1
|
Islam S, Sarkar O, Mukherjee S, Chattopadhyay A. Long-Term Impact of Cr(VI) Exposure in Swiss Albino Mice: ROS-Driven Modulation of Autophagy and Cellular Fate. Biol Trace Elem Res 2025:10.1007/s12011-025-04599-w. [PMID: 40180680 DOI: 10.1007/s12011-025-04599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Hexavalent chromium [Cr(VI)], due to its high solubility and permeability, is significantly more toxic than trivalent chromium [Cr(III)] as it generates reactive oxygen species (ROS) during cellular reduction. Industrial discharges have led to increasing Cr(VI) contamination in surface and groundwater, posing serious environmental and public health concerns. In our previous study, we demonstrated that exposure to 5 ppm Cr(VI) for 4 and 8 months adversely affected body weight, water consumption, and liver function in Swiss albino mice. Histological analyses revealed tissue alterations, disrupted DNA repair gene expression in liver tissue, and a marked increase in apoptotic gene expression after 8 months of exposure. Building on these findings, we employed the same Cr(VI) concentration (5 ppm via drinking water) over 4 and 8 months in the present study. Our results showed a significant increase in ROS generation in the liver, brain, and kidney tissues at both time intervals. Additionally, the presence of autophagolysosomes was markedly elevated after chronic Cr(VI) exposure in each tissue. We also observed altered expression patterns of key autophagy-related genes (Atg5, Beclin1, and Lc3) and mTor in these tissues. Immunohistochemical analysis further confirmed a significant increase in LC3B expression after 4 months of exposure. Our findings suggest that heightened intracellular oxidative stress triggers a protective autophagy response, mediated via mTOR signaling, to maintain cellular integrity. However, prolonged toxic insult and ROS accumulation may eventually shift pro-survival autophagy toward apoptotic cell death in the liver and brain tissues.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
2
|
Liu B, Xia S, Xiao W, Yu X, Zhang J, Wei X, Long W, Shen B, Lv H. Exposure of pregnant and lactating parental mice to aflatoxin B 1 promotes hepatotoxicity in offspring mice. Arch Toxicol 2025; 99:1517-1529. [PMID: 39893609 DOI: 10.1007/s00204-024-03955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
Aflatoxin B1 (AFB1) taints feeds stuffs, endangering livestock's health and resulting in the liver and breast damage. At the same time, while breastfeeding, AFB1 crosses the mammary glands and enters the milk, harming the offspring. This study investigated the liver damaging effects of maternal AFB1 exposure during pregnancy and lactation in offspring mice. The livers of 8-day-old offspring mice were obtained from female mice who were administered AFB1 (2 mg/kg) 1 week prior to and 1 week following birth. The results showed that AFB1 increased the levels of malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), pro-inflammatory-related proteins (iNOS, COX-2, IL-6), and apoptosis-related proteins (Caspase-3, Caspase-9, Bax) by AFB1-induced in liver of offspring mice. Furthermore, the use of F40/80, HE, and TUNEL staining further demonstrated the existence of inflammation and apoptosis in the liver. Intriguingly, in the liver of offspring mice, AFB1 increased antioxidant protein and inhibit ferroptosis-related protein activity (FTH, GPX4), mitochondrial function-associated proteins (UQCRC2, COX IV, Cyt C), lipid metabolism-associated proteins (HMGCR, SPEBE1, FAS), and autophagy-related proteins (Atg7, Beclin-1, LC3I/II) in the liver of mice. In conclusion, AFB1 enters the liver of offspring mice through milk, which in turn causes liver injury. This outcome explains how AFB1 exposure affects female animals and their progeny and lays the strategy for livestock prevention.
Collapse
Affiliation(s)
- Bingxue Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shijie Xia
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Wanzhe Xiao
- Ultrasound Department of the physical examination center, Baicheng Central Hospital, Baicheng, China
| | - Xiaoqing Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jiexing Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiangjian Wei
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Wenyuan Long
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Binglei Shen
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Hongming Lv
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
3
|
Lin W, Wang S, Liu R, Zhang D, Zhang J, Qi X, Li Z, Miao M, Cai X, Su G. Research progress of cPLA2 in cardiovascular diseases (Review). Mol Med Rep 2025; 31:103. [PMID: 39981923 PMCID: PMC11868774 DOI: 10.3892/mmr.2025.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Cytoplasmic phospholipase A2 (cPLA2) is a vital member of the PLA2 family. Studies have demonstrated that cPLA2 plays a key role in various inflammatory‑related diseases and cancers. However, limited research has focused on cPLA2 in cardiovascular diseases. The present review discussed and summarized the research progress on cPLA2 in atherosclerosis, cardiomyopathy, myocardial ischemia‑reperfusion injury and other related conditions. It also highlighted the critical molecular mechanisms by which cPLA2 regulates the pathophysiological processes of vascular endothelial cells, platelets and myocardial cells in cardiovascular diseases. Current studies confirm that cPLA2 plays an important role in cardiovascular diseases and has the potential to become a therapeutic target for the diagnosis, treatment evaluation and prognosis of these conditions. The present review systematically explored the significant role of cPLA2 in cardiovascular diseases and elaborated on its underlying molecular mechanisms. The findings aimed to refine the theoretical understanding of cardiovascular disease pathogenesis and provide a foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Wenyu Lin
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Ronghan Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Dan Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Jiaxing Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaohan Qi
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Zheng Li
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Meng Miao
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
4
|
Eghbalifard N, Nouri N, Rouzbahani S, Bakhshi M, Ghasemi Kahrizsangi N, Golafshan F, Abbasi F. Hypoxia signaling in cancer: HIF-1α stimulated by COVID-19 can lead to cancer progression and chemo-resistance in oral squamous cell carcinoma (OSCC). Discov Oncol 2025; 16:399. [PMID: 40138101 PMCID: PMC11947373 DOI: 10.1007/s12672-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The potential implications of Coronavirus disease-2019 (COVID-19) on oral squamous cell carcinoma (OSCC) development, chemo-resistance, tumor recurrence, and patient outcomes are explored, emphasizing the urgent need for tailored therapeutic strategies to mitigate these risks. The role of hypoxia-inducible factor 1-alpha (HIF-1α) in OSCC studies has highlighted HIF-1α as a crucial prognostic marker in OSCC, with implications for disease prognosis and patient survival. Its overexpression has been linked to aggressive subtypes in early OSCC stages, indicating its significance as an early biomarker for disease progression. Moreover, dysplastic lesions with heightened HIF-1α expression exhibit a greater propensity for malignant transformation, underscoring its role in early oral carcinogenesis. Cancer patients, including those with OSCC, face an elevated risk of severe COVID-19 complications, which may further impact cancer progression and treatment outcomes. Understanding the interplay between COVID-19 infection, HIF-1α activation, and OSCC pathogenesis is crucial for enhancing clinical management strategies. So, insights from this review shed light on the significance of HIF-1α in OSCC tumorigenesis, metastasis formation, and patient prognosis. The review underscores the need for further research to elucidate the precise mechanisms through which HIF-1α modulates cancer progression and chemo-resistance in the context of COVID-19 infection. Such knowledge is essential for developing targeted therapeutic interventions to improve outcomes for OSCC patients.
Collapse
Affiliation(s)
- Negar Eghbalifard
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nikta Nouri
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rouzbahani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Negin Ghasemi Kahrizsangi
- Child Growth and Development Research Center, Research Institute for Primary Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faraz Golafshan
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Abbasi
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
5
|
Wu M, Nie Q, Zhang Y, Qin J, Ye L, Zhao R, Dai M, Wu M. METTL3 Plays Regulatory Roles in Acute Pneumonia during Staphylococcus aureus Infection. ACS Infect Dis 2025. [PMID: 40105125 DOI: 10.1021/acsinfecdis.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Pneumonia caused by Staphylococcus aureus infection has consistently been a significant cause of morbidity and mortality worldwide. Extensive research to date indicates that N6-methyladenosine (m6A) modification plays a crucial role in the development and progression of various diseases. However, it remains unknown whether the m6A modification affects the progression of bacterial pneumonia. To explore this question, we assessed the levels of m6A as well as the expression of methyltransferases (METTL3 and METTL14), demethylase fat mass and obesity-related protein (FTO), and methylation reader proteins YTHDF1 and YTHDF2 in mice and MH-S cells during S. aureus infection. The levels of m6A and METTL3 were significantly upregulated in S. aureus-infected mice and MH-S cells. siMETTL3 knockdown resulted in more severe bacterial colonization, lung damage, increased inflammatory cytokines (IL-6, IL-1β, TNF-α), and mortality rates in mice as well as MH-S cells following the bacterial infection. Regulation of lung inflammation levels by METTL3 was associated with the activation of the MAPK/NF-κB/JAK2-STAT3 signaling pathway. Moreover, siMETTL3 mice exhibited an increased release of superoxides and exacerbated oxidative stress in the lungs following S. aureus infection, which was correlated with impaired mitochondrial autophagy mediated by the Pink1/Parkin pathway. Our findings provide previously unrecognized evidence of the protective role of METTL3 in S. aureus-induced acute pneumonia, indicating a potential therapeutic target for S. aureus infections.
Collapse
Affiliation(s)
- Menghui Wu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qihang Nie
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710000, China
| | - Yanyan Zhang
- School of Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiaoxia Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liumei Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ruoyang Zhao
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325024, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Wu
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
6
|
Koyama S, Mizutani Y, Goto Y, Yoda K. Species-specific physiological status in seabirds: insights from integrating oxidative stress measurements and biologging. Front Physiol 2025; 16:1509511. [PMID: 40177361 PMCID: PMC11962040 DOI: 10.3389/fphys.2025.1509511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Understanding the relationship between behavior and physiological state, as well as species differences in physiological responses, is key to identifying the behavioral and physiological adaptations necessary for wild animals to avoid physiological deterioration, thereby enhancing their survival and fitness. A commonly used measure of physiological condition is oxidative stress, which results from an imbalance between oxidative damage-often exacerbated by respiration during exercise and indicative of physical harm-and antioxidant capacity, which reflects the organism's ability to recover from such damage. Despite its importance, oxidative stress has rarely been linked to behavior, such as foraging, leaving this relationship underexplored. In this study, we focused on two seabird species, black-tailed gulls (Larus crassirostris) and streaked shearwaters (Calonectris leucomelas), which are similar in body size and primarily forage on the same prey species but differ in traits such as habitat, flight style, and physiological function. We recorded the trajectories of these birds for approximately 1 week using biologging and measured their plasma oxidative stress. We found that oxidative stress in black-tailed gulls was higher than that in streaked shearwaters, suggesting that species differences in life histories, habitats, and physiological function may be related to long-term oxidative stress. However, over a 1-week timescale, there were no significant species differences in changes in oxidative stress, suggesting that behavioral differences between the two species might not necessarily lead to species-specific oxidative stress responses in the short term. Additionally, no consistent relationship was found between changes in oxidative stress of the two species and their behavioral metrics in most years, suggesting that this relationship may vary depending on yearly environmental fluctuations. Based on our findings, we encourage future studies that would explore and integrate the interactions between marine environments, behavior, and oxidative stress of different bird species to clarify the contribution of specific foraging behaviors to either the deterioration or recovery of physiological conditions, and the varying effect of environmental conditions on these relationships.
Collapse
|
7
|
Dhapola R, Kumari S, Sharma P, Vellingiri B, HariKrishnaReddy D. Advancements in autophagy perturbations in Alzheimer's disease: Molecular aspects and therapeutics. Brain Res 2025; 1851:149494. [PMID: 39922409 DOI: 10.1016/j.brainres.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Emerging evidences suggest that autophagy, a key cellular process responsible for degrading and recycling damaged organelles and proteins, plays a crucial role in maintaining neuronal health. Dysfunctional autophagy has been linked to the pathogenesis of Alzheimer's disease (AD), contributing to the accumulation of misfolded proteins and cellular debris. Molecular mechanisms underlying autophagy dysfunction in AD involve amyloid-beta (Aβ) and tau accumulation, neuroinflammation, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress. Disrupted signaling pathways such as TRIB3, Nmnat and BAG3 that regulate key processes like autophagosome initiation, lysosome function, and protein homeostasis also play a crucial role in the pathogenesis. Restoration of autophagy by modulating these molecular and signaling pathways may be an effective therapeutic strategy for AD. Studies have found few drugs targeting autophagy dysregulation in AD. These drugs include metformin that has been found to modulate the expression of TRIB3 for autophagy regulation. Another drug, resveratrol has been reported to augment the activity of Nmnat thus, increases autophagy flux. BACE1 and mTOR inhibitors like arctigenin, nilvadipine and dapagliflozin were also found to restore autophagy. This study elaborates recent advances in signaling and molecular pathways and discusses current and emerging therapeutic interventions targeting autophagy dysfunction in AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab 151401 Bathinda, Punjab, India.
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India.
| |
Collapse
|
8
|
Nadais A, Martins I, Henriques AG, Trigo D, da Cruz E Silva OAB. Comparing In vitro Protein Aggregation Modelling Using Strategies Relevant to Neuropathologies. Cell Mol Neurobiol 2025; 45:24. [PMID: 40080205 PMCID: PMC11906958 DOI: 10.1007/s10571-025-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Protein aggregation is remarkably associated with several neuropathologies, including Alzheimer´s (AD) and Parkinson´s disease (PD). The first is characterized by hyperphosphorylated tau protein and Aβ peptide deposition, thus forming intracellular neurofibrillary tangles and extracellular senile plaques, respectively; while, in PD, α-synuclein aggregates and deposits as Lewy bodies. Considerable research has focused on developing protein aggregation models to be explored as research tools. In the present work, four in vitro models for studying protein aggregation were studied and compared, namely treatment with: the toxic Aβ1-42 peptide, the isoflavone rotenone, the ATP synthase inhibitor oligomycin, and the proteosome inhibitor MG-132. All treatments result in aggregation-relevant events in the human neural SH-SY5Y cell line, but significant model-dependent differences were observed. In terms of promoting aggregate formation, Aβ and MG-132 provoked the greatest effect, but only MG-132 was associated with an increase in HSP-70 chaperone expression. In fact, the type of aggregates formed appear to be dependent on the treatment employed, and supports the hypothesis that Aβ exposure is a relevant AD model, and rotenone is a valid model for PD. Furthermore, the results revealed that protein phosphorylation is relevant to aggregate formation and as expected, tau co-localized to the deposits formed in the Aβ peptide aggregate induction cell model. In summary, different molecular processes, from overall and specific protein aggregation to proteostatic modulation, can be induced by using distinct aggregation modelling strategies, and these can be used to study different protein-aggregation-related processes associated with distinct neuropathologies.
Collapse
Affiliation(s)
- André Nadais
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Martins
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Hou G, Tang S, Li Q, Li W, Xi X. Exercise combined with metformin ameliorates diabetic kidney disease by increasing renal autophagy and reducing oxidative stress in rats with high-fat diet and streptozotocin induced diabetes. Biochem Biophys Res Commun 2025; 752:151373. [PMID: 39955947 DOI: 10.1016/j.bbrc.2025.151373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/18/2025]
Abstract
Diabetic kidney disease (DKD) is one of the common and serious complications of type 2 diabetes mellitus (T2DM). Metformin is commonly prescribed for the treatment of T2DM, while exercise is frequently recommended as adjunctive therapy. However, the therapeutic efficacy and molecular etiology of combined therapy with exercise and metformin in DKD remain to be elucidated. The present study therefore aimed to investigate the therapeutic effects and mechanisms underlying the combined effects of exercise and metformin on DKD. A rat model of T2DM was constructed by administering a high-fat diet and intraperitoneal injections of streptozotocin (30 mg/kg) for 6 weeks. The rats with T2DM exhibited reduced autophagic flux, increased oxidative stress, and morphological and structural lesions in the kidneys, compared to those of normal rats in the control group. The combination of exercise and metformin alleviated DKD, indicated by the elevation of renal autophagic flux, and a reduction in oxidative stress, renal fibrosis, and histopathological damage to the kidneys. Our findings suggested that exercise combined with metformin has a therapeutic role in DKD, and the study serves as a valuable reference for future research on the treatment of DKD.
Collapse
Affiliation(s)
- Gaixia Hou
- College of Wushu, Henan University, Henan, Kaifeng, 475004, China
| | - Shuman Tang
- College of Physical Education, Henan University, Henan, Kaifeng, 475004, China
| | - Qianhong Li
- College of Physical Education, Henan University, Henan, Kaifeng, 475004, China
| | - Wenyu Li
- College of Physical Education, Henan University, Henan, Kaifeng, 475004, China
| | - Xuefeng Xi
- College of Wushu, Henan University, Henan, Kaifeng, 475004, China; National R & D Center for Edible Fungus Processing Technology, Henan University, Henan, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Liu Z, Han C, Geng F, Huang X, Dong B, Zhang Y, Qian W, Liang Q. A novel role of PvUCP4 in Penaeus vannamei in response to Vibrio alginolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110245. [PMID: 40037496 DOI: 10.1016/j.fsi.2025.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Mitochondria are the energy production and metabolic centers of cells. About 90 % of reactive oxygen species come from mitochondria. Uncoupling proteins (UCPs) have a protective effect against oxidative stress in mitochondria. But this regulatory mechanism remains poorly understood in crustaceans. Here, we investigated the mechanism of PvUCP4 under vibrio alginolyticus challenge. Transcriptome analysis revealed that energy metabolism is a key pathway in the shrimp's immune response. Interestingly, PvUCP4, a mitochondrial uncoupling protein, was found to be inhibited, indicating its potential involvement in the shrimp's resistance to V. alginolyticus. Silencing PvUCP4 upregulates antioxidant enzyme gene expression, including SOD, CAT, and GPX. However, pretreatment with the ROS scavenger N-acetylcysteine revealed that silencing PvUCP4 had no effect on the expression of antioxidant genes. Pretreatment with LPS, a bacterial cell wall component, can rescue partial inhibition of DJ-1/NF-κB signaling pathway related genes caused by overexpression of PvUCP4. In addition, inhibiting PvUCP4 increased the expression of apoptosis-related genes and induced apoptosis. Ultimately, silencing PvUCP4 reduced the survival rate of shrimp under V. alginolyticus stress. Collectively, these findings suggest that PvUCP4 is neither dependent on the antioxidant enzyme system for its antioxidant effects nor on the negative feedback regulation of the DJ-1 pathway.
Collapse
Affiliation(s)
- Zhengxinyu Liu
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Caoyuan Han
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - FuHui Geng
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - XiaoTong Huang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - BeiBei Dong
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Yu Zhang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Weiguo Qian
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| | - Qingjian Liang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China; College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
11
|
Choi MS, Hwang HI, Chung YY, Shin HK, Kim DJ, Jun YH. Differential Expression of NRF2 in the Cortex and Hippocampus Following Bilateral Common Carotid Artery Occlusion. In Vivo 2025; 39:742-748. [PMID: 40010953 PMCID: PMC11884482 DOI: 10.21873/invivo.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND/AIM Vascular dementia is the second most common cognitive disorder after Alzheimer's disease. Bilateral common carotid artery occlusion (BCCAO) is a widely used model of vascular dementia associated with chronic cerebral hypoperfusion. Previous studies have reported a beneficial role of nuclear factor erythroid 2-related factor 2 (NRF2) in BCCAO. This study aimed to investigate NRF2 expression in the cortex and hippocampus at 3 and 14 days after BCCAO. MATERIALS AND METHODS Unoperated male Sprague-Dawley rats were assigned to the control group, while rats that underwent surgery were assigned to the BCCAO group. The right and left common carotid arteries were exposed beneath the esophagus, separated from the vagus nerve and occluded using 4-0 silk sutures. The cerebral cortex and hippocampus were isolated under anesthesia, 3 and 14 days post-surgery. The expression of NRF2 protein was evaluated using western blot analysis. RESULTS NRF2 expression in the cerebral cortex increased 3 and 14 days after BCCAO, compared to control group. In the hippocampus, NRF2 expression of BCCAO group mice was increased at 3 days, but no difference was observed at day 14 compared to the control group. CONCLUSION Chronic hypoperfusion induced by BCCAO altered the protein expression levels of NRF2 in the cortex and hippocampus, suggesting that NRF2 may have a role in cognitive impairment.
Collapse
Affiliation(s)
- Min Seon Choi
- Department of Pediatrics, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Hyo-In Hwang
- Institute of Well-Aging Medicare, Chosun University, Gwang-ju, Republic of Korea
| | - Yoon Young Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Hye-Kyoung Shin
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Dong-Joon Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Yong Hyun Jun
- Institute of Well-Aging Medicare, Chosun University, Gwang-ju, Republic of Korea;
| |
Collapse
|
12
|
ALMatrafi TA. Deciphering the role of TMEM164 in autophagy-mediated ferroptosis and immune modulation in non-small cell lung cancer. Cell Immunol 2025; 409-410:104915. [PMID: 39798196 DOI: 10.1016/j.cellimm.2024.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains one of the most prevalent and deadly malignancies. Despite advancements in molecular therapies and diagnostic methods, the 5-year survival rate for lung adenocarcinoma patients remains unacceptably low, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, a distinct form of regulated cell death, has emerged as a promising target in cancer treatment. This study investigates the role of TMEM164, a membrane protein, in promoting ferroptosis and modulating anti-tumor immunity in NSCLC, aiming to elucidate its therapeutic potential. METHODS Using publicly available datasets, we performed bioinformatics analyses to identify TMEM164-regulated genes involved in ferroptosis. In addition, in vitro and in vivo assays were conducted to assess the impact of TMEM164 on cellular functions in NSCLC. RESULTS Functional assays demonstrated that TMEM164 overexpression significantly inhibited invasion, migration, and cell proliferation in both in vitro and in vivo models. TMEM164 was also found to induce ferroptosis in NSCLC cells by promoting autophagy. Specifically, we identified a mechanism whereby TMEM164 mediates ATG5-dependent autophagosome formation, leading to the degradation of ferritin, GPX4, and lipid droplets. This degradation facilitated iron accumulation and lipid peroxidation, which triggered iron-dependent cell death. Notably, co-administration of TMEM164 upregulation and anti-PD-1 antibodies exhibited synergistic anti-tumor effects in a mouse model. CONCLUSION These findings suggest that targeting TMEM164 to enhance ferroptosis and stimulate anti-tumor immunity may inhibit NSCLC progression. Consequently, TMEM164 holds promise as a new therapeutic target for NSCLC treatment.
Collapse
|
13
|
Gao Q, Lai Y, He S, Wang Y, Zhang G, Zhu X, Zhuang S. Lysine acetyltransferase 5 contributes to diabetic retinopathy by modulating autophagy through epigenetically regulating autophagy-related gene 7. Cytojournal 2025; 22:22. [PMID: 40134575 PMCID: PMC11932963 DOI: 10.25259/cytojournal_187_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 03/27/2025] Open
Abstract
Objective Diabetic retinopathy (DR) is a prevalent and serious complication among individuals with diabetes, significantly compromising their visual acuity and overall quality of life. Lysine acetyltransferase 5 (KAT5), an essential catalytic subunit of the nucleosome acetyltransferase of the H4 complex, is implicated in the development of various diseases, including neurological disorders, breast cancer, and lung cancer. However, the function of KAT5 in DR remains poorly understood. This study aims to investigate the influence of KAT5 on autophagy (Atg) during DR. Material and Methods Experiments were conducted using streptozotocin (STZ)-treated rats to induce diabetes and observe changes in KAT5 expression and its effect on Atg. Retinal tissues and RF/6A cells were utilized to analyze the expression levels of various proteins and their involvement in Atg and apoptosis. KAT5 depletion and Atg7 knockdown were performed to further understand their roles in the process. Results The eyeballs of STZ-treated rats showed increased expression of KAT5. Depletion of KAT5 attenuated STZ-induced DR injury in rats. The retinal tissues of STZ-treated rats exhibited reduced expression of B-cell lymphoma-2 (Bcl-2) and increased levels of BCL-2-associated X protein and cleaved caspase 3, which could be reversed by KAT5 depletion. STZ treatment induced expression of Beclin-1 and microtubule-associated protein 1 light chain 3B in retinal tissues, and KAT5 knockdown blocked this effect. In monkey retinal choroidal endothelial ( RF/6A) cells, high glucose (HG) treatment decreased 5-ethynyl-2'-deoxyuridine-positivecells and increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells, which were reversed by KAT5 depletion. KAT5 depletion also attenuated HG-induced apoptosis and Atg in RF/6A cells. Mechanistically, KAT5 depletion reduced histone H3 lysine 27 acetylation and ribonucleic acid ( RNA) polymerase II enrichment on the Atg7 promoter, leading to a decrease in the messenger RNA ( mRNA) and protein expression of Atg7. Atg7 knockdown suppressed Atg in RF/6A cells under HG conditions and reversed the effect of KAT5 depletion on cell apoptosis and Atg. Conclusion The findings suggest that KAT5 contributes to DR by modulating Atg through epigenetic regulation of Atg7. KAT5 emerges as a valuable target for DR treatment, providing a fresh perspective on the disease's pathogenesis and laying the foundation for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Qi Gao
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Yanjun Lai
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Shuai He
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Yanhua Wang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Guochao Zhang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Xinyu Zhu
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| | - Shifang Zhuang
- Department of Laboratory Clinical Laboratory, Ninth Hospital of Xi’an, Xi ’an, Shaanxi Province, China
| |
Collapse
|
14
|
Bou Malhab LJ, Madkour MI, Abdelrahim DN, Eldohaji L, Saber-Ayad M, Eid N, Abdel-Rahman WM, Faris ME. Dawn-to-dusk intermittent fasting is associated with overexpression of autophagy genes: A prospective study on overweight and obese cohort. Clin Nutr ESPEN 2025; 65:209-217. [PMID: 39542136 DOI: 10.1016/j.clnesp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
AIM AND BACKGROUND A growing body of evidence supports the impact of intermittent fasting (IF) on longevity and healthy aging via the modulation of autophagy genes. The activation of the catabolic autophagic machinery (LAMP2, LC3B, ATG5, and ATG4D) has protective effects against degenerative aging and chronic diseases. This research examined the changes in the expression of the aforementioned genes upon the observance of dawn-to-dusk IF among metabolically healthy participants with overweight and obesity. METHODS Fifty-one (51) participants (36 males and 15 females, 38.84 ± 11.73 years) with overweight and obesity (BMI = 29.75 ± 5.04 kg/m2) were recruited and monitored before and at the end of the commencement of the four-week IF. Six healthy subjects with normal BMI (21.4 ± 2.20 kg/m2) were recruited only to standardize the reference for normal levels of gene expressions. At the two time points, anthropometric, biochemical, and dietary assessments were performed, and LAMP2, LC3B, ATG5, and ATG4D gene expressions were assessed using qRT-PCR on RNA extracted from whole blood samples. RESULTS At the end of IF, and compared to the pre-fasting levels, the relative gene expressions among participants with overweight/obesity were significantly increased for the three autophagy genes LAMP2, LC3B, and ATG5, with increments of about 4.2 folds, 1.9-fold, and 1.4-fold, respectively. In contrast, the increase in the ATG4D gene was not significant. Concomitantly, significant decreases were found in body weight, BMI, fat mass, body fat percent, hip and waist circumferences, LDL, IL-6, and TNF-a (P < 0.05), While HDL, IL-10, and CD163 significantly increased (P < 0.05). Binary logistic regression analysis for genetic expressions showed no significant association between high-energy intake, waist circumference, or obesity and the four gene expressions. CONCLUSIONS Four consecutive weeks of dawn-to-dusk IF of Ramadan is associated with the upregulation of autophagy gene expressions in participants with overweight/obesity, and this may explain, at least in part, its favorable short-term temporal metabolic and health-improving effects on early aging-related markers. Hence, IF presumably may entail a protective impact against early markers of aging and metabolic diseases in participants with overweight/obesity.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed I Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana N Abdelrahim
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Leen Eldohaji
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, 57000 Kula Lumpur, Malaysia
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - MoezAlIslam E Faris
- Department of Clinical Nutrition and Dietetics, Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan.
| |
Collapse
|
15
|
Ding W, Qian K, Bao W, Wang Z. Phellodendrine inhibits oxidative stress and promotes autophagy by regulating the AMPK/mTOR pathway in burn sepsis-induced intestinal injury. Toxicol Res (Camb) 2025; 14:tfae233. [PMID: 39822373 PMCID: PMC11734437 DOI: 10.1093/toxres/tfae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Indexed: 01/19/2025] Open
Abstract
Intestinal injury is an important complication of burn sepsis with limited therapeutic choices. Phellodendrine is a promising compound for gastrointestinal inflammatory diseases and is extracted from the traditional Chinese medicine phellodendron bark. The study aimed to explore the role of phellodendrine against oxidative stress and autophagy in burn sepsis-induced intestinal injury. A mouse model of burn sepsis model was established by intraperitoneally injecting 10 mg/kg lipopolysaccharide (LPS) to mice burned by boiled water. Phellodendrine (30 mg/kg) was injected into mice in the drug group after scalding and before LPS injection. Hematoxylin and eosin staining was performed to observe histopathological changes in murine small intestines. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed to evaluate intestinal cell apoptosis. Immunofluorescence staining was performed to measure the expression and distribution of autophagy markers, light chain 3II (LC3II) and p62 in intestinal tissues. Oxidative stress indicators were detected using corresponding commercial kits. Protein levels of apoptotic markers, autophagy markers, and factors involved in adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) pathway in intestines were quantified by western blotting. Phellodendrine attenuated bun sepsis-induced intestinal pathological changes. Meanwhile, aggravated cell apoptosis, reduction of antioxidant enzymes, and downregulation of autophagy markers in intestinal tissues of burn sepsis group were all improved by phellodendrine. In addition, phellodendrine activated the phosphorylation (p) of AMPK and inhibited p-mTOR signaling in intestines of burn septic mice. In conclusion, phellodendrine suppresses oxidative stress and activates autophagy in burn sepsis-induced intestinal injury by activating AMPK and inhibiting mTOR signaling.
Collapse
Affiliation(s)
- Wei Ding
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Kun Qian
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Wenxiu Bao
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Zhen Wang
- Department of General Practice, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, Anhui Province 241000, China
| |
Collapse
|
16
|
Meng K, Jia H, Hou X, Zhu Z, Lu Y, Feng Y, Feng J, Xia Y, Tan R, Cui F, Yuan J. Mitochondrial Dysfunction in Neurodegenerative Diseases: Mechanisms and Corresponding Therapeutic Strategies. Biomedicines 2025; 13:327. [PMID: 40002740 PMCID: PMC11852430 DOI: 10.3390/biomedicines13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative disease (ND) refers to the progressive loss and morphological abnormalities of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Examples of neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Recent studies have shown that mitochondria play a broad role in cell signaling, immune response, and metabolic regulation. For example, mitochondrial dysfunction is closely associated with the onset and progression of a variety of diseases, including ND, cardiovascular diseases, diabetes, and cancer. The dysfunction of energy metabolism, imbalance of mitochondrial dynamics, or abnormal mitophagy can lead to the imbalance of mitochondrial homeostasis, which can induce pathological reactions such as oxidative stress, apoptosis, and inflammation, damage the nervous system, and participate in the occurrence and development of degenerative nervous system diseases such as AD, PD, and ALS. In this paper, the latest research progress of this subject is detailed. The mechanisms of oxidative stress, mitochondrial homeostasis, and mitophagy-mediated ND are reviewed from the perspectives of β-amyloid (Aβ) accumulation, dopamine neuron damage, and superoxide dismutase 1 (SOD1) mutation. Based on the mechanism research, new ideas and methods for the treatment and prevention of ND are proposed.
Collapse
Affiliation(s)
- Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| | - Haocheng Jia
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Xiaoqing Hou
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Ziming Zhu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yuguang Lu
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Yingying Feng
- College of Clinical Medicine, Jining Medical University, Jining 272067, China; (H.J.); (X.H.); (Z.Z.); (Y.L.); (Y.F.)
| | - Jingwen Feng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China;
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining 272067, China;
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou 221004, China;
| | - Fen Cui
- Educational Institute of Behavioral Medicine, Jining Medical University, Jining 272067, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining 272067, China;
| |
Collapse
|
17
|
Kahali S, Baisya R, Das S, Datta A. Simultaneous Live Mapping of pH and Hydrogen Peroxide Fluctuations in Autophagic Vesicles. JACS AU 2025; 5:343-352. [PMID: 39886571 PMCID: PMC11775711 DOI: 10.1021/jacsau.4c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Hydrogen peroxide (H2O2) plays a critical role in the regulation and progress of autophagy, an essential recycling process that influences cellular homeostasis and stress response. Autophagy is characterized by the formation of intracellular vesicles analogous to recycle "bags" called autophagosomes, which fuse with lysosomes to form autolysosomes, eventually ending up as lysosomes. We have developed two novel autophagic vesicle-targeted peptide-based sensors, ROSA for H2O2 and pHA for pH, to simultaneously track H2O2 and pH dynamics within autophagic vesicles as autophagy advances. Since pH values progressively decrease within autophagic vesicles with the progress of autophagy, we utilized information on vesicular pH to identify stages of autophagic vesicles in live cells. Fluorescence intensities of the H2O2 sensor, ROSA, within autophagic compartments at different autophagic stages, which were identified by simultaneous pH mapping, revealed that H2O2 levels vary significantly within autophagic vesicles as autophagy progresses, with maximum H2O2 levels in the autolysosomal stage. This study provides the first detailed observation of H2O2 fluctuations within autophagic vesicles throughout the entire process of autophagy in living mammalian cells, offering insights into the oxidative changes associated with this vital cellular process.
Collapse
Affiliation(s)
- Smitaroopa Kahali
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | | | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
18
|
S Y, K L M, Harithpriya K, Zong C, Sahabudeen S, Ichihara G, Ramkumar KM. Disruptive multiple cell death pathways of bisphenol-A. Toxicol Mech Methods 2025:1-14. [PMID: 39815394 DOI: 10.1080/15376516.2024.2449423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) significantly contribute to health issues by interfering with hormonal functions. Bisphenol A (BPA), a prominent EDC, is extensively utilized as a monomer and plasticizer in producing polycarbonate plastic and epoxy resins, making it one of the highest-demanded chemicals in commercial use. This is the major component used in plastic products, including bottles, containers, storage items, and food serving ware. Exposure of BPA happens through oral, respiratory, transdermal routes and eye contact. As an EDC, BPA disrupts hormonal binding, leading to various health problems, such as cancers, reproductive abnormalities, metabolic syndrome, immune dysfunction, neurological effects, cardiovascular problems, respiratory issues, and obesity. BPA mimics the hormone estrogen but exhibits a weak affinity for estrogen receptors. This weak binding affinity triggers multiple cell death pathways, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, across different cell types. Numerous clinical, in-vitro, and in-vivo experiments have demonstrated that BPA exposure results in unfavorable health effects. This review highlights the mechanisms of cell death pathways initiated through BPA exposure and the associated negative health consequences. The extensive use of BPA and its frequent detection in environmental and biological models underscore the urgent need for further investigation into its effects and the development of safe alternatives. Addressing the health risks posed by BPA involves a comprehensive approach that includes reducing exposure and finding novel substitutes to lessen its detrimental impact on humans.
Collapse
Affiliation(s)
- Yukta S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Milan K L
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Tokyo, Japan
| | - S Sahabudeen
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Tokyo, Japan
| | - K M Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
19
|
Zheng Q, Jin X, Nguyen TTM, Yi EJ, Park SJ, Yi GS, Yang SJ, Yi TH. Autophagy-Enhancing Properties of Hedyotis diffusa Extracts in HaCaT Keratinocytes: Potential as an Anti-Photoaging Cosmetic Ingredient. Molecules 2025; 30:261. [PMID: 39860131 PMCID: PMC11767327 DOI: 10.3390/molecules30020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics. Hedyotis diffusa (HD), as a medicinal plant, is renowned for its anti-inflammatory and anticancer properties; however, its effects on skin photoaging remain unclear. This study investigates HD's potential to counteract skin photoaging by restoring mitochondrial autophagy in keratinocytes. We used HPLC to detect the main chemical components in HD and, using a UVB-induced photoaging model in HaCaT keratinocytes, examined the effects of HD on reactive oxygen species (ROS) levels, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, and the cell cycle. Cellular respiration was further evaluated with the Seahorse XFp Analyzer, and RT-PCR and Western blotting were used to analyze the impact of HD on mitochondrial autophagy-related gene expression and signaling pathways. Our findings indicate that HD promotes autophagy by modulating the PI3K/AKT/mTOR and PINK/PARK2 pathways, which stabilizes mitochondrial quality, maintains MMP and Ca2+ balance, and reduces cytochrome c release. These effects relieve cell cycle arrest and prevent apoptosis associated with an increased BAX/BCL-2 ratio. Thus, HD holds promise as an effective anti-photoaging ingredient with potential applications in the development of cosmetic products.
Collapse
Affiliation(s)
- Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Gyeong-Seon Yi
- Department of Biopharmaceutical Biotechnology, Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| |
Collapse
|
20
|
Plakoula E, Kalampounias G, Alexis S, Verigou E, Kourakli A, Zafeiropoulou K, Symeonidis A. Prognostic Value of PSMB5 and Correlations with LC3II and Reactive Oxygen Species Levels in the Bone Marrow Mononuclear Cells of Bortezomib-Resistant Multiple Myeloma Patients. Curr Issues Mol Biol 2025; 47:32. [PMID: 39852147 PMCID: PMC11763810 DOI: 10.3390/cimb47010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages. PSMB5 and LC3I/II protein levels were determined using Western blot, proteasome proteolytic activity (PPA) with spectrofluorometry, and ROS with flow cytometry. PSMB5 accumulation was found to diminish after PI treatment (p-value = 0.014), and the same pattern was observed in PPA (p-value < 0.001). Conversely, LC3II protein levels were elevated at both remission and relapse compared to baseline levels (p-value = 0.041). Patients with a baseline PSMB5 accumulation lower than 1.06 units had longer disease-free survival compared to those with values above 1.06 units (12.0 ± 6.7 vs. 36 ± 12.1 months; p-value < 0.001). Median ROS levels in plasma cells were significantly higher at relapse compared to both baseline and remission levels (p-value < 0.001), implying poor prognosis. Overall, post-treatment PSMB5 reduction could indicate a shift from proteasomal to autophagic degradation as a main proteostatic mechanism, thus explaining resistance. The elevated oxidative stress in PI-treated patients could possibly serve as an additional compensatory mechanism.
Collapse
Affiliation(s)
- Eva Plakoula
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece;
| | - Spyridon Alexis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Evgenia Verigou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Alexandra Kourakli
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| | - Kalliopi Zafeiropoulou
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
| | - Argiris Symeonidis
- Hematology Division, Department of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece; (E.P.); (S.A.); (E.V.); (K.Z.)
- Department of Hematology, OLYMPION General Hospital, Volou & Meilichou Str., 26443 Patras, Greece;
| |
Collapse
|
21
|
Lin XH, Dong BB, Liang QJ. Deficiency of PvDRAM2 increased the nitrite sensitivity of Pacific white shrimp (Penaeus vannamei) by inhibiting autophagy. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110068. [PMID: 39505289 DOI: 10.1016/j.cbpc.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Autophagy is an essential response mechanism to environmental stress during the evolution of organisms. DRAM2 (Damage-regulated autophagy regulator 2) is recognized as necessary for the process of p53-mediated cell apoptosis. Although the role of DRAM2 in apoptosis has been confirmed, the mechanism of its relationship with autophagy is still unclear. Here we describe PvDRAM2 features and functions. We found that nitrite stress induced autophagy accumulation and ROS production. A novel DRAM-homologous protein, DRAM2, was cloned, and its expression is significantly up-regulated under nitrite stress conditions. PvDRAM2 primarily localizes within the cytoplasmic lysosome.Loss of PvDRAM2 increased sensitivity response to nitrite stress of Pacific white shrimp. And silenced of PvDRAM2 promoted ROS production and inhibited autophagy accumulation. In addition, silenced of PvDRAM2 decreased the autophagy-related protein of p62, Beclin 1, and LC3 expression under nitrite stress of Pacific white shrimp. Collectively, these studies uncover a novel critical role for PvDRAM2 in regulating autophagy under nitrite stress. Specifically, PvDRAM2 is essential for the induction of autophagy, enabling Pacific white shrimp to adapt to environmental stress. This provides mechanistic insight into how autophagy functions as a way for Pacific white shrimp to cope with environmental challenges.
Collapse
Affiliation(s)
- Xing-Hao Lin
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Bei-Bei Dong
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qing-Jian Liang
- School of Fisheries, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; College of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
22
|
Chuang HY, Chan HW, Shih KC. Suppression of colorectal cancer growth: Interplay between curcumin and metformin through DMT1 downregulation and ROS-mediated pathways. Biofactors 2025; 51:e2137. [PMID: 39607347 DOI: 10.1002/biof.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
The rising incidence of colorectal cancer (CRC) poses significant healthcare challenges. This study explored the therapeutic potential of combined curcumin (CUR) and metformin (MET) treatment in CRC models. Our findings indicate that the combination treatment (COMB) effectively downregulates the expression of divalent metal transporter-1 (DMT-1), leading to a reduction in cell proliferation aligned with suppression of the pAKT/mTOR/Cyclin D1 signaling pathway. The COMB increased reactive oxygen species (ROS) production, triggering activation of the NRF2/KEAP1 pathway. This pathway elicits an antioxidant response to manage oxidative stress in CRC cell lines. Interestingly, the response of NRF2 varied between CT26 and HCT116 cells. Moreover, our study highlights the induction of apoptosis and autophagy, as evidenced by upregulations in Bax/Bcl-2 ratios and autophagy-related protein expressions. Notably, the COMB promoted lipid peroxidation and downregulated xCT levels, suggesting the induction of ferroptosis. Ferroptosis has been shown to activate autophagy, which helps eliminate cells potentially damaged by the increased oxidative stress. Furthermore, the COMB effectively diminished the migratory ability of CRC cells. In vivo experiments using CRC-bearing mouse models, the results confirmed the anti-tumor efficacy of the COMB, leading to substantial inhibition of tumor growth without inducing general toxicity. In conclusion, our study suggests that combining CUR with MET holds promise as a potential option for CRC treatment, with critical mechanisms likely involving ROS elevation, autophagy, and ferroptosis.
Collapse
Affiliation(s)
- Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
23
|
Varalda M, Venetucci J, Nikaj H, Kankara CR, Garro G, Keivan N, Bettio V, Marzullo P, Antona A, Valente G, Gentilli S, Capello D. Second-Generation Antipsychotics Induce Metabolic Disruption in Adipose Tissue-Derived Mesenchymal Stem Cells Through an aPKC-Dependent Pathway. Cells 2024; 13:2084. [PMID: 39768174 PMCID: PMC11674800 DOI: 10.3390/cells13242084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT. While second-generation antipsychotics (SGAs) have significantly improved treatments for mental health disorders, their chronic use is associated with an increased risk of MetS. In this study, we explored the impact of SGAs on ADSCs to better understand their role in MetS and identify potential therapeutic targets. Our findings reveal that olanzapine disrupts lipid droplet formation during adipogenic differentiation, impairing insulin receptor endocytosis, turnover, and signaling. SGAs also alter the endolysosomal compartment, leading to acidic vesicle accumulation and increased lysosomal biogenesis through TFEB activation. PKCζ is crucial for the SGA-induced nuclear translocation of TFEB and acidic vesicle formation. Notably, inhibiting PKCζ restored insulin receptor tyrosine phosphorylation, normalized receptor turnover, and improved downstream signaling following olanzapine treatment. This activation of PKCζ by olanzapine is driven by increased phosphatidic acid synthesis via phospholipase D (PLD), following G protein-coupled receptor (GPCR) signaling activation. Overall, olanzapine and clozapine disrupt endolysosomal homeostasis and insulin signaling in a PKCζ-dependent manner. These findings highlight SGAs as valuable tools for uncovering cellular dysfunction in vWAT during MetS and may guide the development of new therapeutic strategies to mitigate the metabolic side effects of these drugs.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Herald Nikaj
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
| | - Chaitanya Reddy Kankara
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Giulia Garro
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nazanin Keivan
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- Pathology Unity, Ospedale “Sant’Andrea”, 13100 Vercelli, Italy
| | - Sergio Gentilli
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- General Surgery Division, University of Piemonte Orientale, AOU Maggiore della Carità, 28100 Novara, Italy;
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (J.V.); (C.R.K.); (G.G.); (N.K.); (V.B.); (P.M.); (A.A.); (G.V.); (S.G.); (D.C.)
- UPO Biobank, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
24
|
Butucescu M, Imre M, Rus-Hrincu F, Voicu-Balasea B, Popa A, Moisa M, Ripszky A, Neculau C, Pituru SM, Pârvu S. Cell-Type-Specific ROS-AKT/mTOR-Autophagy Interplay-Should It Be Addressed in Periimplantitis? Diagnostics (Basel) 2024; 14:2784. [PMID: 39767145 PMCID: PMC11727345 DOI: 10.3390/diagnostics14242784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/03/2025] Open
Abstract
Periimplantitis represents an inflammatory disease of the soft and hard tissues surrounding the osseointegrated dental implant, triggering progressive damage to the alveolar bone. Cumulative data have revealed that periimplantitis plays a crucial part in implant failure. Due to the strategic roles of autophagy and its upstream coordinator, the AKT/mTOR pathway, in inflammatory responses, the crosstalk between them in the context of periimplantitis should become a key research target, as it opens up an area of interesting data with clinical significance. Therefore, in this article, we aimed to briefly review the existing data concerning the complex roles played by ROS in the interplay between the AKT/mTOR signaling pathway and autophagy in periimplantitis, in each of the main cell types involved in periimplantitis pathogenesis and evolution. Knowing how to modulate specifically the autophagic machinery in each of the cellular types involved in the healing and osseointegration steps post implant surgery can help the clinician to make the most appropriate post-surgery decisions. These decisions might be crucial in order to prevent the occurrence of periimplantitis and ensure the proper conditions for effective osseointegration, depending on patients' clinical particularities.
Collapse
Affiliation(s)
- Mihai Butucescu
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Marina Imre
- Department of Prosthodontics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Rus-Hrincu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania; (F.R.-H.); (A.P.); (M.M.); (A.R.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Cristina Neculau
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Silviu Mirel Pituru
- Department of Organization, Professional Legislation and Management of the Dental Office, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Simona Pârvu
- National Institute of Public Health, General Medicine Faculty, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
25
|
Zeng X, Shu B, Zeng Q, Wang X, Li K, Wu J, Luo J. A bibliometric and visualization analysis of global research status and frontiers on autophagy in cardiomyopathies from 2004 to 2023. Int J Surg 2024; 110:7687-7700. [PMID: 38990309 PMCID: PMC11634079 DOI: 10.1097/js9.0000000000001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Autophagy is intimately associated with the development of cardiomyopathy and has received widespread attention in recent years. However, no relevant bibliometric analysis is reported at present. In order to summarize the research status of autophagy in cardiomyopathy and provide direction for future research, we conducted a comprehensive, detailed, and multidimensional bibliometric analysis of the literature published in this field from 2004 to 2023. METHODS All literatures related to autophagy in cardiomyopathy from 2004 to 2023 was collected from the Web of Science Core Collection, and annual papers, global publication trends, and proportion charts were analyzed and plotted using GraphPad price v8.0.2. In addition, CtieSpace [6.2.4R (64-bit) Advanced Edition] and VOSviewer (1.6.18 Edition) were used to analyze and visualize these data. RESULTS Two thousand two hundred seventy-nine papers about autophagy in cardiomyopathy were accessed in the Web of Science Core Collection over the last 20 years, comprising literatures from 70 countries and regions, 2208 institutions, and 10 810 authors. China contributes 56.32% of the total publications, substantially surpassing other countries, while the United States is ranked first in frequency of citations. Among the top 10 authors, six are from China, and four are from the United States. Air Force Military Medical University was the institution with the highest number of publications, while the Journal of Molecular and Cellular Cardiology (62 articles, 2.71% of the total) was the journal with the highest number of papers published in the field. Clustering of co-cited references and temporal clustering analysis showed that ferroptosis, hydrogen sulfide mitophagy, lipid peroxidation, oxidative stress, and SIRT1 are hot topics and trends in the field. The principal keywords are oxidative stress, heart, and heart failure. CONCLUSION The research on autophagy in cardiomyopathy is in the developmental stage. This represents the first bibliometric analysis of autophagy in cardiomyopathy, revealing the current research hotspots and future research directions in this field.
Collapse
Affiliation(s)
- Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine
| | - Bin Shu
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Qingfeng Zeng
- Department of Cardiology, Ganzhou Hospital of Traditional Chinese Medicine
| | - Xianggui Wang
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Kening Li
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Jincheng Wu
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| | - Jianping Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, People’s Republic of China
| |
Collapse
|
26
|
Rockhold JD, Marszalkowski H, Sannella M, Gibney K, Murphy L, Zukowski E, Kalantar GH, SantaCruz-Calvo S, Hart SN, Kuhn MK, Yu J, Stefanik O, Chase G, Proctor EA, Hasturk H, Nikolajczyk BS, Bharath LP. Everolimus alleviates CD4 + T cell inflammation by regulating autophagy and cellular redox homeostasis. GeroScience 2024; 46:5681-5699. [PMID: 38761287 PMCID: PMC11493941 DOI: 10.1007/s11357-024-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Aging is associated with the onset and progression of multiple diseases, which limit health span. Chronic low-grade inflammation in the absence of overt infection is considered the simmering source that triggers age-associated diseases. Failure of many cellular processes during aging is mechanistically linked to inflammation; however, the overall decline in the cellular homeostasis mechanism of autophagy has emerged as one of the top and significant inducers of inflammation during aging, frequently known as inflammaging. Thus, physiological or pharmacological interventions aimed at improving autophagy are considered geroprotective. Rapamycin analogs (rapalogs) are known for their ability to inhibit mTOR and thus regulate autophagy. This study assessed the efficacy of everolimus, a rapalog, in regulating inflammatory cytokine production in T cells from older adults. CD4+ T cells from older adults were treated with a physiological dose of everolimus (0.01 µM), and indices of autophagy and inflammation were assessed to gain a mechanistic understanding of the effect of everolimus on inflammation. Everolimus (Ever) upregulated autophagy and broadly alleviated inflammatory cytokines produced by multiple T cell subsets. Everolimus's ability to alleviate the cytokines produced by Th17 subsets of T cells, such as IL-17A and IL-17F, was dependent on autophagy and antioxidant signaling pathways. Repurposing the antineoplastic drug everolimus for curbing inflammaging is promising, given the drug's ability to restore multiple cellular homeostasis mechanisms.
Collapse
Affiliation(s)
- Jack Donato Rockhold
- Department of Health Sciences and Nutrition, Merrimack College, North Andover, MA, USA
| | | | - Marco Sannella
- Department of Health Sciences and Nutrition, Merrimack College, North Andover, MA, USA
| | - Kaleigh Gibney
- Department of Health Sciences and Nutrition, Merrimack College, North Andover, MA, USA
| | - Lyanne Murphy
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Emelia Zukowski
- Department of Health Sciences and Nutrition, Merrimack College, North Andover, MA, USA
| | - Gabriella H Kalantar
- Dept of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Samantha N Hart
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Pharmacology, and Biomedical Engineering and Center for Neural Engineering, Pennsylvania State University, Hershey, PA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Olivia Stefanik
- Department of Health Sciences and Nutrition, Merrimack College, North Andover, MA, USA
| | - Gabrielle Chase
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Pharmacology, and Biomedical Engineering and Center for Neural Engineering, Pennsylvania State University, Hershey, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
| | | | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Leena P Bharath
- Department of Health Sciences and Nutrition, Merrimack College, North Andover, MA, USA.
| |
Collapse
|
27
|
Kim NY, Vishwanath D, Basappa S, Harish KK, Madegowda M, Rangappa KS, Basappa B, Ahn KS. Isoxazole based nucleosides induce autophagy through the production of ROS and the suppression of the β-catenin pathway in human colorectal carcinoma cells. Chem Biol Interact 2024; 404:111285. [PMID: 39442680 DOI: 10.1016/j.cbi.2024.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
β-catenin is frequently implicated in signaling pathways that regulate autophagy, and the production of reactive oxygen species (ROS) has been linked to autophagy activation. Isoxazole-based nucleoside compounds have demonstrated anti-cancer properties. In this study, we report the identification of novel isoxazole-nucleosides as anti-tumor agents and their impact on autophagy in human colorectal carcinoma (CRC) cells. Among the ITP series, ITP-7 and ITP-9 (ITP-7/9) exhibited significant cytotoxicity compared to other compounds. Treatment with ITP-7/9 upregulated the expression of key autophagy-related proteins, including LC3 II, Atg7, and phosphorylated Beclin-1. Additionally, ITP-7/9 promoted the formation of LC3 II puncta and increased the number of AO-stained and MDC-stained cells, indicating enhanced autophagy. ROS levels were elevated following ITP-7/9 exposure, and treatment with N-acetyl l-cysteine (NAC), a ROS inhibitor, reduced the ITP-7/9-induced expression of LC3 II. Furthermore, ITP-7/9 inhibited β-catenin's role as a transcription factor, as observed in ICC assays. Moreover, cells with β-catenin gene deletion exhibited stronger autophagy when treated with ITP-7/9 compared to those treated with ITP-7/9 alone. These findings suggest that ITP-7/9 induces autophagy and promotes CRC cell death by downregulating β-catenin.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, 500078, India
| | - Keshav Kumar Harish
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Kanchugarakoppal S Rangappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru, 570006, India.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
28
|
Xie H, Yu T, Zhou Q, Na K, Lu S, Zhang L, Guo X. Comparative Evaluation of Spores and Vegetative Forms of Bacillus subtilis and Bacillus licheniformis on Probiotic Functionality In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10407-z. [PMID: 39607632 DOI: 10.1007/s12602-024-10407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The probiotic effects of Bacillus are strain-specific and dependent on both spore and vegetative forms, but the distinct contributions of these forms to probiotic functionality are not well understood. This study aimed to evaluate and compare the impacts of vegetative forms and spores of Bacillus subtilis and Bacillus licheniformis on probiotic functions in vitro and in vivo. We systematically assessed the anaerobic metabolic capabilities and the potential to enhance the intestinal barrier function of four Bacillus strains, leading to the selection of Bacillus subtilis X22 and Bacillus licheniformis N-3 for detailed investigation. Utilizing in vitro fermentation with murine fecal microbiota, we observed that the spores form of Bacillus licheniformis N-3 noticeably positively regulated the gut microbiota under anaerobic conditions. Concurrently, both spore and vegetative forms of Bacillus licheniformis N-3 and Bacillus subtilis X22 demonstrated the ability to prevent pathogen adhesion, reduce inflammation, combat oxidative stress, and promote cellular autophagy to reduce apoptosis in response to enterotoxigenic Escherichia coli (ETEC) infection in the IPEC-J2 cell model. As a facultative anaerobe, Bacillus licheniformis N-3 exhibited a tendency toward superior regulatory capacity in enhancing the anti-infective activity of IPEC-J2 cells in vitro. In the pathogens challenge mouse model, B. licheniformis N-3 effectively preserved the integrity of jejunal tissue and enhanced the expression of glycoproteins in goblet cells. Moreover, B. licheniformis N-3 strengthened the epithelial barrier by increasing the levels of Occludin and Claudin-1 in the jejunum, thus promoting overall intestinal health. This research offers new insights into strain selection and the life cycle utilization of Bacillus probiotics.
Collapse
Affiliation(s)
- Hua Xie
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Qiwen Zhou
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, 430074, China.
| |
Collapse
|
29
|
Lan Y, Nie P, Yuan H, Xu H. Adolescent F-53B exposure induces ovarian toxicity in rats: Autophagy-apoptosis interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175609. [PMID: 39163935 DOI: 10.1016/j.scitotenv.2024.175609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
As a substitute for perfluorooctane sulfonates, F-53B has permeated into the environment and can reach the human body through the food chain. Adolescent individuals are in a critical stage of development and may be more sensitive to the impacts of F-53B. In the present study, we modeled the exposure of adolescent female rats by allowing them free access to F-53B at concentrations of 0 mg/L, 0.125 mg/L, and 6.25 mg/L in drinking water, aiming to simulate the exposure in the adolescent population. Using the ovary as the focal point, we investigated the impact of developmental exposure to F-53B on female reproduction. The results indicated that F-53B induced reproductive toxicity in adolescent female rats, including ovarian lesions, follicular dysplasia and hormonal disorders. In-depth investigations revealed that F-53B induced ovarian oxidative stress, triggering autophagy within the ovaries, and the autophagy exhibited the interplay with apoptosis in turn, collectively leading to significant ovarian toxicity. Our findings provided deeper insights into the roles of the autophagy-apoptosis interplay in ovarian toxicity, and offered a new perspective on the developmental toxicity inflicted by adolescent F-53B exposure.
Collapse
Affiliation(s)
- Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
30
|
Haque MF, Benjaskulluecha S, Boonmee A, Kongkavitoon P, Wongprom B, Pattarakankul T, Ongratanaphol R, Sri-Ngern-Ngam K, Pongma C, Saechue B, Kueanjinda P, Kobayashi T, Leelahavanichkul A, Palaga T. Loss of O 6-methylguanine DNA methyltransferase (MGMT) in macrophages alters responses to TLR3 stimulation and enhances DNA double-strand breaks and mitophagy. Sci Rep 2024; 14:27492. [PMID: 39528715 PMCID: PMC11554780 DOI: 10.1038/s41598-024-78885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) is a DNA damage repair enzyme. The roles of this enzyme in immune cells remain unclear. In this study, we explored the roles of MGMT in bone marrow-derived murine macrophages (BMMs) via the use of MGMT knockout (KO) mice. Loss of MGMT altered the response to TLR3 agonists (poly (I:C)), such as dampening the production of TNFα and IL-6. Increased DNA double-strand breaks (DSBs) were observed in MGMT-KO macrophages but did not result in increased cell death. MGMT localized to both nuclei and mitochondria at increasing levels during poly (I:C) stimulation. MGMT deficiency increased the production of mitochondrial reactive oxygen species (mtROS), which was correlated with increased mitophagy. The underlying mechanism involves mediation through activation of the AMPKα pathway. Taken together, our findings reveal the roles of MGMT in macrophages in regulating the response to TLR3, which links DSBs to mtROS and mitophagy via the AMPKα pathway. These roles may have consequences for the inflammatory response and chronic inflammation.
Collapse
Affiliation(s)
- Md Fazlul Haque
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Zoology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pornrat Kongkavitoon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rahat Ongratanaphol
- Program of Bachelor of Science in Applied Chemistry (BSAC), Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittitach Sri-Ngern-Ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Saechue
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Oita, 879-5593, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Duong LD, West JD, Morano KA. Redox regulation of proteostasis. J Biol Chem 2024; 300:107977. [PMID: 39522946 DOI: 10.1016/j.jbc.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out the reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes the degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
Collapse
Affiliation(s)
- Long Duy Duong
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio, USA.
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
32
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
33
|
Pu C, Liu Y, Zhu J, Ma J, Cui M, Mehdi OM, Wang B, Wang A, Zhang C. Mechanisms insights into bisphenol S-induced oxidative stress, lipid metabolism disruption, and autophagy dysfunction in freshwater crayfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135704. [PMID: 39217924 DOI: 10.1016/j.jhazmat.2024.135704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol S (BPS) is widely used in plastic products, food packaging, electronic products, and other applications. In recent years, BPS emissions have increasingly impacted aquatic ecosystems. The effects of BPS exposure on aquatic animal health have been documented; however, our understanding of its toxicology remains limited. This study aimed to explore the mechanisms of lipid metabolism disorders, oxidative stress, and autophagy dysfunction induced in freshwater crayfish (Procambarus clarkii) by exposure to different concentrations of BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) over 14 d. The results indicated that BPS exposure led to oxidative stress by inducing elevated levels of reactive oxygen species (ROS) and inhibiting the activity of antioxidant-related enzymes. Additionally, BPS exposure led to increased lipid content in the serum and hepatopancreas, which was associated with elevated lipid-related enzyme activity and increased expression of related genes. Furthermore, BPS exposure decreased levels of phosphatidylcholine (PC) and phosphatidylinositol (PI), disrupted glycerophospholipid (GPI) metabolism, and caused lipid deposition in the hepatopancreatic. These phenomena may have occurred because BPS exposure reduced the transport of fatty acids and led to hepatopancreatic lipid deposition by inhibiting the transport and synthesis of PC and PI in the hepatopancreas, thereby inhibiting the PI3K-AMPK pathway. In conclusion, BPS exposure induced oxidative stress, promoted lipid accumulation, and led to autophagy dysfunction in the hepatopancreas of freshwater crayfish. Collectively, our findings provide the first evidence that environmentally relevant levels of BPS exposure can induce hepatopancreatic lipid deposition through multiple pathways, raising concerns about the potential population-level harm of BPS and other bisphenol analogues.
Collapse
Affiliation(s)
- Changchang Pu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuanyi Liu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiaxiang Zhu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianshuang Ma
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengran Cui
- Henan University of Science and Technology, Luoyang, Henan, China
| | | | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, Henan, China
| | - Aimin Wang
- Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Chunnuan Zhang
- Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
34
|
Hsu CS, Chang SH, Yang RC, Lee CH, Lee MS, Kao JK, Shieh JJ. Lipopolysaccharide-Induced Lysosomal Cell Death Through Reactive Oxygen Species in Rat Liver Cell Clone 9. ENVIRONMENTAL TOXICOLOGY 2024; 39:5008-5018. [PMID: 39031462 DOI: 10.1002/tox.24377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
In sepsis, bacterial components, particularly lipopolysaccharide (LPS), trigger organ injuries such as liver dysfunction. Although sepsis induces hepatocyte damage, the mechanisms underlying sepsis-related hepatic failure remain unclear. In this study, we demonstrated that the LPS-treated rat hepatocyte cell line Clone 9 not only induced reactive oxygen species (ROS) generation and apoptosis but also increased the expression of the autophagy marker proteins LC3-II and p62, and decreased the expression of intact Lamp2A, a lysosomal membrane protein. Additionally, LPS increased lysosomal membrane permeability and galectin-3 puncta formation, and promoted lysosomal alkalization in Clone 9 cells. Pharmacological inhibition of caspase-8 and cathepsin D (CTSD) suppressed the activation of caspase-3 and rescued the viability of LPS-treated Clone 9 cells. Furthermore, LPS induced CTSD release associated with lysosomal leakage and contributed to caspase-8 activation. Pretreatment with the antioxidant N-acetylcysteine (NAC) not only diminished ROS generation and increased the cell survival rate, but also decreased the expression of activated caspase-8 and caspase-3 and increased the protein level of Lamp2A in LPS-treated Clone 9 cells. These results demonstrate that LPS-induced ROS causes lysosomal membrane permeabilization and lysosomal cell death, which may play a crucial role in hepatic failure in sepsis. Our results may facilitate the development of new strategies for sepsis management.
Collapse
Affiliation(s)
- Chien-Sheng Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Shu-Hao Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
35
|
Zhang Y, Xie X, Sun M, Zhuang Y, Zhou J, Li J, Yan P, Zhang J, Zhang Z. Vitamin D3 mediates autophagy to alleviate inflammatory responses in bovine endometrial epithelial cells and organoids via the PI3K/AKT/mTOR pathway. Vet Immunol Immunopathol 2024; 277:110839. [PMID: 39418864 DOI: 10.1016/j.vetimm.2024.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
As a natural anti-inflammatory agent, it remains unclear whether the anti-inflammatory effects of VD3 (1,25 dihydroxyvitamin D3) are related to autophagy. This study investigates the impact of VD3 on inflammatory injury, autophagy, oxidative stress, and apoptosis in bovine endometrial epithelial cells (BEECs) and bovine endometrial organoids (BEOs). BEECs and BEOs were treated with LPS (1 μg/ml) for 24 hours, followed by treatment with LPS+VD3 (50 ng/ml) for 6 hours. Cell viability was assessed using the CCK8 assay. The expression levels of inflammatory factors (IL-1β, IL-6, TLR4, NF-κB), autophagy markers (Beclin-1, ATG5, ATG7, p62), and components of the PI3K/AKT/mTOR pathway (PI3K, AKT, and mTOR) were quantified using qRT-PCR and Western blot analyses. LC3B expression was detected by immunofluorescence, and the apoptosis rate was assessed using Annexin V. The results demonstrated a significant decrease in the expression levels of IL-1β, IL-6, TLR4, and NF-κB, along with a notable increase in the activity of CAT and SOD2 in the LPS+VD3 group (P < 0.05). The expression of autophagy-related factors was significantly increased, whereas the expression of signaling pathway factors was decreased in the LPS+VD3 group (P < 0.05). Additionally, apoptosis was significantly alleviated in the LPS+VD3 group (P < 0.05). Collectively, these findings indicate that VD3 modulates autophagy, attenuates oxidative stress and inflammatory damage in BEECs and BEOs, and inhibits LPS-induced apoptosis via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yalin Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoyu Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mingzhu Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jin Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Juanjuan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Penghui Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Juntao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
36
|
Chen Y, Liu Y, Tu W, Chen Y, Xu C, Huang C. m6A demethylase FTO transcriptionally activated by SP1 improves ischemia reperfusion-triggered acute kidney injury by activating Ambra1/ULK1-mediated autophagy. FASEB J 2024; 38:e70118. [PMID: 39439252 PMCID: PMC11580720 DOI: 10.1096/fj.202400132rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Ischemia reperfusion (I/R) was considered as one of main causes of acute kidney injury (AKI). However, the exact mechanism remains unclear. Here, this study aimed to investigate the role and mechanism of the m6A demethylase fat mass and obesity-associated (FTO) protein in I/R-induced AKI. HK-2 cells and SD rats were utilized to establish hypoxia/reoxygenation (H/R) or I/R induced AKI models. The changes of RNAs and proteins were quantified using RT-qPCR, western blot, and immunofluorescence assays, respectively. Cell proliferation and apoptosis were assessed by CCK-8 and flow cytometry. Interactions between molecules were investigated using RIP, ChIP, Co-IP, RNA pull-down, and dual luciferase reporter assays. Global m6A quantification was evaluated by kits. TUNEL and HE staining were employed for histopathological examinations. Oxidative stress-related indicators and renal function were determined using ELISA assays. The FTO expression was downregulated in H/R-induced HK-2 cells and renal tissues from I/R-induced rats. Overexpression of FTO improved the cell viability but repressed apoptosis and oxidative stress in H/R-treated HK-2 cells, as well as enhanced renal function and alleviated kidney injury in I/R rats. Notably, the FTO overexpression significantly increased autophagy-related LC3 and ULK1 levels. When autophagy was inhibited, the protective effects of FTO in AKI were diminished. Notably, Ambra1, a crucial regulator of autophagy, was repressed in H/R-induced HK-2 cells. However, the FTO overexpression restored the Ambra1 expression by reducing m6A modification of its mRNA. SP1, acting as an upstream transcription factor, directly interacts with the FTO promoter to enhance FTO expression. Knockdown of SP1 or Ambra1 suppressed the beneficial effects of FTO upregulation on autophagy and oxidative stress injury in H/R-stimulated cells. FTO, transcriptionally activated by SP1, promoted autophagy by upregulating Ambra1/ULK1 signaling, thereby inhibiting oxidative stress and kidney injury. These findings may provide some novel insights for AKI treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Yuanfei Liu
- Department of EmergencyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Weiping Tu
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Yanxia Chen
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Chengyun Xu
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| | - Chong Huang
- Department of NephrologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP.R. China
| |
Collapse
|
37
|
Al-Salam S, Hashmi S, Jagadeesh GS, Sudhadevi M, Awwad A, Nemmar A. Early Cardiac Ischemia-Reperfusion Injury: Interactions of Autophagy with Galectin-3 and Oxidative Stress. Biomedicines 2024; 12:2474. [PMID: 39595040 PMCID: PMC11591886 DOI: 10.3390/biomedicines12112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Cardiovascular diseases are the leading cause of death worldwide, including the United Arab Emirates. Ischemia-reperfusion (IR) injury results in the death of cardiac myocytes that were viable immediately before myocardial reperfusion. We aim to investigate the role of galectin-3 (Gal-3) in autophagy during ischemia-reperfusion injuries. Methods: Male C57B6/J and Gal-3 knockout (KO) mice were used for the murine model of IR injury. Heart samples and serum were collected 24 h post-IR and were processed for immunohistochemical and immunofluorescent labeling and an enzyme-linked immunosorbent assay. Results: There was a significant increase in left ventricle (LV) concentrations of Gal-3 in Gal-3 wild-type mice compared to sham mice. There were significantly higher concentrations of LV autophagy proteins and phospho-AMPK in IR Gal-3 KO mice than in IR Gal-3 wild-type mice, compared to lower concentrations of LV phospho-mTOR and p62 in IR Gal-3 KO than in IR wild-type mice. Antioxidant activities were higher in the LVs of IR Gal-3 wild-type mice, while oxidative stress was higher in the LVs of IR Gal-3 KO mice. Conclusions: Our study supports the interaction of Gal-3 with autophagy proteins, oxidative stress, and antioxidant proteins and demonstrates that the absence of Gal-3 can enhance autophagy in the heart after IR injury.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University, Karachi City 74000, Pakistan;
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (G.S.J.); (M.S.)
| | - Aktham Awwad
- Department of Laboratory Medicine, Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates;
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
38
|
Wang Y, Lv J, Liu G, Yao Q, Wang Z, Liu N, He Y, Il D, Tusupovich JI, Jiang Z. ZnO NPs Impair the Viability and Function of Porcine Granulosa Cells Through Autophagy Regulated by ROS Production. Antioxidants (Basel) 2024; 13:1295. [PMID: 39594437 PMCID: PMC11591140 DOI: 10.3390/antiox13111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The zinc oxide nanoparticles (ZnO NPs) is one of the most extensively utilized metal oxide nanoparticles in biomedicine, human food, cosmetics and livestock farming. However, growing evidence suggests that there is a potential risk for humans and animals because of the accumulation of ZnO NPs in cells, which leads to cell death through several different pathways. Nevertheless, the effects of ZnO NPs on porcine granulosa cells (PGCs) and how ZnO NPs regulate the follicular cells are unknown. In this study, we aimed to elucidate the role of ZnO NPs in the porcine ovary by using PGCs. Firstly, we identified the characterization of ZnO NPs used in this study and the results showed that the size of ZnO NPs was 29.0 nm. The results also demonstrated that ZnO NPs impaired cell viability and decreased steroid hormone secretion in PGCs. In addition, ZnO NPs induced reactive oxygen species (ROS) production, leading to oxidative stress of PGCs. Meanwhile, ZnO NPs also triggered autophagy in PGCs by increasing the ratio of LC3-II/LC3-I, along with the expression of SQSTM1 and ATG7. Finally, the results from N-acetylcysteine (NAC) addition suggested that ZnO NPs promoted autophagy through the enhancement of ROS production. In summary, this study demonstrates that ZnO NPs impair the viability and function of PGCs through autophagy, which is regulated by ROS production.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Jing Lv
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Guangyu Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong 723600, China
| | - Ziqi Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Ning Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Yutao He
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Dmitry Il
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk 150000, Kazakhstan
| | - Jakupov Isatay Tusupovich
- Department of Veterinary Medicine, Seifullin Kazakh Agro Technical Research University, 62, Zhenis Avenue, Astana 010011, Kazakhstan
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| |
Collapse
|
39
|
Hou W, Peng P, Xiao F, Tian J, He X, Lu S, Xiao H, He M, Wei Q. Plasma SQSTM1/p62 act as a biomarker for steroid-induced osteonecrosis of the femoral head. Sci Rep 2024; 14:24932. [PMID: 39438530 PMCID: PMC11496759 DOI: 10.1038/s41598-024-71743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
Autophagy is closely associated with the onset and progression of steroid-induced osteonecrosis of the femoral head (SIONFH). SQSTM1/p62 is an important indicator of autophagic activity. The aim of this study was to investigate the role of SQSTM1/p62 in the development of SIONFH. From May 2021 through November 2021, 36 patients diagnosed with SIONFH and 36 healthy controls were recruited for this study. Evaluations included imaging and pathologic assessment of clinical bone tissue, location and level of SQSTM1/p62 expression, plasma SQSTM1/p62 levels, and receiver operating characteristic (ROC) curves. We observed that the expression level of SQSTM1/p62 in bone samples decreased with the Association Research Circulation Osseous (ARCO) phase. Plasma SQSTM1/p62 levels were significantly higher in the SIONFH group compared to healthy controls. Plasma SQSTM1/p62 levels were higher in pre-crash patients than in post-crash patients, and lower plasma SQSTM1/p62 levels were associated with elevated ARCO stage. Plasma SQSTM1/p62 may represent a potential biomarker for different stages during SIONFH. Lower plasma SQSTM1/p62 levels indicate an advanced stage of SIONFH. This study provides new clues for early diagnosis of SIONFH.
Collapse
Affiliation(s)
- Wenyuan Hou
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqing Tian
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianshun He
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shun Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Xiao
- Department of Orthopedics, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Mincong He
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
| | - Qiushi Wei
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Yoon HJ, Jiang E, Liu J, Jin H, Yoon HS, Choi JS, Moon JY, Yoon KC. A Selective Melatonin 2 Receptor Agonist, IIK7, Relieves Blue Light-Induced Corneal Damage by Modulating the Process of Autophagy and Apoptosis. Int J Mol Sci 2024; 25:11243. [PMID: 39457025 PMCID: PMC11508435 DOI: 10.3390/ijms252011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study aims to investigate the effect of the selective MT2 receptor agonist, IIK7, on corneal autophagy and apoptosis, aiming to reduce corneal epithelial damage and inflammation from blue light exposure in mice. Eight-week-old C57BL/6 mice were divided into BL-exposed (BL) and BL-exposed with IIK7 treatment (BL + IIK7 group). Mice underwent blue light exposure (410 nm, 100 J) twice daily with assessments at baseline and on days 3, 7, and 14. Corneal samples were analyzed for MT2 receptor expression, autophagy markers (LC3-II and p62), and apoptosis indicators (BAX expression and TUNEL assay). Then, mice were assigned to normal control, BL, and BL + IIK7. Ocular surface parameters, including corneal fluorescein staining scores, tear volume, and tear film break-up time, were evaluated on days 7 and 14. On day 14, reactive oxygen species (ROS) levels and CD4+ IFN-γ+ T cells percentages were measured. The BL group exhibited higher LC3-II and p62 expression, while the BL + IIK7 group showed reduced expression (p < 0.05). The TUNEL assay showed reduced apoptosis in the BL + IIK7 group compared to the BL group. ROS levels were lower in the BL + IIK7 group. The BL + IIK7 group showed improved ocular surface parameters, including decreased corneal fluorescein staining and increased tear volume. The percentages of CD4+ IFN-γ+ T cells indicated reduced inflammatory responses in the BL + IIK7 group. The MT2 receptor agonist IIK7 regulates corneal autophagy and apoptosis, reducing corneal epithelial damage and inflammation from blue light exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School, and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| |
Collapse
|
41
|
Sipos F, Műzes G. Interconnection of CD133 Stem Cell Marker with Autophagy and Apoptosis in Colorectal Cancer. Int J Mol Sci 2024; 25:11201. [PMID: 39456981 PMCID: PMC11508732 DOI: 10.3390/ijms252011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
CD133 protein expression is observable in differentiated cells, stem cells, and progenitor cells within normal tissues, as well as in tumor tissues, including colorectal cancer cells. The CD133 protein is the predominant cell surface marker utilized to detect cancer cells exhibiting stem cell-like characteristics. CD133 alters common abnormal processes in colorectal cancer, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways. Autophagy is a cellular self-digestion mechanism that preserves the intracellular milieu and plays a dual regulatory role in cancer. In cancer cells, apoptosis is a critical cell death mechanism that can impede cancer progression. CD133 can modulate autophagy and apoptosis in colorectal cancer cells via several signaling pathways; hence, it is involved in the regulation of these intricate processes. This can be an explanation for why CD133 expression is associated with enhanced cellular self-renewal, migration, invasion, and survival under stress conditions in colorectal cancer. The purpose of this review article is to explain the complex relationship between the CD133 protein, apoptosis, and autophagy. We also want to highlight the possible ways that CD133-mediated autophagy may affect the apoptosis of colorectal cancer cells. Targeting the aforementioned mechanisms may have a significant therapeutic role in eliminating CD133-positive stem cell-phenotype colorectal cancer cells, which can be responsible for tumor recurrence.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
42
|
Elkady MA, Kabel AM, Dawood LM, Helal AI, Borg HM, Atia HA, Sabry NM, Moustafa NM, Arafa ESA, Alsufyani SE, Arab HH. Targeting the Sirtuin-1/PPAR-Gamma Axis, RAGE/HMGB1/NF-κB Signaling, and the Mitochondrial Functions by Canagliflozin Augments the Protective Effects of Levodopa/Carbidopa in Rotenone-Induced Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1682. [PMID: 39459469 PMCID: PMC11509249 DOI: 10.3390/medicina60101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Parkinson's disease (PD) is a pathological state characterized by a combined set of abnormal movements including slow motion, resting tremors, profound stiffness of skeletal muscles, or obvious abnormalities in posture and gait, together with significant behavioral changes. Until now, no single therapeutic modality was able to provide a complete cure for PD. This work was a trial to assess the immunomodulatory effects of canagliflozin with or without levodopa/carbidopa on rotenone-induced parkinsonism in Balb/c mice. Materials and Methods: In a mouse model of PD, the effect of canagliflozin with or without levodopa/carbidopa was assessed at the behavioral, biochemical, and histopathological levels. Results: The combination of levodopa/carbidopa and canagliflozin significantly mitigated the changes induced by rotenone administration regarding the behavioral tests, striatal dopamine, antioxidant status, Nrf2 content, SIRT-1/PPAR-gamma axis, RAGE/HMGB1/NF-κB signaling, and mitochondrial dysfunction; abrogated the neuroinflammatory responses, and alleviated the histomorphologic changes induced by rotenone administration relative to the groups that received either levodopa/carbidopa or canagliflozin alone. Conclusions: Canagliflozin may represent a new adjuvant therapeutic agent that may add value to the combatting effects of levodopa/carbidopa against the pathological effects of PD.
Collapse
Affiliation(s)
| | - Ahmed M. Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Lamees M. Dawood
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt;
| | - Azza I. Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Hany M. Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt;
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 2440, Saudi Arabia;
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo 35527, Egypt
| | - Nesreen M. Sabry
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Nouran M. Moustafa
- Medical Microbiology & Immunology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Basic Medical Science Department, College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.E.A.); (H.H.A.)
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (S.E.A.); (H.H.A.)
| |
Collapse
|
43
|
ZHENG P, MENG Y, LIU M, YU D, LIU H, WANG F, XU X. Electroacupuncture inhibits hippocampal oxidative stress and autophagy in sleep-deprived rats through the protein kinase B and mechanistic target of rapamycin signaling pathway. J TRADIT CHIN MED 2024; 44:974-980. [PMID: 39380228 PMCID: PMC11462537 DOI: 10.19852/j.cnki.jtcm.20240806.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To investigate the effects of acupuncture on learning and memory impairment, oxidative stress and autophagy induced by sleep depriv ation in rats, and to analyze the related mechanism. METHODS Thirty Wistar rats were randomly divided into a normal group, sleep deprivation group and acupuncture group. The rat model of sleep deprivation was established by a modified multiplatform sleep deprivation method. The Baihui (GV20), Shenmen (HT7) and Sanyinjiao (SP6) acupoints of rats were located to give electroacupuncture (density wave, frequency 20 Hz, intensity 1 mA) to maintain the needle feeling, and to keep the needle for 15 min and continuous acupuncture for 7 d. The spatial learning and memory abilities of the rats were detected by the water maze test. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) in the brain were detected by an assay kit, and the autophagy related proteins light chain 3 alpha (LC3A), light chain 3 beta (LC3B) and Beclin 1 and the activation of the protein kinase B (PKB/AKT) and mechanistic target of rapamycin (mTOR) signaling pathway in the rat's brain were detected by Western blotting. RESULTS Compared with the normal group, the time spent in the target quadrant (P < 0.05) and the number of times entering the target quadrant (P < 0.05) in the rats of sleep deprivation group were significantly reduced, and the content of MDA was significantly increased (P < 0.01), while the activities of SOD and GPX (P < 0.01) in the brain were significantly decreased, and LC3A Ⅱ/Ⅰ, LC3B Ⅱ/Ⅰ and Beclin 1 increased significantly (P < 0.01), while p-AKT (ser473)/AKT, p-mTOR (ser2448)/mTOR and p-p70s6K (thr389)/p70S6 decreased significantly (P < 0.01). Compared with the sleep deprivation group, the time spent in the target quadrant and the times of entering the target quadrant (P < 0.05) in the rats of acupuncture group after 7 d of treatment were significantly increased, Additionally, the content of MDA was significantly decreased (P < 0.05), while the activities of SOD and GPX (P < 0.05) in the brain were significantly increased. Moreover, the levels of LC3A Ⅱ/Ⅰ, LC3BⅡ/Ⅰ and Beclin 1 decreased significantly (P < 0.05), and that of p-AKT (ser473)/AKT, p-mTOR (ser2448)/mTOR and p-p70s6K (thr389)/p70s6k increased significantly (P < 0.05). CONCLUSION Acupuncture can significantly improve the learning and memory damage caused by sleep deprivation and inhibit oxidative stress and autophagy, and its effect is related to the activation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Peng ZHENG
- 1 Department of Neurology, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ying MENG
- 2 Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun LIU
- 2 Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di YU
- 2 Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Huiying LIU
- 2 Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fuchun WANG
- 2 Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaohong XU
- 2 Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
44
|
Alijani S, Ghadir M, Gargari BP. The association between dietary inflammatory index and dietary total antioxidant capacity and Hashimoto's thyroiditis: a case-control study. BMC Endocr Disord 2024; 24:177. [PMID: 39232746 PMCID: PMC11375830 DOI: 10.1186/s12902-024-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is an inflammatory disease characterized by increased reactive oxygen species. Diets rich in anti-inflammatory and antioxidant properties may be linked to a reduced risk of developing HT. The aim of this study was to investigate the association between the dietary inflammatory index (DII) and dietary total antioxidant capacity (DTAC) with HT in Iranian adults. METHODS The study was a hospital-based case-control study conducted on 230 participants (115 cases and 115 controls). Dietary intake was assessed using a food frequency questionnaire (FFQ). The FFQ data were used to calculate DII and DTAC scores. Anthropometric measurements, thyroid function, and antibody tests were evaluated using standard methods. Multivariable logistic regression analysis was performed in both raw and adjusted models to determine the association between DII and DTAC scores with HT. RESULTS The average age of the participants was 39.76 ± 9.52 years. The mean body mass index in the case and control groups was 28.03 ± 6.32 and 26.43 ± 5.13 (kg/m2), respectively (P = 0.036). In the HT group, the DII level was higher (P < 0.001) and the DTAC level was lower than those in the healthy group (P = 0.047). In the multivariable logistic regression model, after adjusting for confounding factors, subjects in the last tertile of DII had a nonsignificantly higher HT risk than those in the first tertile (OR = 1.75; 95% CI = 0.83-3.65; P = 0.130). Regarding DTAC, the subjects in the last tertile of DTAC had a significantly decreased risk of HT (OR = 0.47; 95% CI = 0.23-0.98; P = 0.043) compared to those in the first tertile. The DII had a positive correlation with anti-thyroid peroxidase antibody (anti-TPO), thyroglobulin antibodies (TG-Ab) and thyroid-stimulating hormone, while DTAC had a negative correlation with anti-TPO and TG-Ab (P < 0.050). CONCLUSION The increase in DII is not associated with an increase in the risk of HT, while DTAC can significantly reduce its risk. Having an anti-inflammatory and antioxidative diet can be effective in improving thyroid function. These conclusions should be confirmed in additional prospective studies.
Collapse
Affiliation(s)
- Sepideh Alijani
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maliheh Ghadir
- Shahid Sardar Soleimani Hospital, Endocrine Clinic, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Tell, Iran.
| |
Collapse
|
45
|
Affranchi F, Di Liberto D, Lauricella M, D’Anneo A, Calvaruso G, Pratelli G, Carlisi D, De Blasio A, Tesoriere L, Giuliano M, Notaro A, Emanuele S. The Antitumor Potential of Sicilian Grape Pomace Extract: A Balance between ROS-Mediated Autophagy and Apoptosis. Biomolecules 2024; 14:1111. [PMID: 39334877 PMCID: PMC11430817 DOI: 10.3390/biom14091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
From the perspective of circular economy, it is extremely useful to recycle waste products for human health applications. Among the health-beneficial properties of bioactive phyto-compounds, grape pomace represents a precious source of bioactive molecules with potential antitumor properties. Here, we describe the effects of a Sicilian grape pomace hydroalcoholic extract (HE) in colon and breast cancer cells. The characterization of HE composition revealed the predominance of anthoxanthins and phenolic acids. HE treatment was more effective in reducing the viability of colon cancer cells, while breast cancer cells appeared more resistant. Indeed, while colon cancer cells underwent apoptosis, as shown by DNA fragmentation, caspase-3 activation, and PARP1 degradation, breast cancer cells seemed to not undergo apoptosis. To elucidate the underlying mechanisms, reactive oxygen species (ROS) were evaluated. Interestingly, ROS increased in both cell lines but, while in colon cancer, cells' ROS rapidly increased and progressively diminished over time, in breast cancer, cells' ROS increase was persistent up to 24 h. This effect was correlated with the induction of pro-survival autophagy, demonstrated by autophagosomes formation, autophagic markers increase, and protection by the antioxidant NAC. The autophagy inhibitor bafilomycin A1 significantly increased the HE effects in breast cancer cells but not in colon cancer cells. Overall, our data provide evidence that HE efficacy in tumor cells depends on a balance between ROS-mediated autophagy and apoptosis. Therefore, inhibiting pro-survival autophagy may be a tool to target those cells that appear more resistant to the effect of HE.
Collapse
Affiliation(s)
- Federica Affranchi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (M.L.); (G.P.); (D.C.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (M.L.); (G.P.); (D.C.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Giovanni Pratelli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (M.L.); (G.P.); (D.C.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (M.L.); (G.P.); (D.C.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Antonietta Notaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (F.A.); (A.D.); (G.C.); (A.D.B.); (L.T.); (M.G.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.D.L.); (M.L.); (G.P.); (D.C.)
| |
Collapse
|
46
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
47
|
Bahr AC, Naasani LIS, de Gregório E, Wink MR, da Rosa Araujo AS, Turck P, Dal Lago P. Photobiomodulation improves cell survival and death parameters in cardiomyocytes exposed to hypoxia/reoxygenation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112991. [PMID: 39033547 DOI: 10.1016/j.jphotobiol.2024.112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 μM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizama de Gregório
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Patrick Turck
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Huang Q, Shi W, Wang M, Zhang L, Zhang Y, Hu Y, Pan S, Ling B, Zhu H, Xiao W, Hua T, Yang M. Canagliflozin attenuates post-resuscitation myocardial dysfunction in diabetic rats by inhibiting autophagy through the PI3K/Akt/mTOR pathway. iScience 2024; 27:110429. [PMID: 39104415 PMCID: PMC11298657 DOI: 10.1016/j.isci.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
This study investigated the effects of canagliflozin on myocardial dysfunction after cardiac arrest and cardiopulmonary resuscitation in diabetic rats and the underlying mechanisms. Male rats with type 2 diabetes mellitus (T2DM) were subjected to a modified epicardial fibrillation model. Pretreatment with canagliflozin (10 mg/kg/day) for four weeks improved ATP levels, post-resuscitation ejection fraction, acidosis, and hemodynamics. Canagliflozin also reduced myocardial edema, mitochondrial damage and, post-resuscitation autophagy levels. In vitro analyses showed that canagliflozin significantly reduced reactive oxygen species and preserved mitochondrial membrane potential. Using the PI3K/Akt pathway inhibitor Ly294002, canagliflozin was shown to attenuate hyperautophagy and cardiac injury induced by high glucose and hypoxia-reoxygenation through activation of the PI3K/Akt/mTOR pathway. This study highlights the therapeutic potential of canagliflozin in post-resuscitation myocardial dysfunction in diabetes, providing new insights for clinical treatment and experimental research.
Collapse
Affiliation(s)
- Qihui Huang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Wei Shi
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Minjie Wang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Liangliang Zhang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Yijun Zhang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Yan Hu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Sinong Pan
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Bingrui Ling
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Huaqing Zhu
- Laboratory of Molecular, Biology and Department of Biochemistry, Anhui Medical University, Hefei 230022, Anhui, People’s Republic of China
| | - Wenyan Xiao
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Tianfeng Hua
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Min Yang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| |
Collapse
|
49
|
Lang LI, Wang ZZ, Liu B, Chang-Qing SHEN, Jing-Yi TU, Shi-Cheng WANG, Rui-Ling LEI, Si-Qi PENG, Xiong XIAO, Yong-Ju ZHAO, Qiu XY. The effects and mechanisms of heat stress on mammalian oocyte and embryo development. J Therm Biol 2024; 124:103927. [PMID: 39153259 DOI: 10.1016/j.jtherbio.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The sum of nonspecific physiological responses exhibited by mammals in response to the disruption of thermal balance caused by high-temperature environments is referred to as heat stress (HS). HS affects the normal development of mammalian oocyte and embryos and leads to significant economic losses. Therefore, it is of great importance to gain a deep understanding of the mechanisms underlying the effects of HS on oocyte and embryonic development and to explore strategies for mitigating or preventing its detrimental impacts in the livestock industry. This article provides an overview of the negative effects of HS on mammalian oocyte growth, granulosa cell maturation and function, and embryonic development. It summarizes the mechanisms by which HS affects embryonic development, including generation of reactive oxygen species (ROS), endocrine disruption, the heat shock system, mitochondrial autophagy, and molecular-level alterations. Furthermore, it discusses various measures to ameliorate the effects of HS, such as antioxidant use, enhancement of mitochondrial function, gene editing, cultivating varieties possessing heat-resistant genes, and optimizing the animals'rearing environment. This article serves as a valuable reference for better understanding the relationship between HS and mammalian embryonic development as well as for improving the development of mammalian embryos and economic benefits under HS conditions in livestock production.
Collapse
Affiliation(s)
- L I Lang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Zhen-Zhen Wang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Bin Liu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - S H E N Chang-Qing
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - T U Jing-Yi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - W A N G Shi-Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - L E I Rui-Ling
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - P E N G Si-Qi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - X I A O Xiong
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Z H A O Yong-Ju
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xiao-Yan Qiu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
50
|
Yalçın T, Kaya S, Yiğin A, Ağca CA, Özdemir D, Kuloğlu T, Boydak M. The Effect of Thymoquinone on the TNF-α/OTULIN/NF-κB Axis Against Cisplatin-İnduced Testicular Tissue Damage. Reprod Sci 2024; 31:2433-2446. [PMID: 38658488 PMCID: PMC11289327 DOI: 10.1007/s43032-024-01567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
One of the adverse effects of the antineoplastic drug cisplatin (CS) is damage to testicular tissue. This study aimed to examine the potential therapeutic effect of thymoquinone (TQ), a strong antioxidant, against testicular damage caused by CS. In the experiment, 28 rats were used, and the rats were randomly divided into four groups: control (n = 7), CS (n = 7), CS + TQ (n = 7), and TQ (n = 7). The experiment was called off after all treatments were finished on day 15. Blood serum and testicular tissues were utilized for biochemical, histological, immunohistochemical, mRNA expression, and gene protein investigations. The testosterone level decreased and oxidative stress, histopathological damage, dysregulation in mitochondrial dynamics, inflammation and apoptotic cells increased in testicular tissue due to CS administration. TQ supplementation showed anti-inflammatory, antioxidant, and anti-apoptotic effects in response to CS-induced testicular damage. In addition, TQ contributed to the reduction of CS-induced toxic effects by regulating the TNF-α/OTULIN/NF-κB pathway. TQ supplementation may be a potential therapeutic strategy against CS-induced testicular damage by regulating the TNF-α/OTULIN/NF-κB axis, inhibiting inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Main Campus, Health Services Vocational School, Room 217, Kültür Neighborhood, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Main Campus, Health Services Vocational School, Room 217, Kültür Neighborhood, Batman, Turkey.
| | - Akın Yiğin
- Department of Geneticy, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Can Ali Ağca
- Department of Molecular Biology and Genetics, Bingol University, Bingol, Turkey
| | - Deniz Özdemir
- Department of Molecular Biology and Genetics, Bingol University, Bingol, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Murat Boydak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|