1
|
Kalendar R, Kairov U. Genome-Wide Tool for Sensitive de novo Identification and Visualisation of Interspersed and Tandem Repeats. Bioinform Biol Insights 2024; 18:11779322241306391. [PMID: 39703748 PMCID: PMC11656428 DOI: 10.1177/11779322241306391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Genomic repeats are functionally ubiquitous structural units found in all genomes. Studying these repeats of different origins is essential for understanding the evolution and adaptation of a given organism. These repeating patterns have manifold signatures and structures with varying degrees of homology, making their identification challenging. To address this challenge, we developed a new algorithm and software that can rapidly and accurately detect any repeated sequences de novo with varying degrees of homology in genomic sequences in interspersed or clustered repeats. Numerous forms of repeated sequences and complex patterns can be identified, even for complex sequence variants and implicit or mixed types of repeat blocks. Direct and inverted-repeat elements, perfect and imperfect microsatellite repeats, and any short or long tandem repeat belonging to a wide range of higher-order repeat structures of telomeres or large satellite sequences can be detected. By combining precision and versatility, our tool contributes significantly to elucidating the intricate landscape of genomic repeats.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
2
|
Kalendar R, Shevtsov A, Otarbay Z, Ismailova A. In silico PCR analysis: a comprehensive bioinformatics tool for enhancing nucleic acid amplification assays. FRONTIERS IN BIOINFORMATICS 2024; 4:1464197. [PMID: 39435190 PMCID: PMC11491563 DOI: 10.3389/fbinf.2024.1464197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Nucleic acid amplification assays represent a pivotal category of methodologies for targeted sequence detection within contemporary biological research, boasting diverse utility in diagnostics, identification, and DNA sequencing. The foundational principles of these assays have been extrapolated to various simple and intricate nucleic acid amplification technologies. Concurrently, a burgeoning trend toward computational or virtual methodologies is exemplified by in silico PCR analysis. In silico PCR analysis is a valuable and productive adjunctive approach for ensuring primer or probe specificity across a broad spectrum of PCR applications encompassing gene discovery through homology analysis, molecular diagnostics, DNA profiling, and repeat sequence identification. The prediction of primer and probe sensitivity and specificity necessitates thorough database searches, accounting for an optimal balance of mismatch tolerance, sequence similarity, and thermal stability. This software facilitates in silico PCR analyses of both linear and circular DNA templates, including bisulfited treatment DNA, enabling multiple primer or probe searches within databases of varying scales alongside advanced search functionalities. This tool is suitable for processing batch files and is essential for automation when working with large amounts of data.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Biocentre 3, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Aisulu Ismailova
- Department Information Systems, S. Seifullin Kazakh Agro Technical Research University, Astana, Kazakhstan
| |
Collapse
|
3
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
4
|
Kojima KK. Helenus and Ajax, Two Groups of Non-Autonomous LTR Retrotransposons, Represent a New Type of Small RNA Gene-Derived Mobile Elements. BIOLOGY 2024; 13:119. [PMID: 38392337 PMCID: PMC10886601 DOI: 10.3390/biology13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Terminal repeat retrotransposons in miniature (TRIMs) are short non-autonomous long terminal repeat (LTR) retrotransposons found from various eukaryotes. Cassandra is a unique TRIM lineage which contains a 5S rRNA-derived sequence in its LTRs. Here, two new groups of TRIMs, designated Helenus and Ajax, are reported based on bioinformatics analysis and the usage of Repbase. Helenus is found from fungi, animals, and plants, and its LTRs contain a tRNA-like sequence. It includes two LTRs and between them, a primer-binding site (PBS) and polypurine tract (PPT) exist. Fungal and plant Helenus generate 5 bp target site duplications (TSDs) upon integration, while animal Helenus generates 4 bp TSDs. Ajax includes a 5S rRNA-derived sequence in its LTR and is found from two nemertean genomes. Ajax generates 5 bp TSDs upon integration. These results suggest that despite their unique promoters, Helenus and Ajax are TRIMs whose transposition is dependent on autonomous LTR retrotransposon. These TRIMs can originate through an insertion of SINE in an LTR of TRIM. The discovery of Helenus and Ajax suggests the presence of TRIMs with a promoter for RNA polymerase III derived from a small RNA gene, which is here collectively termed TRIMp3.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA
| |
Collapse
|
5
|
Maiwald S, Mann L, Garcia S, Heitkam T. Evolving Together: Cassandra Retrotransposons Gradually Mirror Promoter Mutations of the 5S rRNA Genes. Mol Biol Evol 2024; 41:msae010. [PMID: 38262464 PMCID: PMC10853983 DOI: 10.1093/molbev/msae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to the 5S preservation we observe the occurrence of 5S-related nonautonomous retrotransposons, so-called Cassandras. Cassandras harbor highly conserved 5S rDNA-related sequences within their long terminal repeats, advantageously providing them with the 5S internal promoter. However, the dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence information and structural arrangement are still unclear, especially: (1) do we observe repeated or gradual domestication of the highly conserved 5S promoter by Cassandras and (2) do changes in 5S organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs. To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant genome organization, giving new insights into the interplay of ribosomal genes and transposable elements.
Collapse
Affiliation(s)
- Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC-MCNB), 08038 Barcelona, Catalonia, Spain
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, 8010 Graz, Austria
| |
Collapse
|
6
|
Yang X, Huang K, Yang D, Zhao W, Zhou X. Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300163. [PMID: 38223896 PMCID: PMC10784210 DOI: 10.1002/gch2.202300163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Indexed: 01/16/2024]
Abstract
The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields-Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy-are discussed.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pancreatic Surgery and West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Kexin Huang
- Department of Pancreatic Surgery and West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Dewei Yang
- College of Advanced Manufacturing EngineeringChongqing University of Posts and TelecommunicationsChongqingChongqing400000China
| | - Weiling Zhao
- Center for Systems MedicineSchool of Biomedical InformaticsUTHealth at HoustonHoustonTX77030USA
| | - Xiaobo Zhou
- Center for Systems MedicineSchool of Biomedical InformaticsUTHealth at HoustonHoustonTX77030USA
| |
Collapse
|
7
|
Kalendar R, Karlov GI. Editorial: Mobile elements and plant genome evolution, comparative analyses and computational tools, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1308536. [PMID: 38023887 PMCID: PMC10676221 DOI: 10.3389/fpls.2023.1308536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Ruslan Kalendar
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Arvas YE, Marakli S, Kaya Y, Kalendar R. The power of retrotransposons in high-throughput genotyping and sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1174339. [PMID: 37180380 PMCID: PMC10167742 DOI: 10.3389/fpls.2023.1174339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The use of molecular markers has become an essential part of molecular genetics through their application in numerous fields, which includes identification of genes associated with targeted traits, operation of backcrossing programs, modern plant breeding, genetic characterization, and marker-assisted selection. Transposable elements are a core component of all eukaryotic genomes, making them suitable as molecular markers. Most of the large plant genomes consist primarily of transposable elements; variations in their abundance contribute to most of the variation in genome size. Retrotransposons are widely present throughout plant genomes, and replicative transposition enables them to insert into the genome without removing the original elements. Various applications of molecular markers have been developed that exploit the fact that these genetic elements are present everywhere and their ability to stably integrate into dispersed chromosomal localities that are polymorphic within a species. The ongoing development of molecular marker technologies is directly related to the deployment of high-throughput genotype sequencing platforms, and this research is of considerable significance. In this review, the practical application to molecular markers, which is a use of technology of interspersed repeats in the plant genome were examined using genomic sources from the past to the present. Prospects and possibilities are also presented.
Collapse
Affiliation(s)
- Yunus Emre Arvas
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Sevgi Marakli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Türkiye
| | - Yılmaz Kaya
- Agricultural Biotechnology Department, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Divashuk MG, Nikitina EA, Sokolova VM, Yurkina AI, Kocheshkova AA, Razumova OV, Karlov GI, Kroupin PY. qPCR as a Selective Tool for Cytogenetics. PLANTS (BASEL, SWITZERLAND) 2022; 12:80. [PMID: 36616209 PMCID: PMC9824742 DOI: 10.3390/plants12010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
qPCR is widely used in quantitative studies of plant genomes and transcriptomes. In this article, this method is considered as an auxiliary step in the preparation and selection of markers for FISH analysis. Several cases from the authors' research on populations of the same species were reviewed, and a comparison of the closely related species, as well as the adaptation of the markers, based on satellite tandem repeats (TRs) using quantitative qPCR data was conducted. In the selected cases, TRs with contrast abundance were identified in the cases of the Dasypyrum, Thinopyrum and Aegilops species, and the transfer of TRs between the wheat and related species was demonstrated. TRs with intraspecific copy number variation were revealed in Thinopyrum ponticum and wheat-wheatgrass partial amphidiploids, and the TR showing predominant hybridization to the sea buckthorn Y chromosome was identified. Additionally, problems such as the absence of a reference gene for qPCR, and low-efficiency and self-complementary primers, were illustrated. In the cases considered here, the qPCR results clearly show high correlation with the subsequent results of the FISH analysis, which confirms the value of this method for cytogenetic studies.
Collapse
|
10
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. PLANTS 2022; 11:plants11192567. [PMID: 36235434 PMCID: PMC9571286 DOI: 10.3390/plants11192567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The nuclear reactor accident in Chernobyl, Ukraine, resulted in effects both locally and farther away. Most of the contaminated areas were the agricultural fields and forests. Experimental fields were established near Chernobyl—radioactively contaminated fields localized 5 km from Chernobyl Nuclear Power Plant as well as the remediated soil that is localized directly in the Chernobyl town. Two flax varieties growing under chronic exposition to ionizing radiation were used for this study—the local Ukrainian variety Kyivskyi and a commercial variety Bethune. The screening of the length polymorphism generated by transposable elements insertions were performed. All known types of common flax transposon, retrotransposons and iPBS approach were used. In the iPBS multiplex analyze, for the Kyivskyi variety, a unique addition was found in the seeds from the radioactive contaminated field and for the Bethune variety, a total of five amplicon additions were obtained and one deletion. For the TRIM Cassandra fingerprints, two amplicon additions were generated in the seeds from radioactive contaminated fields for the Bethune variety. In summary, the obtained data represent the genetic diversity between control and irradiated subgroups of flax seeds from Chernobyl area and the presence of activated transposable elements due to the irradiation stress.
Collapse
|
12
|
Yucel G, Betekhtin A, Cabi E, Tuna M, Hasterok R, Kolano B. The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae). Int J Mol Sci 2022; 23:ijms231911033. [PMID: 36232345 PMCID: PMC9570107 DOI: 10.3390/ijms231911033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023] Open
Abstract
The evolution of chromosome number and ribosomal DNA (rDNA) loci number and localisation were studied in Onobrychis Mill. Diploid and tetraploid species, as well as two basic chromosome numbers, x = 7 and x = 8, were observed among analysed taxa. The chromosomal distribution of rDNA loci was presented here for the first time using fluorescence in situ hybridisation (FISH) with 5S and 35S rDNA probes. Onobrychis species showed a high polymorphism in the number and localisation of rDNA loci among diploids, whereas the rDNA loci pattern was very similar in polyploids. Phylogenetic relationships among the species, inferred from nrITS sequences, were used as a framework to reconstruct the patterns of basic chromosome number and rDNA loci evolution. Analysis of the evolution of the basic chromosome numbers allowed the inference of x = 8 as the ancestral number and the descending dysploidy and polyploidisation as the major mechanisms of the chromosome number evolution. Analyses of chromosomal patterns of rRNA gene loci in a phylogenetic context resulted in the reconstruction of one locus of 5S rDNA and one locus of 35S rDNA in the interstitial chromosomal position as the ancestral state in this genus.
Collapse
Affiliation(s)
- Gulru Yucel
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55200, Turkey
- Department of Biology, Institute of Natural and Applied Sciences, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Metin Tuna
- Department of Field Crops, Faculty of Agriculture, Tekirdag Namik Kemal University, Tekirdag 59030, Turkey
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Bozena Kolano
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
13
|
Li F, Lee M, Esnault C, Wendover K, Guo Y, Atkins P, Zaratiegui M, Levin HL. Identification of an integrase-independent pathway of retrotransposition. SCIENCE ADVANCES 2022; 8:eabm9390. [PMID: 35767609 DOI: 10.1126/sciadv.abm9390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Retroviruses and long terminal repeat retrotransposons rely on integrase (IN) to insert their complementary DNA (cDNA) into the genome of host cells. Nevertheless, in the absence of IN, retroelements can retain notable levels of insertion activity. We have characterized the IN-independent pathway of Tf1 and found that insertion sites had homology to the primers of reverse transcription, which form single-stranded DNAs at the termini of the cDNA. In the absence of IN activity, a similar bias was observed with HIV-1. Our studies showed that the Tf1 insertions result from single-strand annealing, a noncanonical form of homologous recombination mediated by Rad52. By expanding our analysis of insertions to include repeat sequences, we found most formed tandem elements by inserting at preexisting copies of a related transposable element. Unexpectedly, we found that wild-type Tf1 uses the IN-independent pathway as an alternative mode of insertion.
Collapse
Affiliation(s)
- Feng Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katie Wendover
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yabin Guo
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Atkins
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson Biological Laboratories A133, 604 Allison Rd., Piscataway, NJ 08854, USA
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Lerat E. Recent Bioinformatic Progress to Identify Epigenetic Changes Associated to Transposable Elements. Front Genet 2022; 13:891194. [PMID: 35646069 PMCID: PMC9140218 DOI: 10.3389/fgene.2022.891194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are recognized for their great impact on the functioning and evolution of their host genomes. They are associated to various deleterious effects, which has led to the evolution of regulatory epigenetic mechanisms to control their activity. Despite these negative effects, TEs are also important actors in the evolution of genomes by promoting genetic diversity and new regulatory elements. Consequently, it is important to study the epigenetic modifications associated to TEs especially at a locus-specific level to determine their individual influence on gene functioning. To this aim, this short review presents the current bioinformatic tools to achieve this task.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| |
Collapse
|
15
|
Molecular and Cytogenetic Analysis of rDNA Evolution in Crepis Sensu Lato. Int J Mol Sci 2022; 23:ijms23073643. [PMID: 35409003 PMCID: PMC8998684 DOI: 10.3390/ijms23073643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Although Crepis was the first model plant group in which chromosomal changes were considered to play an important role in speciation, their chromosome structure and evolution have been barely investigated using molecular cytogenetic methods. The aim of the study was to provide a better understanding of the patterns and directions of Crepis chromosome evolution, using comparative analyses of rDNA loci number and localisation. The chromosome base number and chromosomal organisation of 5S and 35S rDNA loci were analysed in the phylogenetic background for 39 species of Crepis, which represent the evolutionary lineages of Crepis sensu stricto and Lagoseris, including Lapsana communis. The phylogenetic relationships among all the species were inferred from nrITS and newly obtained 5S rDNA NTS sequences. Despite high variations in rDNA loci chromosomal organisation, most species had a chromosome with both rDNA loci within the same (usually short) chromosomal arm. The comparative analyses revealed several independent rDNA loci number gains and loci repositioning that accompanied diversification and speciation in Crepis. Some of the changes in rDNA loci patterns were reconstructed for the same evolutionary lineages as descending dysploidy.
Collapse
|
16
|
Kalendar R. A Guide to Using FASTPCR Software for PCR, In Silico PCR, and Oligonucleotide Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2392:223-243. [PMID: 34773626 DOI: 10.1007/978-1-0716-1799-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FastPCR software is an integrated tool environment for PCR primer and probe design and for prediction of oligonucleotide properties. The software provides comprehensive tools for designing primers for most PCR and perspective applications, including standard, multiplex, long-distance, inverse, real-time with TaqMan probe, Xtreme Chain Reaction (XCR), group-specific, overlap extension PCR for multifragment assembling cloning, and isothermal amplification (Loop-mediated Isothermal Amplification). A program is available to design specific oligonucleotide sets for long sequence assembly by ligase chain reaction and to design multiplexed of overlapping and nonoverlapping DNA amplicons that tile across a region(s) of interest for targeted next-generation sequencing, competitive allele-specific PCR (KASP)-based genotyping assay for single-nucleotide polymorphisms and insertions and deletions at specific loci, among other features. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. FastPCR includes various bioinformatics tools for analysis and searching of sequences, restriction I-II-III-type enzyme endonuclease analysis, and pattern searching. The program also supports the assembly of a set of contiguous sequences, consensus sequence generation, and sequence similarity and conservancy analysis. FastPCR performs efficient and complete detection of various repeat types with visual display. FastPCR allows for sequence file batch processing that is essential for automation. The software is available for download at https://primerdigital.com/fastpcr.html and online version at https://primerdigital.com/tools/pcr.html .
Collapse
Affiliation(s)
- Ruslan Kalendar
- PrimerDigital Ltd, Biocentre 3, Helsinki, Finland. .,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.
| |
Collapse
|
17
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
18
|
Kalendar R, Sabot F, Rodriguez F, Karlov GI, Natali L, Alix K. Editorial: Mobile Elements and Plant Genome Evolution, Comparative Analyzes and Computational Tools. FRONTIERS IN PLANT SCIENCE 2021; 12:735134. [PMID: 34630484 PMCID: PMC8500305 DOI: 10.3389/fpls.2021.735134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 05/28/2023]
Affiliation(s)
- Ruslan Kalendar
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Francois Sabot
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory (MBL), Woods Hole, MA, United States
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Karine Alix
- GQE – Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
20
|
Retrotransposable Elements: DNA Fingerprinting and the Assessment of Genetic Diversity. Methods Mol Biol 2021; 2222:263-286. [PMID: 33301099 DOI: 10.1007/978-1-0716-0997-2_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retrotransposable elements (RTEs) are highly common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The "copy-out and paste-in" life cycle of replicative transposition in these dispersive and ubiquitous RTEs leads to new genome insertions without excision of the original element. RTEs are important drivers of species diversity; they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative components in genome evolution. Accordingly, various applications have been developed to explore the polymorphisms in RTE insertion patterns. These applications include conventional or anchored polymerase chain reaction (PCR) and quantitative or digital PCR with primers designed for the 5' or 3' junction. Marker systems exploiting these PCR methods can be easily developed and are inexpensively used in the absence of extensive genome sequence data. The main inter-repeat amplification polymorphism techniques include inter-retrotransposon amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and Inter-Primer Binding Site (iPBS) for PCR amplification with a single or two primers.
Collapse
|
21
|
Erper I, Ozer G, Kalendar R, Avci S, Yildirim E, Alkan M, Turkkan M. Genetic Diversity and Pathogenicity of Rhizoctonia spp. Isolates Associated with Red Cabbage in Samsun (Turkey). J Fungi (Basel) 2021; 7:jof7030234. [PMID: 33801129 PMCID: PMC8004240 DOI: 10.3390/jof7030234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023] Open
Abstract
A total of 132 Rhizoctonia isolates were recovered from red cabbage plants with root rot and wirestem symptoms in the province of Samsun (Turkey) between 2018 and 2019. Based on the sequence analysis of the internal transcribed spacer (ITS) region located between the 18S and 28S ribosomal RNA genes and including nuclear staining, these 124 isolates were assigned to multinucleate Rhizoctonia solani, and eight were binucleate Rhizoctonia. The most prevalent anastomosis group (AG) was AG 4 (84%), which was subdivided into AG 4 HG-I (81%) and AG 4 HG-III (3%), followed by AG 5 (10%) and AG-A (6%), respectively. The unweighted pair group method phylogenetic tree resulting from the data of 68 isolates with the inter-PBS amplification DNA profiling method based on interspersed retrotransposon element sequences confirmed the differentiation of AGs with a higher resolution. In the greenhouse experiment with representative isolates (n = 24) from AGs on red cabbage (cv. Rondale), the disease severity index was between 3.33 and 4.0 for multinucleate AG isolates and ranged from 2.5 to 3.17 for AG-A isolates. In the pathogenicity assay of six red cabbage cultivars, one isolate for each AG was tested using a similar method, and all cultivars were susceptible to AG 4 HG-I and AG 4 HG-III isolates. Redriver and Remale were moderately susceptible, while Rescue, Travero, Integro, and Rondale were susceptible to the AG 5 isolate. The results indicate that the most prevalent and aggressive AGs of Rhizoctonia are devastating pathogens to red cabbage, which means that rotation with nonhost-crops for these AGs may be the most effective control strategy. This is the first comprehensive study of Rhizoctonia isolates in red cabbage using a molecular approach to assess genetic diversity using iPBS-amplified DNA profiling.
Collapse
Affiliation(s)
- Ismail Erper
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, Atakum, 55139 Samsun, Turkey; (S.A.); (E.Y.)
- Department of Plant Protection, Faculty of Agriculture, Kyrgyz Turkish Manas University, Bishkek 720044, Kyrgyzstan
- Correspondence: (I.E.); (R.K.); Tel.: +9036-2457-6034 (I.E.); +3585-0448-3505 (R.K.)
| | - Goksel Ozer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (G.O.); (M.A.)
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, 00014 Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence: (I.E.); (R.K.); Tel.: +9036-2457-6034 (I.E.); +3585-0448-3505 (R.K.)
| | - Sirin Avci
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, Atakum, 55139 Samsun, Turkey; (S.A.); (E.Y.)
| | - Elif Yildirim
- Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayis University, Atakum, 55139 Samsun, Turkey; (S.A.); (E.Y.)
| | - Mehtap Alkan
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (G.O.); (M.A.)
| | - Muharrem Turkkan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, 52200 Ordu, Turkey;
| |
Collapse
|
22
|
Khapilina O, Raiser O, Danilova A, Shevtsov V, Turzhanova A, Kalendar R. DNA profiling and assessment of genetic diversity of relict species Allium altaicum Pall. on the territory of Altai. PeerJ 2021; 9:e10674. [PMID: 33510974 PMCID: PMC7798630 DOI: 10.7717/peerj.10674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Analysis of the genetic diversity of natural populations of threatened and endangered species of plants is a main aspect of conservation strategy. The endangered species Allium altaicum is a relict plant of the Ice Age and natural populations are located in extreme climatic conditions of Kazakstan's Altai Mountains. Mobile genetic elements and other interspersed repeats are basic components of a eukaryote genome, which can activate under stress conditions and indirectly promote the survival of an organism against environmental stresses. Detections of chromosomal changes related to recombination processes of mobile genetic elements are performed by various PCR methods. These methods are based on interspersed repeat sequences and are an effective tool for research of biological diversity of plants and their variability. In our research, we used conservative sequences of tRNA primer binding sites (PBS) when initializing the retrotransposon replication as PCR primers to research the genetic diversity of 12 natural populations of A. altaicum found in various ecogeographic conditions of the Kazakhstani Altai. High efficiency of the PBS amplification method used was observed already at the intrapopulation level. Unique amplicons representative of a certain population were found at the intrapopulation level. Analysis of molecular dispersion revealed that the biodiversity of populations of mountainous and lowland A. altaicum is due to intrapopulation differences for climatic zones of habitation. This is likely conditional upon predominance of vegetative reproduction over seed reproduction in some populations. In the case of vegetative reproduction, somatic recombination related to the activity of mobile genetic elements are preserved in subsequent generations. This leads to an increase of intrapopulation genetic diversity. Thus, high genetic diversity was observed in populations such as A. altaicum located in the territory of the Kalbinskii Altai, whereas the minimum diversity was observed in the populations of the Leninororsk ecogeographic group. Distinctions between these populations were also identified depending on the areas of their distribution. Low-land and mid-mountain living environments are characterized by a great variety of shapes and plasticity. This work allowed us to obtain new genetic data on the structure of A. altaicum populations on the territory of the Kazakhstan Altai for the subsequent development of preservation and reproduction strategies for this relict species.
Collapse
Affiliation(s)
| | - Olesya Raiser
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | | | | | | | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Aqmola, Kazakhstan
| |
Collapse
|
23
|
Maiwald S, Weber B, Seibt KM, Schmidt T, Heitkam T. The Cassandra retrotransposon landscape in sugar beet (Beta vulgaris) and related Amaranthaceae: recombination and re-shuffling lead to a high structural variability. ANNALS OF BOTANY 2021; 127:91-109. [PMID: 33009553 PMCID: PMC7750724 DOI: 10.1093/aob/mcaa176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Plant genomes contain many retrotransposons and their derivatives, which are subject to rapid sequence turnover. As non-autonomous retrotransposons do not encode any proteins, they experience reduced selective constraints leading to their diversification into multiple families, usually limited to a few closely related species. In contrast, the non-coding Cassandra terminal repeat retrotransposons in miniature (TRIMs) are widespread in many plants. Their hallmark is a conserved 5S rDNA-derived promoter in their long terminal repeats (LTRs). As sugar beet (Beta vulgaris) has a well-described LTR retrotransposon landscape, we aim to characterize TRIMs in beet and related genomes. METHODS We identified Cassandra retrotransposons in the sugar beet reference genome and characterized their structural relationships. Genomic organization, chromosomal localization, and distribution of Cassandra-TRIMs across the Amaranthaceae were verified by Southern and fluorescent in situ hybridization. KEY RESULTS All 638 Cassandra sequences in the sugar beet genome contain conserved LTRs and thus constitute a single family. Nevertheless, variable internal regions required a subdivision into two Cassandra subfamilies within B. vulgaris. The related Chenopodium quinoa harbours a third subfamily. These subfamilies vary in their distribution within Amaranthaceae genomes, their insertion times and the degree of silencing by small RNAs. Cassandra retrotransposons gave rise to many structural variants, such as solo LTRs or tandemly arranged Cassandra retrotransposons. These Cassandra derivatives point to an interplay of template switch and recombination processes - mechanisms that likely caused Cassandra's subfamily formation and diversification. CONCLUSIONS We traced the evolution of Cassandra in the Amaranthaceae and detected a considerable variability within the short internal regions, whereas the LTRs are strongly conserved in sequence and length. Presumably these hallmarks make Cassandra a prime target for unequal recombination, resulting in the observed structural diversity, an example of the impact of LTR-mediated evolutionary mechanisms on the host genome.
Collapse
Affiliation(s)
- Sophie Maiwald
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
25
|
Turzhanova A, Khapilina ON, Tumenbayeva A, Shevtsov V, Raiser O, Kalendar R. Genetic diversity of Alternaria species associated with black point in wheat grains. PeerJ 2020; 8:e9097. [PMID: 32411537 PMCID: PMC7207207 DOI: 10.7717/peerj.9097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Alternaria is a widely distributed major plant pathogen that can act as a saprophyte in plant debris. Fungi of this genus frequently infect cereal crops and cause such diseases as black point and wheat leaf blight, which decrease the yield and quality of cereal products. A total of 25 Alternaria sp. isolates were collected from germ grains of various wheat cultivars from different geographic regions in Kazakhstan. We investigated the genetic relationships of the main Alternaria species related to black point disease of wheat in Kazakhstan, using the inter-primer binding site (iPBS) DNA profiling technique. We used 25 retrotransposon-based iPBS primers to identify the differences among and within Alternaria species populations, and analyzed the variation using clustering (UPGMA) and statistical approaches (AMOVA). Isolates of Alternaria species clustered into two main genetic groups, with species of A.alternata and A.tennuissima forming one cluster, and isolates of A. infectoria forming another. The genetic diversity found using retrotransposon profiles was strongly correlated with geographic data. Overall, the iPBS fingerprinting technique is highly informative and useful for the evaluation of genetic diversity and relationships of Alternaria species.
Collapse
Affiliation(s)
| | | | | | | | - Olesya Raiser
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|