1
|
Xing Y, Wang X. Precision Agriculture and Water Conservation Strategies for Sustainable Crop Production in Arid Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3184. [PMID: 39599396 PMCID: PMC11598231 DOI: 10.3390/plants13223184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The intensifying challenges posed by global climate change and water scarcity necessitate enhancements in agricultural productivity and sustainability within arid regions. This review synthesizes recent advancements in genetic engineering, molecular breeding, precision agriculture, and innovative water management techniques aimed at improving crop drought resistance, soil health, and overall agricultural efficiency. By examining cutting-edge methodologies, such as CRISPR/Cas9 gene editing, marker-assisted selection (MAS), and omics technologies, we highlight efforts to manipulate drought-responsive genes and consolidate favorable agronomic traits through interdisciplinary innovations. Furthermore, we explore the potential of precision farming technologies, including the Internet of Things (IoT), remote sensing, and smart irrigation systems, to optimize water utilization and facilitate real-time environmental monitoring. The integration of genetic, biotechnological, and agronomic approaches demonstrates a significant potential to enhance crop resilience against abiotic and biotic stressors while improving resource efficiency. Additionally, advanced irrigation systems, along with soil conservation techniques, show promise for maximizing water efficiency and sustaining soil fertility under saline-alkali conditions. This review concludes with recommendations for a further multidisciplinary exploration of genomics, sustainable water management practices, and precision agriculture to ensure long-term food security and sustainable agricultural development in water-limited environments. By providing a comprehensive framework for addressing agricultural challenges in arid regions, we emphasize the urgent need for continued innovation in response to escalating global environmental pressures.
Collapse
Affiliation(s)
| | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an 716000, China;
| |
Collapse
|
2
|
Escudero-Feliu J, Lima-Cabello E, Rodríguez de Haro E, Morales-Santana S, Jimenez-Lopez JC. Functional Association between Storage Protein Mobilization and Redox Signaling in Narrow-Leafed Lupin ( Lupinus angustifolius L.) Seed Germination and Seedling Development. Genes (Basel) 2023; 14:1889. [PMID: 37895238 PMCID: PMC10606504 DOI: 10.3390/genes14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), β (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-β-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (β and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.
Collapse
Affiliation(s)
- Julia Escudero-Feliu
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Elena Lima-Cabello
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Esther Rodríguez de Haro
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Sonia Morales-Santana
- Proteomic Research Unit, Biosanitary Research Institute of Granada (ibs.Granada), 18012 Granada, Spain;
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
3
|
Wawrzyńska A, Piotrowska J, Apodiakou A, Brückner F, Hoefgen R, Sirko A. The SLIM1 transcription factor affects sugar signaling during sulfur deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7362-7379. [PMID: 36099003 PMCID: PMC9730805 DOI: 10.1093/jxb/erac371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/12/2022] [Indexed: 06/08/2023]
Abstract
The homeostasis of major macronutrient metabolism needs to be tightly regulated, especially when the availability of one or more nutrients fluctuates in the environment. Both sulfur metabolism and glucose signaling are important processes throughout plant growth and development, as well as during stress responses. Still, very little is known about how these processes affect each other, although they are positively connected. Here, we showed in Arabidopsis that the crucial transcription factor of sulfur metabolism, SLIM1, is involved in glucose signaling during shortage of sulfur. The germination rate of the slim1_KO mutant was severely affected by high glucose and osmotic stress. The expression of SLIM1-dependent genes in sulfur deficiency appeared to be additionally induced by a high concentration of either mannitol or glucose, but also by sucrose, which is not only the source of glucose but another signaling molecule. Additionally, SLIM1 affects PAP1 expression during sulfur deficiency by directly binding to its promoter. The lack of PAP1 induction in such conditions leads to much lower anthocyanin production. Taken together, our results indicate that SLIM1 is involved in the glucose response by modulating sulfur metabolism and directly controlling PAP1 expression in Arabidopsis during sulfur deficiency stress.
Collapse
Affiliation(s)
| | - Justyna Piotrowska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Anastasia Apodiakou
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Franziska Brückner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Agnieszka Sirko
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Laloum D, Magen S, Soroka Y, Avin-Wittenberg T. Exploring the Contribution of Autophagy to the Excess-Sucrose Response in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23073891. [PMID: 35409249 PMCID: PMC8999498 DOI: 10.3390/ijms23073891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential intracellular eukaryotic recycling mechanism, functioning in, among others, carbon starvation. Surprisingly, although autophagy-deficient plants (atg mutants) are hypersensitive to carbon starvation, metabolic analysis revealed that they accumulate sugars under such conditions. In plants, sugars serve as both an energy source and as signaling molecules, affecting many developmental processes, including root and shoot formation. We thus set out to understand the interplay between autophagy and sucrose excess, comparing wild-type and atg mutant seedlings. The presented work showed that autophagy contributes to primary root elongation arrest under conditions of exogenous sucrose and glucose excess but not during fructose or mannitol treatment. Minor or no alterations in starch and primary metabolites were observed between atg mutants and wild-type plants, indicating that the sucrose response relates to its signaling and not its metabolic role. Extensive proteomic analysis of roots performed to further understand the mechanism found an accumulation of proteins essential for ROS reduction and auxin maintenance, which are necessary for root elongation, in atg plants under sucrose excess. The analysis also suggested mitochondrial and peroxisomal involvement in the autophagy-mediated sucrose response. This research increases our knowledge of the complex interplay between autophagy and sugar signaling in plants.
Collapse
|
5
|
Maniou FS, Bouranis DL, Ventouris YE, Chorianopoulou SN. Phenotypic Acclimation of Maize Plants Grown under S Deprivation and Implications to Sulfur and Iron Allocation Dynamics. PLANTS 2022; 11:plants11050703. [PMID: 35270173 PMCID: PMC8912738 DOI: 10.3390/plants11050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
The aim of this work was to study maize root phenotype under sulfur deficiency stress towards revealing potential correlations between the altered phenotypic traits and the corresponding dry mass, sulfur, and iron allocation within plants at the whole-plant level. The dynamics of root morphological and anatomical traits were monitored. These traits were then correlated with plant foliage traits along with dry mass and sulfur and iron allocation dynamics in the shoot versus root. Plants grown under sulfate deprivation did not seem to invest in new root axes. Crown roots presented anatomical differences in all parameters studied; e.g., more and larger xylem vessels in order to maximize water and nutrient transport in the xylem sap. In the root system of S-deficient plants, a reduced concentration of sulfur was observed, whilst organic sulfur predominated over sulfates. A reduction in total iron concentration was monitored, and differences in its subcellular localization were observed. As expected, S-deprivation negatively affected the total sulfur concentration in the aerial plant part, as well as greatly impacted iron allocation in the foliage. Phenotypic adaptation to sulfur deprivation in maize presented alterations mainly in the root anatomy; towards competent handling of the initial sulfur and the induced iron deficiencies.
Collapse
|
6
|
Tsochatzis E, Berggreen IE, Tedeschi F, Ntrallou K, Gika H, Corredig M. Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies. Molecules 2021; 26:molecules26247568. [PMID: 34946661 PMCID: PMC8708845 DOI: 10.3390/molecules26247568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Polystyrene (PS) is a plastic polymer extensively used for food packaging. PS is difficult to decompose and has low recycling rates, resulting in its accumulation in the environment, in the form of microplastic particles causing pollution and harming oceans and wildlife. Degradation of PS by mealworms (Tenebrio molitor) has been suggested as a possible biological strategy for plastic contamination; however, the biodegradation mechanism of PS by mealworms is poorly understood. It is hypothesized that the gut microbiome plays an important role in the degradation of PS by mealworms. This study carried out a comparative analysis of the gut microbiome of Tenebrio molitor larvae under different feeding strategies, and of the formation of degradation compounds (monomers, oligomers). A diet of bran:PS at 4:1 and 20:1 ratios was tested. The diet with the low ratio of bran:PS led to the presence of higher amounts of these compounds, compared to that with the high ratio. In addition, it was demonstrated that the addition of H2O significantly improved the biodegradation of PS monomer and oligomer residues, which could be identified only in the frass. The protein and nitrogen contents in insects’ biomass and frass varied amongst treatments. The diets resulted in differences in the gut microbiota, and three potential bacterial strains were identified as candidates involved in the biodegradation of PS.
Collapse
Affiliation(s)
- Emmanouil Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark;
- CiFOOD—Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +39-33-3539-0061
| | - Ida Elizabeth Berggreen
- Department of Animal Science, Aarhus University, Blichers Alle 20, Tjele, Foulum, 8830 Viborg, Denmark;
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark;
| | - Konstantina Ntrallou
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (K.N.); (H.G.)
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (K.N.); (H.G.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark;
- CiFOOD—Centre for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| |
Collapse
|
7
|
Zhang T, Xiao Z, Liu C, Yang C, Li J, Li H, Gao C, Shen W. Autophagy Mediates the Degradation of Plant ESCRT Component FREE1 in Response to Iron Deficiency. Int J Mol Sci 2021; 22:ijms22168779. [PMID: 34445480 PMCID: PMC8396019 DOI: 10.3390/ijms22168779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/06/2023] Open
Abstract
Multivesicular body (MVB)-mediated endosomal sorting and macroautophagy are the main pathways mediating the transport of cellular components to the vacuole and are essential for maintaining cellular homeostasis. The interplay of these two pathways remains poorly understood in plants. In this study, we show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT), essential for MVB biogenesis and plant growth, can be transported to the vacuole for degradation in response to iron deficiency. The vacuolar transport of ubiquitinated FREE1 protein is mediated by the autophagy pathway. As a consequence, the autophagy deficient mutants, atg5-1 and atg7-2, accumulate more endogenous FREE1 protein and display hypersensitivity to iron deficiency. Furthermore, under iron-deficient growth condition autophagy related genes are upregulated to promote the autophagic degradation of FREE1, thereby possibly relieving the repressive effect of FREE1 on iron absorption. Collectively, our findings demonstrate a unique regulatory mode of protein turnover of the ESCRT machinery through the autophagy pathway to respond to iron deficiency in plants.
Collapse
Affiliation(s)
- Tianrui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Zhidan Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
- Correspondence:
| |
Collapse
|
8
|
Distéfano AM, López GA, Setzes N, Marchetti F, Cainzos M, Cascallares M, Zabaleta E, Pagnussat GC. Ferroptosis in plants: triggers, proposed mechanisms, and the role of iron in modulating cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2125-2135. [PMID: 32918080 DOI: 10.1093/jxb/eraa425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instuto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
9
|
García MJ, Angulo M, García C, Lucena C, Alcántara E, Pérez-Vicente R, Romera FJ. Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:643585. [PMID: 33859661 PMCID: PMC8042388 DOI: 10.3389/fpls.2021.643585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 05/09/2023]
Abstract
To cope with P, S, or Fe deficiency, dicot plants, like Arabidopsis, develop several responses (mainly in their roots) aimed to facilitate the mobilization and uptake of the deficient nutrient. Within these responses are the modification of root morphology, an increased number of transporters, augmented synthesis-release of nutrient solubilizing compounds and the enhancement of some enzymatic activities, like ferric reductase activity (FRA) or phosphatase activity (PA). Once a nutrient has been acquired in enough quantity, these responses should be switched off to minimize energy costs and toxicity. This implies that they are tightly regulated. Although the responses to each deficiency are induced in a rather specific manner, crosstalk between them is frequent and in such a way that P, S, or Fe deficiency can induce responses related to the other two nutrients. The regulation of the responses is not totally known but some hormones and signaling substances have been involved, either as activators [ethylene (ET), auxin, nitric oxide (NO)], or repressors [cytokinins (CKs)]. The plant hormone ET is involved in the regulation of responses to P, S, or Fe deficiency, and this could partly explain the crosstalk between them. In spite of these crosslinks, it can be hypothesized that, to confer the maximum specificity to the responses of each deficiency, ET should act in conjunction with other signals and/or through different transduction pathways. To study this latter possibility, several responses to P, S, or Fe deficiency have been studied in the Arabidopis wild-type cultivar (WT) Columbia and in some of its ethylene signaling mutants (ctr1, ein2-1, ein3eil1) subjected to the three deficiencies. Results show that key elements of the ET transduction pathway, like CTR1, EIN2, and EIN3/EIL1, can play a role in the crosstalk among nutrient deficiency responses.
Collapse
Affiliation(s)
- María José García
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
- *Correspondence: Francisco Javier Romera
| |
Collapse
|
10
|
Astolfi S, Celletti S, Vigani G, Mimmo T, Cesco S. Interaction Between Sulfur and Iron in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670308. [PMID: 34354720 PMCID: PMC8329491 DOI: 10.3389/fpls.2021.670308] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/25/2021] [Indexed: 05/08/2023]
Abstract
It is well known that S interacts with some macronutrients, such as N, P, and K, as well as with some micronutrients, such as Fe, Mo, Cu, Zn, and B. From our current understanding, such interactions could be related to the fact that: (i) S shares similar chemical properties with other elements (e.g., Mo and Se) determining competition for the acquisition/transport process (SULTR transporter family proteins); (ii) S-requiring metabolic processes need the presence of other nutrients or regulate plant responses to other nutritional deficiencies (S-containing metabolites are the precursor for the synthesis of ethylene and phytosiderophores); (iii) S directly interacts with other elements (e.g., Fe) by forming complexes and chemical bonds, such as Fe-S clusters; and (iv) S is a constituent of organic molecules, which play crucial roles in plants (glutathione, transporters, etc.). This review summarizes the current state of knowledge of the interplay between Fe and S in plants. It has been demonstrated that plant capability to take up and accumulate Fe strongly depends on S availability in the growth medium in both monocots and dicot plants. Moreover, providing S above the average nutritional need enhances the Fe content in wheat grains, this beneficial effect being particularly pronounced under severe Fe limitation. On the other hand, Fe shortage induces a significant increase in the demand for S, resulting in enhanced S uptake and assimilation rate, similar to what happens under S deficiency. The critical evaluation of the recent studies on the modulation of Fe/S interaction by integrating old and new insights gained on this topic will help to identify the main knowledge gaps. Indeed, it remains a challenge to determine how the interplay between S and Fe is regulated and how plants are able to sense environmental nutrient fluctuations and then to adapt their uptake, translocation, assimilation, and signaling. A better knowledge of the mechanisms of Fe/S interaction might considerably help in improving crop performance within a context of limited nutrient resources and a more sustainable agriculture.
Collapse
Affiliation(s)
- Stefania Astolfi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
- *Correspondence: Stefania Astolfi,
| | - Silvia Celletti
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
- Tanja Mimmo,
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
11
|
Ran J, Hashimi SM, Liu JZ. Emerging Roles of the Selective Autophagy in Plant Immunity and Stress Tolerance. Int J Mol Sci 2020; 21:E6321. [PMID: 32878263 PMCID: PMC7503401 DOI: 10.3390/ijms21176321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a conserved recycling system required for cellular homeostasis. Identifications of diverse selective receptors/adaptors that recruit appropriate autophagic cargoes have revealed critical roles of selective autophagy in different biological processes in plants. In this review, we summarize the emerging roles of selective autophagy in both biotic and abiotic stress tolerance and highlight the new features of selective receptors/adaptors and their interactions with both the cargoes and Autophagy-related gene 8s (ATG8s). In addition, we review how the two major degradation systems, namely the ubiquitin-proteasome system (UPS) and selective autophagy, are coordinated to cope with stress in plants. We especially emphasize how plants develop the selective autophagy as a weapon to fight against pathogens and how adapted pathogens have evolved the strategies to counter and/or subvert the immunity mediated by selective autophagy.
Collapse
Affiliation(s)
- Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (J.R.); (S.M.H.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Sayed M. Hashimi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (J.R.); (S.M.H.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (J.R.); (S.M.H.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|