease (CKD) introduces an increased cardiovascular risk among patients with diabetes mellitus (DM). The risk and tempo of cardiovascular diseases may differ depending upon their type. Whether CKD differentially influences the risk of developing each cardiovascular morbidity in patients with newly diagnosed DM remains unexplored. Methods We identified patients with incident DM from the Longitudinal Cohort of Diabetes Patients (LCDP) cohort (n = 429,616), and uncovered those developing CKD after DM and their propensity score-matched counterparts without. After follow-up, we examined the cardiovascular morbidity-free rates of patients with and without CKD after DM, followed by Cox proportional hazard regression analyses. We further evaluated the cumulative risk of developing each outcome consecutively during the study period. Results From LCDP, we identified 55,961 diabetic patients with CKD and matched controls without CKD. After 4.2 years, patients with incident DM and CKD afterward had a significantly higher risk of mortality (hazard ratio [HR] 1.1, 95% confidence interval [CI] 1.06–1.14), heart failure (HF) (HR 1.282, 95% CI 1.19–1.38), acute myocardial infarction (AMI) (HR 1.16, 95% CI 1.04–1.3), and peripheral vascular disease (PVD) (HR 1.277, 95% CI 1.08–1.52) compared to those without CKD. The CKD-associated risk of mortality, HF and AMI became significant soon after DM occurred and remained significant throughout follow-up, while the risk of PVD conferred by CKD did not emerge until 4 years later. The CKD-associated risk of ischemic, hemorrhagic stroke and atrial fibrillation remained insignificant. Conclusions The cardiovascular risk profile among incident DM patients differs depending on disease type. These findings can facilitate the selection of an optimal strategy for early cardiovascular care for newly diagnosed diabetic patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01279-6.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Neprology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Ying Lee
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Jui Wang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Hung
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Hu W, Wu R, Gao C, Liu F, Zeng Z, Zhu Q, Chen J, Cheng S, Yu K, Qian Y, Zhao J, Zhong S, Li Q, Wang L, Liu X, Wang J. Knockdown of estrogen-related receptor α inhibits valve interstitial cell calcification in vitro by regulating heme oxygenase 1. FASEB J 2021; 35:e21183. [PMID: 33184978 DOI: 10.1096/fj.202001588rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in adults. The cellular mechanisms of CAVD are still unknown, but accumulating evidence has revealed that osteogenic differentiation of human valve interstitial cells (hVICs) plays an important role in CAVD. Thus, we aimed to investigate the function of estrogen-related receptor α (ERRα) in the osteogenic differentiation of hVICs. We found that the level of ERRα was significantly increased in CAVD samples compared to normal controls. In addition, ERRα was significantly upregulated during hVIC osteogenic differentiation in vitro. Gain- and loss-of-function experiments were performed to identify the function of ERRα in hVIC calcification in vitro. Inhibition of endogenous ERRα attenuated hVIC calcification, whereas overexpression of ERRα in hVICs promoted this process. RNA sequencing results suggested that heme oxygenase-1 (Hmox1) was a downstream target of ERRα, which was further confirmed by western blotting. Additionally, we also found that downregulation of Hmox1 by shHmox1 efficiently reversed the inhibition of calcification induced by ERRα shRNA in hVICs. ChIP-qPCR and luciferase assays indicated that Hmox1 was negatively regulated by ERRα. We found that overexpression of Hmox1 or its substrates significantly inhibited hVIC calcification in vitro. In conclusion, we found that knockdown of ERRα can inhibit hVIC calcification through upregulating Hmox1 and that ERRα and Hmox1 are potential targets for the treatment of CAVD.
Collapse
Affiliation(s)
- Wangxing Hu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Rongrong Wu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Chenyang Gao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Feng Liu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Zhiru Zeng
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Qifeng Zhu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Si Cheng
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Kaixiang Yu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Yi Qian
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Shuhan Zhong
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Qingju Li
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Lihan Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
Denosumab Recovers Aortic Arch Calcification During Long-Term Hemodialysis. Kidney Int Rep 2020; 6:605-612. [PMID: 33732975 PMCID: PMC7938059 DOI: 10.1016/j.ekir.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/21/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Aortic arch calcification (AoAC) is related closely to mortality risk in patients undergoing maintenance dialysis. Recent experimentally obtained data suggest that osteoprotegerin/receptor activator for nuclear factor κB ligand signal transmission plays a role in de novo chondrogenic transition of vascular cells leading to calcification that is unrelated to bone metabolism. This study investigated the long-term effects of denosumab, an osteoprotegerin mimic peptide, on AoAC. Methods This study examined 58 patients with an 8 year vintage of dialysis at 1 center for observational study during 2009 to 2020. Denosumab was administered to 28 patients every 6 months. Blood chemical data were used. AoAC proportions were measured using a simple but computed tomography–equivalent computer-based chest X-ray analysis (calcified pieces of areas around the aorta). Results Blood chemical data of the control and denosumab groups that did not differ at the start showed differences of mineral metabolism after 30 months of observation. Remarkably, the AoAC proportion increased from 29.4% to 46.25% in the control group but decreased significantly from 25.0% to 20.0% (P < 0.01) in the denosumab group. Denosumab effects on decalcification were not observed 12 months after initiation. Conclusion We conclude that long-term use of denosumab is effective to reverse or treat AoAC in patients undergoing hemodialysis.
Collapse
|