1
|
Balázs B, Stoean Vasile B, Molnár É, Fischer-Fodor E, Bălăcescu O, Borlan R, Focsan M, Grozav A, Achimaş-Cadariu P, Gál E, Gaina L. meso-Substituted AB 3-type phenothiazinyl porphyrins and their indium and zinc complexes photosensitising properties, cytotoxicity and phototoxicity on ovarian cancer cells. RSC Med Chem 2025; 16:747-766. [PMID: 39568597 PMCID: PMC11575637 DOI: 10.1039/d4md00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/27/2024] [Indexed: 11/22/2024] Open
Abstract
New meso-substituted AB3-type phenothiazinyl porphyrins and ferrocenylvinyl phenothiazinyl porphyrin were synthesised by Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions, respectively. The free porphyrins were further used in the synthesis of new indium(iii) or zinc(ii) porphyrin complexes. All porphyrins exhibit red fluorescence emission in solution, a property that remains unimpaired following internalisation in ovarian A2780 cancer cells, as evidenced by fluorescence microscopy images. The In(iii) phenothiazinyl porphyrin complexes show a higher quantum yield of fluorescence emission (2aΦ F = 30%, 4aΦ F = 29%, 5aΦ F = 28%) compared to the free base porphyrin precursors, or Zn(ii) complex 4b (Φ F = 10%). The potential of novel phenothiazinyl porphyrins to act as photosensitisers was evaluated using two distinct approaches. The first was through the measurement of the singlet oxygen quantum yield Φ Δ(1O2), while the second employed in vitro measurements of metabolic activity, oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf-2) activation and tumour necrosis factor-alpha (TNF-α) under both dark and light irradiation conditions. As reflected by the IC50 values, the most potent cytotoxicity of the phenothiazinyl porphyrins against the A2780 cells was observed for In(iii) ferrocenylvinyl phenothiazinyl porphyrin 4a (36.38 μM), the remaining compounds are less cytotoxic. The reduction in metabolic activity was observed in A2780 ovarian tumour cells treated with 4a and 6a and exposed to light compared to treatment in the absence of light. The oxidative stress, TNF-α and Nrf-2 transcription factor were particularly notable when A2780 cells were treated with 4a and subsequently photoirradiated, the oxidative stress was linked to the highest value of Φ Δ(1O2) recorded for 4a (60%).
Collapse
Affiliation(s)
- Brém Balázs
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Bianca Stoean Vasile
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Éva Molnár
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Eva Fischer-Fodor
- Institute of Oncology "Prof. Dr. Ion Chiricuta" RO-400015 Cluj-Napoca Romania
| | - Ovidiu Bălăcescu
- Institute of Oncology "Prof. Dr. Ion Chiricuta" RO-400015 Cluj-Napoca Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University 42 Treboniu Laurian Street 400271 Cluj-Napoca Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University 42 Treboniu Laurian Street 400271 Cluj-Napoca Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University 1 M. Kogalniceanu Street 400084 Cluj-Napoca Romania
| | - Adriana Grozav
- Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy Victor Babes 41 RO-400012 Cluj-Napoca Romania
| | - Patriciu Achimaş-Cadariu
- Institute of Oncology "Prof. Dr. Ion Chiricuta" RO-400015 Cluj-Napoca Romania
- Department of Oncological Surgery and Gynecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy RO-400012 Cluj-Napoca Romania
| | - Emese Gál
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| | - Luiza Gaina
- Research Center on Fundamental and Applied Heterochemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University 11 Arany Janos str RO-400028 Cluj-Napoca Romania +40 264 593833
| |
Collapse
|
2
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
3
|
Yao S, Wang Y, Mou X, Yang X, Cai Y. Recent advances of photoresponsive nanomaterials for diagnosis and treatment of acute kidney injury. J Nanobiotechnology 2024; 22:676. [PMID: 39501286 PMCID: PMC11536863 DOI: 10.1186/s12951-024-02906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/04/2024] [Indexed: 11/09/2024] Open
Abstract
Non-invasive imaging in the near-infrared region (NIR) offers enhanced tissue penetration, reduced spontaneous fluorescence of biological tissues, and improved signal-to-noise ratio (SNR), rendering it more suitable for in vivo deep tissue imaging. In recent years, a plethora of NIR photoresponsive materials have been employed for disease diagnosis, particularly acute kidney injury (AKI). These encompass inorganic nonmetallic materials such as carbon (C), silicon (Si), phosphorus (P), and upconversion nanoparticles (UCNPs); precious metal nanoparticles like gold and silver; as well as small molecule and organic semiconductor polymer nanoparticles with near infrared responsiveness. These materials enable effective therapy triggered by NIR light and serve as valuable tools for monitoring AKI in living systems. The review provides a concise overview of the current state and pathological characteristics of AKI, followed by an exploration of the application of nanomaterials and photoresponsive nanomaterials in AKI. Finally, it presents the design challenges and prospects associated with NIR photoresponsive materials in AKI.
Collapse
Affiliation(s)
- Shijie Yao
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yinan Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Dos Anjos Oliveira TM, Teles AV, Gambarini ML, de Oliveira Ribeiro K, Ducas ESA, Dos Santos KJG, Monteiro CJP, de Paula Silveira Lacerda E, Franchi LP, Gonçalves PJ, de Souza GRL. Photodisinfection of Alphaherpesvirus 1 in bovine semen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113036. [PMID: 39332312 DOI: 10.1016/j.jphotobiol.2024.113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Reproductive biotechnologies are widely consolidated as a methodology in cattle breeding and have an important impact on the genetic improvement of cattle herds. Semen is an important source of dissemination of pathogenic microorganisms during reproductive procedures. To ensure the sanitary quality of the semen, it is essential to consider the presence of various microorganisms including viruses. One of the main viral agents of reproductive interest is Bovine Alphaherpesvirus 1 (BoHV-1), the etiological agent responsible for bovine rhinotracheitis and vulvovaginitis and frequently associated with reproductive efficiency of matrices and bulls. In artificial insemination centers, semen treatment is generally based only on the use of antibiotics, ignoring the possibility of inactivating other non-bacterial infectious agents. In this context, photodisinfection emerges as a promising alternative to inactivate a wide range of microorganisms, offering a complementary or substitution approach to those conventional semen treatment methods. In this work, we evaluated the use of four halogenated sulfonated porphyrins as potential photosensitizers (PSs) for photodynamic inactivation of Bovine Alphaherpesvirus I (BoHV-1) for bovine semen disinfection. The PSs were synthesized and photophysical parameters, such as UV-Vis absorption spectra and singlet oxygen quantum yield (ΦΔ) were presented. Photoinactivation of BoHV-1 was first shown in cell culture and then confirmed in artificially infected bovine semen and then the phototoxicity of PSs against spermatozoa was evaluated. All PSs were effective in BoHV-1 inactivation; however, the photosensitizer containing two chlorine atoms, showed to be more efficient due to the shorter time required for complete viral inactivation. The slight alterations in sperm kinetics were observed, but remained within those acceptable by regulatory agencies for animal reproduction. Although the methodology used in this work only included bovine semen, we emphasize that the proposed photodisinfection methodology can be adapted and applied to a wide range of biological materials and microorganisms of animal or human interest.
Collapse
Affiliation(s)
| | - Amanda Vargas Teles
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Maria Lúcia Gambarini
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | - Carlos Jorge Pereira Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | - Pablo José Gonçalves
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil; Centro de Excelência em Hidrogênio e Tecnologias Energéticas Sustentáveis (CEHTES), Goiânia, GO, Brazil.
| | - Guilherme Rocha Lino de Souza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
Francis S, Salim S, Rajith L. Fluorescent Determination of Uric Acid Based on Porphyrin and ZnCo 2O 4 Nanocomposite. J Fluoresc 2024:10.1007/s10895-024-03986-1. [PMID: 39425835 DOI: 10.1007/s10895-024-03986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Advances in porphyrin chemistry have provided exciting technologies in the field of optical biosensing. Herein, we have synthesized 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and porous Zn0.1Co2O4 nanorods using a simple one-pot hydrothermal method. The obtained TCPP- Zn0.1Co2O4 composite was then used for the development of a novel optical sensor for the determination of uric acid (UA), which is an important biomarker in human urine, serum or saliva for the clinical diagnosis of hyperuricemia and hypouricemia, etc. TCPP-Zn0.1Co2O4 composite was characterized using SEM, TEM, EDAX, PXRD, FT-IR, UV-Visible, and NMR spectroscopic techniques. The fluorescence emission spectral analysis of TCPP-Zn0.1Co2O4 was then investigated for potential applications in the detection of uric acid via the fluorescence quenching mechanism. The designed sensor showed a linear response towards the uric acid in the concentration range of 0.99 to 5.2 nM. The optical sensor exhibits a sensitive response to uric acid with a detection limit of 0.015 nM. The sensor was employed to quantify UA in spiked human urine samples and artificial urine with satisfactory results.
Collapse
Affiliation(s)
- Shijo Francis
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Shamna Salim
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Leena Rajith
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India.
| |
Collapse
|
6
|
Pucelik B, Barzowska A, Sułek A, Werłos M, Dąbrowski JM. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Photochem Photobiol Sci 2024; 23:539-560. [PMID: 38457119 DOI: 10.1007/s43630-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
- Sano Centre for Computational Medicine, Kraków, Poland.
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Sano Centre for Computational Medicine, Kraków, Poland
| | - Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
7
|
Bandyopadhyay S, Zhao Z, East AK, Hernandez RT, Forzano JA, Shapiro BA, Yadav AK, Swartchick CB, Chan J. Activity-Based Nitric Oxide-Responsive Porphyrin for Site-Selective and Nascent Cancer Ablation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9680-9689. [PMID: 38364813 DOI: 10.1021/acsami.3c15604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Nitric oxide (NO) generated within the tumor microenvironment is an established driver of cancer progression and metastasis. Recent efforts have focused on leveraging this feature to target cancer through the development of diagnostic imaging agents and activatable chemotherapeutics. In this context, porphyrins represent an extraordinarily promising class of molecules, owing to their demonstrated use within both modalities. However, the remodeling of a standard porphyrin to afford a responsive chemical that can distinguish elevated NO from physiological levels has remained a significant research challenge. In this study, we employed a photoinduced electron transfer strategy to develop a panel of NO-activatable porphyrin photosensitizers (NOxPorfins) augmented with real-time fluorescence monitoring capabilities. The lead compound, NOxPorfin-1, features an o-phenylenediamine trigger that can effectively capture NO (via N2O3) to yield a triazole product that exhibits a 7.5-fold enhancement and a 70-fold turn-on response in the singlet oxygen quantum yield and fluorescence signal, respectively. Beyond demonstrating excellent in vitro responsiveness and selectivity toward NO, we showcase the potent photodynamic therapy (PDT) effect of NOxPorfin-1 in murine breast cancer and human non-small cellular lung cancer cells. Further, to highlight the in vivo efficacy, two key studies were executed. First, we utilized NOxPorfin-1 to ablate murine breast tumors in a site-selective manner without causing substantial collateral damage to healthy tissue. Second, we established a nascent human lung cancer model to demonstrate the unprecedented ability of NOxPorfin-1 to halt tumor growth and progression completely. The results of the latter study have tremendous implications for applying PDT to target metastatic lesions.
Collapse
Affiliation(s)
- Suritra Bandyopadhyay
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Zhenxiang Zhao
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Amanda K East
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Rodrigo Tapia Hernandez
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Joseph A Forzano
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Benjamin A Shapiro
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Anuj K Yadav
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Chelsea B Swartchick
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana─Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology and Cancer Center at Illinois, University of Illinois at Urbana─Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Malec D, Warszyńska M, Repetowski P, Siomchen A, Dąbrowski JM. Enhancing Visible-Light Photocatalysis with Pd(II) Porphyrin-Based TiO 2 Hybrid Nanomaterials: Preparation, Characterization, ROS Generation, and Photocatalytic Activity. Molecules 2023; 28:7819. [PMID: 38067548 PMCID: PMC10707769 DOI: 10.3390/molecules28237819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 04/07/2024] Open
Abstract
Novel hybrid TiO2-based materials were obtained by adsorption of two different porphyrins on the surface of nanoparticles-commercially available 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and properly modified metalloporphyrin-5,10,15,20-tetrakis(2,6-difluoro-3-sulfophenyl)porphyrin palladium(II) (PdF2POH). The immobilization of porphyrins on the surface of TiO2 was possible due to the presence of sulfonyl groups. To further elevate the adsorption of porphyrin, an anchoring linker-4-hydroxybenzoic acid (PHBA)-was used. The synthesis of hybrid materials was proven by electronic absorption spectroscopy, dynamic light scattering (DLS), and photoelectrochemistry. Results prove the successful photosensitization of TiO2 to visible light by both porphyrins. However, the presence of the palladium ion in the modifier structure played a key role in strong adsorption, enhanced charge separation, and thus effective photosensitization. The incorporation of halogenated metalloporphyrins into TiO2 facilitates the enhancement of the comprehensive characteristics of the investigated materials and enables the evaluation of their performance under visible light. The effectiveness of reactive oxygen species (ROS) generation was also determined. Porphyrin-based materials with the addition of PHBA seemed to generate ROS more effectively than other composites. Interestingly, modifications influenced the generation of singlet oxygen for TPPS but not hydroxyl radical, in contrast to PdF2POH, where singlet oxygen generation was not influenced but hydroxyl radical generation was increased. Palladium (II) porphyrin-modified materials were characterized by higher photostability than TPPS-based nanostructures, as TPPS@PHBA-P25 materials showed the highest singlet oxygen generation and may be oxidized during light exposure. Photocatalytic activity tests with two model pollutants-methylene blue (MB) and the opioid drug tramadol (TRML)-confirmed the light dose-dependent degradation of those two compounds, especially PdF2POH@P25, which led to the virtually complete degradation of MB.
Collapse
Affiliation(s)
- Dawid Malec
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Anton Siomchen
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| |
Collapse
|
9
|
Castro KADF, Moura NMM, Simões MMQ, Mesquita MMQ, Ramos LCB, Biazzotto JC, Cavaleiro JAS, Faustino MAF, Neves MGPMS, da Silva RS. A Comparative Evaluation of the Photosensitizing Efficiency of Porphyrins, Chlorins and Isobacteriochlorins toward Melanoma Cancer Cells. Molecules 2023; 28:4716. [PMID: 37375269 DOI: 10.3390/molecules28124716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Skin cancer is one of the cancers that registers the highest number of new cases annually. Among all forms of skin cancer, melanoma is the most invasive and deadliest. The resistance of this form of cancer to conventional treatments has led to the employment of alternative/complementary therapeutic approaches. Photodynamic therapy (PDT) appears to be a promising alternative to overcome the resistance of melanoma to conventional therapies. PDT is a non-invasive therapeutic procedure in which highly reactive oxygen species (ROS) are generated upon excitation of a photosensitizer (PS) when subjected to visible light of an adequate wavelength, resulting in the death of cancer cells. In this work, inspired by the efficacy of tetrapyrrolic macrocycles to act as PS against tumor cells, we report the photophysical characterization and biological assays of isobacteriochlorins and their corresponding chlorins and porphyrins against melanoma cancer cells through a photodynamic process. The non-tumoral L929 fibroblast murine cell line was used as the control. The results show that the choice of adequate tetrapyrrolic macrocycle-based PS can be modulated to improve the performance of PDT.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana M Q Mesquita
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Loyanne C B Ramos
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
| | - Juliana C Biazzotto
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
| | - José A S Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Roberto S da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
10
|
Bi X, Lv X, Mu X, Hai J, Cao J, Yang Y. Molecular Dipole Modulation of Porphyrins to Enhance Photocatalytic Oxidation Activity for Inactivation of Intracellular Bacteria. ACS Biomater Sci Eng 2023; 9:617-624. [PMID: 36634227 DOI: 10.1021/acsbiomaterials.2c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regulation of molecular structures of porphyrin-based photosensitizers is crucial for yielding the effective singlet oxygen as one of the efficient photocatalytic reactive oxidation species. Here, we select methoxy substitution as an electron donor to decorate the porphyrin rings. Introducing a series of metal ions into porphyrin centers further prepares the methoxy-substituted metalloporphyrins (MPs, M = Co, Ni, Cu, Zn), with the hope of modulating their molecular dipole moments and photocatalytic activity. The theoretical calculation analyses show that the metal-free porphyrin center possesses a higher transition dipole and more delocalized orbitals, leading to efficient charge transfer and improved photocatalytic activity. The metalloporphyrin samples are then polymerized by poly(D, l-lactide-co-glycolide) to be applied to in vitro sterilization experiments. As expected, metal-free porphyrin has good antibacterial ability and good biocompatibility. Moreover, the highly effective bacteriostatic metal-free porphyrin achieves satisfactory photodynamic therapeutic outcomes against intracellular pathogens in cancer cells. This work demonstrates that the molecular dipole modulation of porphyrins is critical for their photocatalytic oxidation and antibacterial ability.
Collapse
Affiliation(s)
- Xuehan Bi
- Department of Obstetrics and Gynecology, Key Laboratory of Gynecologic Oncology of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu730000, P.R. China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, Key Laboratory of Gynecologic Oncology of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu730000, P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P.R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, P.R. China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Gynecologic Oncology of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu730000, P.R. China
| |
Collapse
|
11
|
Wu Klingler W, Giger N, Schneider L, Babu V, König C, Spielmann P, Wenger RH, Ferrari S, Spingler B. Low-Dose Near-Infrared Light-Activated Mitochondria-Targeting Photosensitizers for PDT Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179525. [PMID: 36076920 PMCID: PMC9455738 DOI: 10.3390/ijms23179525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Phthalocyanines (Pcs) are promising candidates for photodynamic therapy (PDT) due to their absorption in the phototherapeutic window. However, the highly aromatic Pc core leads to undesired aggregation and decreased reactive oxygen species (ROS) production. Therefore, short PEG chain functionalized A3B type asymmetric Pc photosensitizers (PSs) were designed in order to decrease aggregation and increase the aqueous solubility. Here we report the synthesis, characterization, optical properties, cellular localization, and cytotoxicity of three novel Pc-based agents (LC31, MLC31, and DMLC31Pt). The stepwise functionalization of the peripheral moieties has a strong effect on the distribution coefficient (logP), cellular uptake, and localization, as well as photocytotoxicity. Additional experiments have revealed that the presence of the malonic ester moiety in the reported agent series is indispensable in order to induce photocytotoxicity. The best-performing agent, MLC31, showed mitochondrial targeting and an impressive phototoxic index (p.i.) of 748 in the cisplatin-resistant A2780/CP70 cell line, after a low-dose irradiation of 6.95 J/cm2. This is the result of a high photocytotoxicity (IC50 = 157 nM) upon irradiation with near-infrared (NIR) light, and virtually no toxicity in the dark (IC50 = 117 μM). Photocytotoxicity was subsequently determined under hypoxic conditions. Additionally, a preliminarily pathway investigation of the mitochondrial membrane potential (MMP) disruption and induction of apoptosis by MLC31 was carried out. Our results underline how agent design involving both hydrophilic and lipophilic peripheral groups may serve as an effective way to improve the PDT efficiency of highly aromatic PSs for NIR light-mediated cancer therapy.
Collapse
Affiliation(s)
- Wenyu Wu Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Laboratory for Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Nadine Giger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lukas Schneider
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vipin Babu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christiane König
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrick Spielmann
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (S.F.); (B.S.); Tel.: +41-44-635-46-56 (B.S.)
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (S.F.); (B.S.); Tel.: +41-44-635-46-56 (B.S.)
| |
Collapse
|
12
|
Paul S, Pathak S, Sahoo S, Maji RC, Bhattacharyya U, Nandi D, Chakravarty AR. Bichromophoric ruthenium(II) bis-terpyridine-BODIPY based photosensitizers for cellular imaging and photodynamic therapy. Dalton Trans 2022; 51:10392-10405. [PMID: 35758169 DOI: 10.1039/d2dt01137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two multichromophoric homoleptic ruthenium(II) complexes [Ru(tpy-BODIPY)2]Cl2 (complexes 1 and 2, tpy = 4-phenyl-2,2:6,2-terpyridine, BODIPY = boron-dipyrromethene) were prepared, characterized and their phototherapeutic activity and bioimaging properties were studied. The complexes having structural similarity differ only by a phenylethynyl linker, and its overall influence on their physicochemical and photobiological behavior was evaluated. The terpyridine-BODIPY ligand L1 was structurally characterized by X-ray crystallography. The complexes showed intense absorption near 500 nm (ε: ∼1.5 × 105 M-1 cm-1 in DMSO), have a high singlet oxygen quantum yield (ΦΔ: ∼0.6 in DMSO), and displayed low photobleaching thus making them suitable for PDT applications. The complexes showed high DNA binding affinity and induced DNA damage on light activation via multiple types of ROS production. Confocal laser scanning microscopy experiments revealed their incorporation in the cancer cells and complex 1 predominantly accumulated in lysosomes. The complexes displayed a significant PDT effect in cancerous cells with visible light activation with a high photocytotoxicity index (PI) value in HeLa cells. Both type-I and type-II photosensitization processes were involved in the PDT effect. The photodynamic action of complex 2 initiated cellular apoptosis. Finally, their diagnostic potential was evaluated against clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Subhadeep Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Ram Chandra Maji
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Utso Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
13
|
Komarnicka UK, Niorettini A, Kozieł S, Pucelik B, Barzowska A, Wojtala D, Ziółkowska A, Lesiów M, Kyzioł A, Caramori S, Porchia M, Bieńko A. Two out of Three Musketeers Fight against Cancer: Synthesis, Physicochemical, and Biological Properties of Phosphino Cu I, Ru II, Ir III Complexes. Pharmaceuticals (Basel) 2022; 15:169. [PMID: 35215281 PMCID: PMC8876511 DOI: 10.3390/ph15020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Two novel phosphine ligands, Ph2PCH2N(CH2CH3)3 (1) and Ph2PCH2N(CH2CH2CH2CH3)2 (2), and six new metal (Cu(I), Ir(III) and Ru(II)) complexes with those ligands: iridium(III) complexes: Ir(η5-Cp*)Cl2(1) (1a), Ir(η5-Cp*)Cl2(2) (2a) (Cp*: Pentamethylcyclopentadienyl); ruthenium(II) complexes: Ru(η6-p-cymene)Cl2(1) (1b), Ru(η6-p-cymene)Cl2(2) (2b) and copper(I) complexes: [Cu(CH3CN)2(1)BF4] (1c), [Cu(CH3CN)2(2)BF4] (2c) were synthesized and characterized using elemental analysis, NMR spectroscopy, and ESI-MS spectrometry. Copper(I) complexes turned out to be highly unstable in the presence of atmospheric oxygen in contrast to ruthenium(II) and iridium(III) complexes. The studied Ru(II) and Ir(III) complexes exhibited promising cytotoxicity towards cancer cells in vitro with IC50 values significantly lower than that of the reference drug-cisplatin. Confocal microscopy analysis showed that Ru(II) and Ir(III) complexes effectively accumulate inside A549 cells with localization in cytoplasm and nuclei. A precise cytometric analysis provided clear evidence for the predominance of apoptosis in induced cell death. Furthermore, the complexes presumably induce the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. Gel electrophoresis experiments revealed that Ru(II) and Ir(III) inorganic compounds showed their unusual low genotoxicity towards plasmid DNA. Additionally, metal complexes were able to generate reactive oxygen species as a result of redox processes, proved by gel electrophoresis and cyclic voltamperometry. In vitro cytotoxicity assays were also carried out within multicellular tumor spheroids and efficient anticancer action on these 3D assemblies was demonstrated. It was proven that the hydrocarbon chain elongation of the phosphine ligand coordinated to the metal ions does not influence the cytotoxic effect of resulting complexes in contrast to metal ions type.
Collapse
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Aleksandra Ziółkowska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Monika Lesiów
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (A.N.); (S.C.)
| | | | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (S.K.); (D.W.); (A.Z.); (M.L.); (A.B.)
| |
Collapse
|
14
|
Pucelik B, Dąbrowski JM. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. ADVANCES IN INORGANIC CHEMISTRY 2022; 79:65-103. [PMID: 35095189 PMCID: PMC8787646 DOI: 10.1016/bs.adioch.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
16
|
Synthesis and cytotoxicity study of gold(III) porphyrin complexes and their derivative in breast cancer cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Drzewiecka-Matuszek A, Rutkowska-Zbik D. Application of TD-DFT Theory to Studying Porphyrinoid-Based Photosensitizers for Photodynamic Therapy: A Review. Molecules 2021; 26:7176. [PMID: 34885763 PMCID: PMC8658767 DOI: 10.3390/molecules26237176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
An important focus for innovation in photodynamic therapy (PDT) is theoretical investigations. They employ mostly methods based on Time-Dependent Density Functional Theory (TD-DFT) to study the photochemical properties of photosensitizers. In the current article we review the existing state-of-the-art TD-DFT methods (and beyond) which are employed to study the properties of porphyrinoid-based systems. The review is organized in such a way that each paragraph is devoted to a separate aspect of the PDT mechanism, e.g., correct prediction of the absorption spectra, determination of the singlet-triplet intersystem crossing, and interaction with molecular oxygen. Aspects of the calculation schemes are discussed, such as the choice of the most suitable functional and inclusion of a solvent. Finally, quantitative structure-activity relationship (QSAR) methods used to explore the photochemistry of porphyrinoid-based systems are discussed.
Collapse
Affiliation(s)
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
18
|
Lanquist AP, Gupta S, Al-Afyouni KF, Al-Afyouni M, Kodanko JJ, Turro C. Trifluoromethyl substitution enhances photoinduced activity against breast cancer cells but reduces ligand exchange in Ru(ii) complex. Chem Sci 2021; 12:12056-12067. [PMID: 34667571 PMCID: PMC8457392 DOI: 10.1039/d1sc03213e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
A series of five ruthenium complexes containing triphenyl phosphine groups known to enhance both cellular penetration and photoinduced ligand exchange, cis-[Ru(bpy)2(P(p-R-Ph)3)(CH3CN)]2+, where bpy = 2,2'-bipyridine and P(p-R-Ph)3 represent para-substituted triphenylphosphine ligands with R = -OCH3 (1), -CH3 (2) -H (3), -F (4), and -CF3 (5), were synthesized and characterized. The photolysis of 1-5 in water with visible light (λ irr ≥ 395 nm) results in the substitution of the coordinated acetonitrile with a solvent molecule, generating the corresponding aqua complex as the single photoproduct. A 3-fold variation in quantum yield was measured with 400 nm irradiation, Φ 400, where 1 is the most efficient with a Φ 400 = 0.076(2), and 5 the least photoactive complex, with Φ 400 = 0.026(2). This trend is unexpected based on the red-shifted metal-to-ligand charge transfer (MLCT) absorption of 1 as compared to that of 5, but can be correlated to the substituent Hammett para parameters and pK a values of the ancillary phosphine ligands. Complexes 1-5 are not toxic towards the triple negative breast cancer cell line MDA-MB-231 in the dark, but 3 and 5 are >4.2 and >19-fold more cytotoxic upon irradiation with blue light, respectively. A number of experiments point to apoptosis, and not to necrosis or necroptosis, as the mechanism of cell death by 5 upon irradiation. These findings provide a foundation for understanding the role of phosphine ligands on photoinduced ligand substitution and show the enhancement afforded by -CF3 groups on photochemotherapy, which will aid the future design of photocages for photochemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Austin P Lanquist
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Sayak Gupta
- Department of Chemistry, Wayne State University Detroit MI 48208 USA
| | - Kathlyn F Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Malik Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University Detroit MI 48208 USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
19
|
Almeida J, Zhang G, Wang M, Queirós C, Cerqueira AFR, Tomé AC, Barone G, Vicente MGH, Hey-Hawkins E, Silva AMG, Rangel M. Synthesis, characterization, and cellular investigations of porphyrin- and chlorin-indomethacin conjugates for photodynamic therapy of cancer. Org Biomol Chem 2021; 19:6501-6512. [PMID: 34254099 DOI: 10.1039/d1ob01015h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indomethacin is a potent non-steroidal anti-inflammatory drug (NSAID) with a strong selective inhibitor activity towards cyclooxygenase-2 (COX-2), an enzyme that is highly overexpressed in various tumour cells, being involved in tumourigenesis. Concomitantly, porphyrins have gained much attention as promising photosensitizers (PSs) for the non-invasive photodynamic therapy (PDT) of cancer. Herein, we report the design, and determine the singlet oxygen generation capacity and in vitro cellular toxicity of porphyrin- and chlorin-indomethacin conjugates (P2-Ind and C2-Ind). Both the conjugates were obtained in high yields and were characterized by 1H, 19F and 13C NMR as well as by high resolution mass spectrometry. The singlet oxygen generation properties were assessed by the 1,3-diphenylisobenzofuran singlet oxygen trap method, which showed that C2 and C2-Ind are the best singlet oxygen photosensitizers. In addition, it was found that the presence of indomethacin did not influence the singlet oxygen generation of porphyrin or chlorin. Cytotoxicity studies of the conjugate in human HEp2 cells revealed that the porphyrin- and chlorin-indomethacin conjugates have similar dark cytotoxicities, while chlorin C2 was shown to be the most phototoxic. Despite having lower cellular uptake than C2-Ind after 24 hours, chlorin C2 had a broad localization in HEp2 cells while the chlorin-indomethacin conjugate C2-Ind could be detected in the form of small aggregates. DFT calculations were performed to shed light on the reaction energy involved in the formation of the indomethacin conjugates and to compare the relative stability of selected isomers in solution. Moreover, the calculated energy of their first excited triplet state structures confirmed their use as suitable photosensitizers to generate singlet oxygen for PDT.
Collapse
Affiliation(s)
- José Almeida
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Guanyu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maodie Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Carla Queirós
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Ana F R Cerqueira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Ana M G Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Maria Rangel
- LAQV-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
| |
Collapse
|
20
|
Pobłocki K, Drzeżdżon J, Kostrzewa T, Jacewicz D. Coordination Complexes as a New Generation Photosensitizer for Photodynamic Anticancer Therapy. Int J Mol Sci 2021; 22:8052. [PMID: 34360819 PMCID: PMC8348047 DOI: 10.3390/ijms22158052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) has become an alternative to standard cancer treatment methods such as surgery, chemotherapy and radiotherapy. The uniqueness of this method relies on the possibility of using various photosensitizers (PS) that absorb and convert light emission in radical oxygen-derived species (ROS). They can be present alone or in the presence of other compounds such as metal organic frameworks (MOFs), non-tubules or polymers. The interaction between DNA and metal-based complexes plays a key role in the development of new anti-cancer drugs. The use of coordination compounds in PDT has a significant impact on the amount ROS generated, quantum emission efficiency (Φem) and phototoxic index (PI). In this review, we will attempt to systematically review the recent literature and analyze the coordination complexes used as PS in PDT. Finally, we compared the anticancer activities of individual coordination complexes and discuss future perspectives. So far, only a few articles link so many transition metal ion coordination complexes of varying degrees of oxidation, which is why this review is needed by the scientific community to further expand this field worldwide. Additionally, it serves as a convenient collection of important, up-to-date information.
Collapse
Affiliation(s)
- Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (K.P.); (D.J.)
| |
Collapse
|
21
|
Advances in the Chemistry of Porphyrins and Related Macrocycles. Int J Mol Sci 2021; 22:ijms22147487. [PMID: 34299107 PMCID: PMC8307316 DOI: 10.3390/ijms22147487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Porphyrins and their analogues feature remarkably in nature, being prosthetic groups in a wide variety of primary metabolites playing a pivotal role in many biological processes [...].
Collapse
|
22
|
Sułek A, Pucelik B, Kobielusz M, Barzowska A, Dąbrowski JM. Photodynamic Inactivation of Bacteria with Porphyrin Derivatives: Effect of Charge, Lipophilicity, ROS Generation, and Cellular Uptake on Their Biological Activity In Vitro. Int J Mol Sci 2020; 21:ijms21228716. [PMID: 33218103 PMCID: PMC7698881 DOI: 10.3390/ijms21228716] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Resistance of microorganisms to antibiotics has led to research on various therapeutic strategies with different mechanisms of action, including photodynamic inactivation (PDI). In this work, we evaluated a cationic, neutral, and anionic meso-tetraphenylporphyrin derivative’s ability to inactivate the Gram-negative and Gram-positive bacteria in a planktonic suspension under blue light irradiation. The spectroscopic, physicochemical, redox properties, as well as reactive oxygen species (ROS) generation capacity by a set of photosensitizers varying in lipophilicity were investigated. The theoretical calculations were performed to explain the distribution of the molecular charges in the evaluated compounds. Moreover, logP partition coefficients, cellular uptake, and phototoxicity of the photosensitizers towards bacteria were determined. The role of a specific microbial efflux pump inhibitor, verapamil hydrochloride, in PDI was also studied. The results showed that E. coli exhibited higher resistance to PDI than S. aureus (3–5 logs) with low light doses (1–10 J/cm2). In turn, the prolongation of irradiation (up to 100 J/cm2) remarkably improved the inactivation of pathogens (up to 7 logs) and revealed the importance of photosensitizer photostability. The PDI potentiation occurs after the addition of KI (more than 3 logs extra killing). Verapamil increased the uptake of photosensitizers (especially in E. coli) due to efflux pump inhibition. This effect suggests that PDI is mediated by ROS, the electrostatic charge interaction, and the efflux of photosensitizers (PSs) regulated by multidrug-resistance (MDR) systems. Thus, MDR inhibition combined with PDI gives opportunities to treat more resistant bacteria.
Collapse
Affiliation(s)
- Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
| | - Barbara Pucelik
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Marcin Kobielusz
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
| | - Agata Barzowska
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (M.K.)
- Correspondence: ; Tel.: +48-12-686-2488; Fax: +48-12-686-2750
| |
Collapse
|
23
|
Dias LD, Mfouo-Tynga IS. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics (Basel) 2020; 5:E53. [PMID: 33066431 PMCID: PMC7709684 DOI: 10.3390/biomimetics5040053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chlorophylls, which are chlorin-type photosensitizers, are known as the key building blocks of nature and are fundamental for solar energy metabolism during the photosynthesis process. In this regard, the utilization of bioinspired chlorin analogs as photosensitizers for photodynamic therapy constitutes an evolutionary topic of research. Moreover, carbon nanomaterials have been widely applied in photodynamic therapy protocols due to their optical characteristics, good biocompatibility, and tunable systematic toxicity. Herein, we review the literature related to the applications of chlorin-based photosensitizers that were functionalized onto carbon nanomaterials for photodynamic and photothermal therapies against cancer. Rather than a comprehensive review, we intended to highlight the most important and illustrative examples over the last 10 years.
Collapse
Affiliation(s)
- Lucas D. Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil;
| | | |
Collapse
|
24
|
Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. Int J Mol Sci 2020; 21:ijms21165839. [PMID: 32823943 PMCID: PMC7461582 DOI: 10.3390/ijms21165839] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Porphyrins have planar and conjugated structures, good optical properties, and other special functional properties. Owing to these excellent properties, in recent years, porphyrins and their analogues have emerged as a multifunctional platform for chemical sensors. The rich chemistry of these molecules offers many possibilities for metal ions detection. This review mainly discusses two types of molecular porphyrin and porphyrin composite sensors for metal ions detection, because porphyrins can be functionalized to improve their functional properties, which can introduce more chemical and functional sites. According to the different application materials, the section of porphyrin composite sensors is divided into five sub-categories: (1) porphyrin film, (2) porphyrin metal complex, (3) metal–organic frameworks, (4) graphene materials, and (5) other materials, respectively.
Collapse
|
25
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|